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ABSTRACT

We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization
data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization
maps from 5σ to 9σ. Combined with temperature, lensing is detected at 40σ. We present an extensive set of tests of the robustness of the lensing-
potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to
lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the
results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis
alone constrains σ8Ω

0.25
m = 0.589 ± 0.020 (1σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter

constraints, σ8 = 0.811 ± 0.019, H0 = 67.9+1.2
−1.3 km s−1 Mpc−1, and Ωm = 0.303+0.016

−0.018. Combining with Planck CMB power spectrum data, we
measure σ8 to better than 1% precision, finding σ8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data
at lower redshift, having a different degeneracy direction in σ8 − Ωm space; we find consistency with the lensing results from the Dark Energy
Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic
infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck-only estimate of the lensing potential
over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint
and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in
the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.

Key words. gravitational lensing: weak – cosmological parameters – cosmic background radiation – large-scale structure of Universe –
cosmology: observations

1. Introduction

Gravitational lensing distorts our view of the last-scattering
surface, generating new non-Gaussian signals and B-mode polar-
ization, as well as smoothing the shape of the observed power
spectra. The large distance to recombination means that each
photon is effectively independently lensed many times, boosting

? Corresponding authors: J. Carron,
e-mail: julien.carron@unige.ch

the signal compared to other second- and higher-order effects.
The sharply-defined acoustic scale in the unlensed cosmic
microwave background (CMB) perturbation power also makes
small magnification and shear distortions easily detectable,
allowing us to use observations of the lensed sky to reconstruct
the lensing deflections and hence learn about the large-scale
structure and geometry of the Universe between recombination
and today (Blanchard & Schneider 1987; Hu & Okamoto 2002;
Lewis & Challinor 2006). In this paper we present the final
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Planck1 lensing reconstruction analysis, giving the most signif-
icant detection of lensing to date over 70% of the sky. We also
give new results for polarization-based reconstructions, a com-
bination of Planck’s lensing reconstruction and measurements
of the cosmic infrared background (CIB), and delensing of the
CMB temperature and polarization fields.

In the Planck 2013 analysis (Planck Collaboration XVII
2014; hereafter PL2013) we produced the first nearly full-sky
lensing reconstruction based on the nominal-mission tempera-
ture data. In the 2015 analysis (Planck Collaboration XV 2016;
hereafter PL2015) this was updated to include the full-mission
temperature data, as well as polarization, along with a variety
of analysis improvements. The final full-mission analysis pre-
sented here uses essentially the same data as PL2015: most of the
map-level improvements discussed by Planck Collaboration Int.
XLVI (2016) and Planck Collaboration III (2020) are focussed
on large scales (especially the low-` polarization), which have
almost no impact on lensing reconstruction (the lensing anal-
ysis does not include multipoles ` < 100). Instead, we focus
on improvements in the simulations, optimality of the lensing
reconstruction, foreground masking, and new results such as the
polarization-only reconstruction, joint analysis with the CIB, and
delensing. We highlight the following main results.

– The most significant measurement of the CMB lensing
power spectrum to date is performed, 9σ from polarization
alone, and 40σ using the minimum-variance estimate combin-
ing temperature and polarization data on 67% of the sky, over
the (conservative) multipole range 8 ≤ L ≤ 400.

– A new best estimate is made of the lensing potential over
58% of the sky by combining information from the Planck CMB
lensing reconstruction and high-frequency maps as a probe of the
CIB. The CIB is expected to be highly correlated with the CMB
lensing potential, and although the CIB does not provide robust
independent information on the lensing power spectrum, the map
can provide an improved estimate of the actual realization of
lensing modes down to small scales. The joint estimate gives
the best picture we currently have of the lensing potential.

– Using the lensing-reconstruction maps, we demonstrate
that the CMB acoustic peaks can be delensed, detecting peak
sharpening at 11σ from the Planck reconstruction alone and
15σ upon further combination with the CIB (corresponding to
removal of about 40% of the lensing effect). We also detect
at 9σ a decrease in power of the B-mode polarization after
delensing.

– Using the Planck lensing likelihood alone we place a 3.5%
constraint on the parameter combination σ8Ω0.25

m . This has com-
parable statistical power to current constraints from galaxy lens-
ing, but the high-redshift CMB source plane gives a different
degeneracy direction compared to the σ8Ω0.5

m combination from
galaxy lensing at lower redshift. Combining a baryon density
prior with measurements of baryon acoustic oscillations (BAOs)
in the galaxy distribution gives a competitive measurement of
σ8, Ωm, and H0. We can also break the degeneracy by com-
bining our likelihood with the first-year lensing results from the

1 Planck (https://www.esa.int/Planck) is a project of the Euro-
pean Space Agency (ESA) with instruments provided by two scientific
consortia funded by ESA member states and led by Principal Investi-
gators from France and Italy, telescope reflectors provided through a
collaboration between ESA and a scientific consortium led and funded
by Denmark, and additional contributions from NASA (USA).

Dark Energy Survey (DES; Troxel et al. 2018), giving the tight-
est lensing-only constraints on these parameters.
Our baseline lensing reconstruction map is shown in Fig. 1.
In Sect. 2 we explain how this was obtained, and the changes
compared to our analysis in PL2015. We also describe the new
optimal filtering approach used in our best polarization analy-
sis. In Sect. 3 we present our main results, including power-
spectrum estimates, cosmological parameter constraints, and a
joint estimation of the lensing potential using the CIB. We end
the section by using the estimates of the lensing map to delens
the CMB, reducing the B-mode polarization power and sharpen-
ing the acoustic peaks. In Sect. 4 we describe in detail a number
of null and consistency tests, explaining the motivation for our
data cuts and the limits of our understanding of the data. We also
discuss possible contaminating signals, and assess whether they
are potentially important for our results. In Sect. 5 we briefly
describe the various data products that are made available to the
community, and we end with conclusions in Sect. 6. A series of
appendices describe some technical details of the calculation of
various biases that are subtracted, and derive the error model for
the Monte Carlo estimates.

2. Data and methodology

This final Planck lensing analysis is based on the 2018 Planck
HFI maps as described in detail in Planck Collaboration III
(2020). Our baseline analysis uses the SMICA foreground-
cleaned CMB map described in Planck Collaboration IV (2020),
and includes both temperature and polarization information. We
use the Planck Full Focal Plane (FFP10) simulations, described
in detail in Planck Collaboration III (2020), to remove a num-
ber of bias terms and correctly normalize the lensing power-
spectrum estimates. Our analysis methodology is based on the
previous Planck analyses, as described in PL2013 and PL2015.
After a summary of the methodology, Sect. 2.1 also lists the
changes and improvements with respect to PL2015. Some details
of the covariance matrix are discussed in Sect. 2.2, and details
of the filtering in Sect. 2.3. The main set of codes applying
the quadratic estimators is made public as the python package
Plancklens2.

2.1. Lensing reconstruction

The five main steps of the lensing reconstruction are as
follows.

Filtering of the CMB maps. The observed sky maps
are cut by a Galactic mask and have noise, so filtering is
applied to remove the mask and approximately optimally weight
for the noise. The lensing quadratic estimators use as input
optimal Wiener-filtered X = T , E, and B CMB multipoles, as
well as inverse-variance-weighted CMB maps. The latter maps
can be obtained easily from the Wiener-filtered multipoles by
dividing by the fiducial CMB power spectra Cfid

` before project-
ing onto maps. We write the observed temperature T and polar-
ization (written as the spin ±2 combination of Stokes parameters
±2P ≡ Q ± iU) pixelized data as T dat

2Pdat

−2Pdat

 = BY

TE
B

 + noise, (1)

2 https://github.com/carronj/plancklens
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Fig. 1. Mollweide projection in Galactic coordinates of the lensing-deflection reconstruction map from our baseline minimum-variance (MV)
analysis. We show the Wiener-filtered displacement-like scalar field with multipoles α̂MV

LM =
√

L(L + 1)φ̂MV
LM , corresponding to the gradient mode

(or E mode) of the lensing deflection angle. Modes with L < 8 have been filtered out.

where T , E, and B on the right-hand side are the multipole coef-
ficients of the true temperature and E- and B-mode polarization.
The matrix Y contains the appropriate (spin-weighted) spheri-
cal harmonic functions to map from multipoles to the sky, and
the matrix B accounts for the real-space operations of beam and
pixel convolution. We further use the notation T ≡ BY for the
complete transfer function from multipoles to the pixelized sky.
The Wiener-filtered multipoles are obtained from the pixelized
data asT

WF

EWF

BWF

 ≡ CfidT †Cov−1

 T dat

2Pdat

−2Pdat

 , (2)

where the pixel-space covariance is Cov = TCfidT † + N. Here,
Cfid is a fiducial set of CMB spectra and N is the pixel-space
noise covariance matrix, which we approximate as diagonal.
As in previous releases, our baseline results use independently-
filtered temperature and polarization maps (i.e., we always
neglect CT E

` in Cov−1 in Eq. (2)) at the cost of a 3% increase
in reconstruction noise on our conservative multipole range (L ≤
400). The large matrix inversion is performed with a multigrid-
preconditioned conjugate-gradient search (Smith et al. 2007).
The temperature monopole and dipole are projected out, being
assigned formally infinite noise. As in PL2015, we use only
CMB multipoles 100 ≤ ` ≤ 2048 from these filtered maps. Our
baseline analysis approximates the noise as isotropic in the fil-
tering, which has the advantage of making the lensing estimator
normalization roughly isotropic across the sky at the expense
of some loss of optimality. In this case we also slightly rescale

the filtered multipoles so that the effective full-sky transfer func-
tion matches the one seen empirically on the filtered simulations,
with a minimal impact on the band powers. We also present new
more optimally-filtered results, as discussed in Sect. 2.3.

Construction of the quadratic lensing estimator. We deter-
mine φ̂ from pairs of filtered maps, and our implementation
now follows Carron & Lewis (2017). This differs slightly from
PL2015, allowing us to produce minimum-variance (MV) esti-
mators from filtered maps much faster, which is useful given the
variety of tests performed for this release. We calculate a spin-1
real-space (unnormalized) lensing displacement estimate

1d̂(n̂) = −
∑

s=0,±2
−sX̄(n̂)

[
ðsXWF

]
(n̂), (3)

where ð is the spin-raising operator, and the pre-subscript s on a
field denotes the spin. The quadratic estimator involves products
of the real-space inverse-variance filtered maps

X̄(n̂) ≡
[
B†Cov−1Xdat

]
(n̂), (4)

and the gradients of the Wiener-filtered maps[
ð0XWF

]
(n̂) ≡

∑
`m

√
`(` + 1)T WF

`m 1Y`m(n̂) ,[
ð−2XWF

]
(n̂) ≡ −

∑
`m

√
(` + 2)(` − 1)

[
EWF
`m − iBWF

`m

]
−1Y`m(n̂) ,[

ð2XWF
]

(n̂) ≡ −
∑
`m

√
(` − 2)(` + 3)

[
EWF
`m + iBWF

`m

]
3Y`m(n̂) .

(5)
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The deflection estimate 1d̂(n̂) is decomposed directly into gra-
dient (g) and curl (c) components by using a spin-1 harmonic
transform, where the gradient piece contains the information on
the lensing potential and the curl component is expected to be
zero:3

±1d̂(n̂) ≡ ∓
∑
LM

(
ĝLM ± iĉLM
√

L(L + 1)

)
±1YLM(n̂). (6)

By default we produce three estimators, namely temperature-
only (s = 0), polarization-only (s = ±2), and MV (s =

0,±2), rather than the traditional full set TT,T E,T B, EE, and
EB estimators of Okamoto & Hu (2003). The temperature-
polarization coupling CT E

` is neglected in the Cfid factor that
appears in the Wiener-filter of Eq. (2) for temperature- and
polarization-only estimators, but is included in the MV recon-
struction. We use lensed CMB spectra in Eq. (2) to make the esti-
mator nearly unbiased to non-perturbative order (Hanson et al.
2011; Lewis et al. 2011). When producing the full set of indi-
vidual quadratic estimators, we simply use the same equations
after setting to zero the appropriate set of filtered maps entering
Eq. (3).

The estimators described above only differ from the imple-
mentation described in PL2015 by the presence of the filtered B
modes, BWF, in Eq. (5). This affects the T B and EB estimators,
and introduces a BB component in the polarization and MV esti-
mators, which yields no lensing information to leading order in a
cosmology with only lensing B modes. However, these modifica-
tions have a negligible impact on the reconstruction band pow-
ers and their covariance (a maximal fractional change of 0.4%
for polarization only, 0.05% for MV) and we make no attempt at
further optimization here.

Mean-field subtraction and normalization. This involves
modification of the lensing deflection estimators in Eq. (3).
Masking and other anisotropies bias the reconstruction and com-
plicate the estimator’s response to the lensing potential, which
is diagonal in the harmonic domain only under idealized con-
ditions. The mean field is the map-level signal expected from
mask, noise, and other anisotropic features of the map in the
absence of lensing; we subtract this mean-field bias after esti-
mating it using the quadratic estimator mean over our most faith-
ful set of simulations. As in PL2015, we apply an approximate
isotropic normalization at the map level, calculated analytically
for the full sky following Okamoto & Hu (2003), using isotropic
effective beams and noise levels in the filters. Our lensing map
estimate becomes

φ̂LM ≡
1

R
φ
L

(
ĝLM − 〈ĝLM〉MC

)
, (7)

and similarly for the lensing curl. With the notational con-
ventions adopted above, the responses are identical to those
defined in PL2015. The isotropic normalization is fairly accurate
on average: cross-spectra between reconstructions from masked
simulations and the true input lensing realizations match expec-
tations to sub-percent levels on all but the largest scales. For the
released lensing maps, the subtracted mean field is calculated
across the entire available set of 300 simulations (see below), and
is also provided. For power-spectrum estimation, we use cross-
spectrum estimators of maps with independent Monte Carlo

3 We follow the standard convention and use L,M rather than `,m for
lensing multipoles.

noise on the mean-field subtraction, obtained using 30 indepen-
dent simulations for the mean field subtracted from each map
(60 simulations in total). This number is motivated by a nearly
optimal trade-off between uncertainties in the Monte Carlo esti-
mates of the mean field and biases that affect the reconstruction
band-power covariance matrix (see Sect. 2.2).

Calculation of the power spectrum of the lensing map and
subtraction of additional biases. More specifically we need to
perform subtraction of the so-called N(0) and N(1) lensing biases,
as well as point-source contamination. For a pair of lensing map
estimates φ̂1 and φ̂2, we use the same simple cross-spectrum esti-
mator as in PL2015,

Ĉφ̂1φ̂2
L ≡

1
(2L + 1) fsky

L∑
M=−L

φ̂1,LMφ̂
∗
2,LM , (8)

from which biases are subtracted:

Ĉφφ
L ≡ Ĉφ̂1φ̂2

L − ∆Cφ̂1φ̂2
L

∣∣∣∣
RDN0

− ∆Cφ̂1φ̂2
L

∣∣∣∣
N1
− ∆Cφ̂1φ̂2

L

∣∣∣∣
PS
. (9)

Lensing power-spectrum estimation is designed to probe the
connected 4-point function of the data that is induced by
lensing. The combination of the mean-field subtraction and
the first bias term ∆Cφ̂1φ̂2

L |RDN0 (N(0)) in Eq. (9) subtracts
the disconnected signal expected from Gaussian fluctuations
even in the absence of lensing, and is calculated using the
same realization-dependent N(0) (RD-N(0)) estimator described
in PL2015 (and summarized in Appendix A for the baseline
cases). The ∆Cφ̂1φ̂2

L |N1 term subtracts anO(Cφφ
L ) signal term (N(1))

coming from non-primary couplings of the connected 4-point
function (Kesden et al. 2003), and in our baseline analysis this is
calculated using a full-sky analytic approximation in the fiducial
model as described in Appendix A. The signal-dependence of
this term is handled consistently in the likelihood as described
in Sect. 3.2. We tested an alternative simulation-based N(1)

calculation and a deconvolution technique as described in
Sect. 4.8. The point-source (PS) bias term ∆Cφ̂1φ̂2

L |PS subtracts
the contribution from the connected 4-point function of unclus-
tered point sources. The amplitude of this correction is estimated
from the data, as described in PL2015.

The MV estimator empirically has very slightly larger recon-
struction noise N(0) than the TT estimator for lensing multipoles
L' 1000 and beyond, as was also the case in PL2015: the sim-
ple combination of the various quadratic estimators in Eq. (3)
is slightly suboptimal if the fiducial covariance matrix does not
exactly match that of the data. This is at most a 2% effect at the
highest multipoles of the reconstruction, and is sourced by our
choice of independently filtering the temperature and polariza-
tion data (i.e., the neglect of CT E

` in Cov in Eq. (2)). Therefore,
we have not attempted further optimization in Eq. (3).

Binning, and application of a multiplicative correction. This
final correction is obtained through Monte Carlo simulations
to account for various approximations made in the previous
steps, including correcting the approximate isotropic normaliza-
tion assumed. After converting the lensing potential spectra to
convergence (κ) spectra (Cκκ

L = L2(L + 1)2Cφφ
L /4), we define our

band-power estimates

Ĉκκ
Lb
≡

∑
L

BL
bĈκκ

L




∑
L B

L
bCκκ, fid

L∑
L B

L
b

〈
Ĉκκ

L

〉
MC

 . (10)
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The binning functions BL
b use an approximate inverse-variance

weighting V−1
L ∝ (2L + 1) fskyR

2
L/[2L4(L + 1)4] to produce

roughly optimal signal amplitudes:

BL
b = Cκκ,fid

Lb

Cκκ, fid
L V−1

L∑
L′

(
Cκκ,fid

L′

)2
V−1

L′

, Lb
min ≤ L ≤ Lb

max. (11)

Equation (11) rescales the amplitude measurements by the fidu-
cial convergence spectrum interpolated to the bin multipole L =

Lb, where the bin multipoles are the weighted means,

Lb ≡

∑
L L BL

b∑
L′ B

L′
b

· (12)

This choice ensures that the binned fiducial spectrum goes
exactly through the fiducial model at L = Lb, so plotting band-
power bin values at L = Lb against the unbinned fiducial model
gives a fair visual comparison of whether the observed band
power is higher or lower than the fiducial one (assuming that the
true spectrum shape is close to the fiducial shape). For a flat con-
vergence spectrum, Eq. (12) gives the centre of mass L of the bin.

In a change to the earlier analyses, we no longer subtract a
Monte Carlo correction from the estimated lensing power spec-
trum, instead making a multiplicative correction. The ratio on
the right-hand side of Eq. (10) is our multiplicative Monte Carlo
correction, which corrects for the various isotropic and sim-
plifying approximations we make in constructing the unbinned
power-spectrum estimator. The simulation-averaged band pow-
ers

〈
Ĉκκ

L

〉
MC

in Eq. (10) are built from simulations as from
the data according to Eq. (9), but with a cheaper Monte Carlo
N(0) (MC-N(0)) estimation described in Appendix A, and no
point-source correction (since the simulations are free of point
sources). The (reciprocal of the) Monte Carlo correction for our
baseline MV band powers is illustrated later in Sect. 2.3 (see
Fig. 3 there).

Other differences to the analysis of PL2015 include the fol-
lowing points.

– An improved mask, with reduced point-source con-
tamination for the same sky fraction. The amplitude of the
point-source correction decreased by a factor of 1.9, and the
detection of this point-source contamination is now marginal at
1.7σ. The 2013 and 2015 lensing analyses used essentially the
same mask, constructed as described in PL2013. This is now
updated using a combination of unapodized masks: a SMICA-
based confidence mask;4 the 2015 70% Galactic mask; and the
point-source masks at 143 GHz and 217 GHz. We also consider a
mask targeted at the resolved Sunyaev–Zeldovich (SZ) clusters
with S/N > 5 listed in the 2015 SZ catalogue5. This has little
impact on the results, but is included in the baseline analysis,
leaving a total unmasked sky fraction fsky = 0.671. A recon-
struction map without the SZ mask is also made available for
use in SZ studies.

4 The SMICA mask was a preliminary mask constructed for the SMICA
2018 analysis; it differs from the final 2018 component-separation mask
described in Planck Collaboration IV (2020), since this was finalized
later. We make the mask used for the lensing analysis available with
the other lensing products, and show results using the final component-
separation mask in Table 2 for comparison.
5 https://wiki.cosmos.esa.int/planckpla2015/index.php/
Catalogues

– We continue to use the foreground-cleaned SMICA maps
for our baseline analysis; however, the details of the SMICA pro-
cessing have changed, as described in Planck Collaboration IV
(2020). Specifically, the SMICA weights at high ` relevant for
lensing are now optimized over a region of the sky away from the
Galaxy (but larger than the area included in the lensing mask),
significantly changing the relative weighting of the frequency
channels on small scales. This changes the noise and residual
foreground realization in the SMICA maps compared to the 2015
analysis, and hence the lensing reconstruction data points scatter
with respect to 2015 by more than would be expected from indi-
vidual frequencies. The 2018 SMICA maps also correct an LFI
map calibration issue in the 2015 maps that affected the ampli-
tude around the first peak; however, this had little impact on
the 2015 lensing analysis, since the great majority of the signal
comes from smaller scales.

– Monte Carlo evaluation of the mean field and bias terms
are now based on Planck FFP10 simulations, described in detail
in Planck Collaboration III (2020). In addition to many process-
ing changes, the simulations fix an error in the FFP8 simula-
tion pipeline used for PL2015, which led to aberration (due to
the motion of the Solar System relative to the CMB rest frame)
not being simulated; the new simulations include the expected
level of aberration and the associated modulation (Planck
Collaboration XXVII 2014), although this has minimal
impact on the lensing analysis. There are only 300 noise FFP10
simulations, so we now include various sources of Monte Carlo
error from the finite number of simulations as additional con-
tributions to the covariance matrix. The noise simulations were
generated using a single fiducial foreground and CMB realiza-
tion, which is subtracted before adding to the signal simulations.
Small nonlinearities in the processing cause a weakly correlated
residual between simulations. This residual can be detected both
in the temperature and polarization simulation mean fields at
very high lensing multipoles (see Appendix B), where it can be
seen that the impact on our band powers is completely negligible
compared to the error bars.

There is a roughly 3% mismatch in power at multipoles
` ' 2000 between the data and the FFP10 temperature simu-
lations (which have no variance from residual foregrounds). We
account for this by adding isotropic Gaussian noise to the simu-
lations, with a spectrum given by the power difference. The size
of this component is roughly 5 µK-arcmin with a weak scale
dependence. In polarization, as discussed in Planck Collabora-
tion IV (2020), the simulation power can be slightly larger than
the data power. In this case, for consistency, we add a small addi-
tional noise component to the data maps.

– The lensing maps that we release are provided to higher
Lmax = 4096 than in 2015. Multipoles at L � 60 become increas-
ingly noise dominated, but some residual signal is present at
L> 2048, so we increase the range, following requests related
to cross-correlation and cluster analyses (Geach & Peacock
2017; Singh et al. 2017). The reconstruction with the full mul-
tipole range is made publicly available, but in this paper we
only show results for the power spectrum at multipoles up to
Lmax = 2048; we have not studied the reliability of reconstruc-
tions at higher multipoles, so we recommend they be used with
caution.

– The treatment of the Monte Carlo (MC) correction differs,
being now multiplicative instead of additive. After subtraction
of the lensing biases and formation of the band powers, we cal-
culate the MC correction by taking the ratio to the appropriately
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binned fiducial Cfid,φφ
L . The choice of a multiplicative correction

is more appropriate for mode-mixing effects, where corrections
are expected to scale with the signal, and for calibration of the
quadratic estimator responses when using inhomogeneous filter-
ing. Our baseline reconstruction MC correction is most impor-
tant on large scales (where it is around 10%), but only has a
small impact on the band-power errors.

– The lensing likelihood is constructed as before, following
Appendix C of PL2015. We now include L ≤ 4096 in the cal-
culation of the fiducial N(1) bias that we subtract, and include
L ≤ 2500 in the linear correction to account for the model-
dependence of N(1) relative to the fiducial lensing power. The
2015 MV likelihood contained an almost inconsequential error
in the calculation of the response of N(1) to the polarization
power that has now been corrected.
The construction of the covariance matrix also differs slightly,
with additional small terms to take into account uncertain-
ties in several factors that are calibrated in simulations (see
Sect. 2.2). For “lensing-only” parameter results we now adopt
slightly tighter priors, and marginalize out the dependence on
the CMB spectra given the observed Planck data, as described
in Sect. 3.2.1.

– Our fiducial model, the same as used to generate the
FFP10 simulations, is now a spatially-flat ΛCDM cosmol-
ogy with: baryon density ωb ≡ Ωbh2 = 0.02216; cold dark
matter density ωc ≡ Ωch2 = 0.1203; two massless neu-
trinos and one massive with mass 0.06 eV; Hubble constant
H0 = 100h km s−1 Mpc−1 with h = 0.670; spectral index
of the power spectrum of the primordial curvature perturba-
tion ns = 0.964; amplitude of the primordial power spectrum
(at k = 0.05 Mpc−1) As = 2.119 × 10−9; and Thomson optical
depth through reionization τ = 0.060.

2.2. Covariance matrix

Our band-power covariance matrix is obtained from the FFP10
simulation suite. Out of the 300 simulations, 60 are used for
the mean-field subtraction (30 for each of the quadratic recon-
structions that are correlated to form the power spectrum), and
240 for estimation of the lensing biases, Monte Carlo correction,
and band-power covariance matrix. It is impractical to perform
the same, expensive, realization-dependent N(0) (RD-N(0)) sub-
traction on all these simulations for evaluation of the covariance
matrix, and therefore, as in previous releases, we use a cheaper
semi-analytic calculation, as detailed in PL2015, which only
requires empirical spectra of the CMB data. This semi-analytic
calculation is only accurate to 1–2%, which is not enough for
debiasing where sub-percent accuracy is required to recover the
lensing signal at high lensing multipoles; however, it is sufficient
for the covariance matrix calculation.

New to this release are two corrections to the covariance
matrix that slightly increase the error bars. First, we take into
account Monte Carlo uncertainties in the mean-field, RDN0, and
MC corrections. As detailed in Appendix C, for Planck noise
levels the additional variance σ2

MC caused by the finite number
of simulations can be written to a good approximation in terms
of the band-power statistical6 errors σ2

BP as

6 That is, with perfect knowledge of the mean field, biases and MC
correction.

σ2
MC '

(
2

NMF
+

9
NBias

)
σ2

BP. (13)

Here, NMF is the number of simulations entering the mean-field
subtraction, and NBias the number used for the noise biases and
MC correction. Our choice (NMF = 60 and NBias = 240) is close
to optimal, given the 300 simulations at our disposal and our
choice of N(0) estimator. To account for the finite number of sim-
ulations, we have simply rescaled the entire covariance matrix
by this factor, a 7% increase in covariance, irrespective of bin-
ning. Second, we also rescale our inverse covariance matrix by
the factor (Hartlap et al. 2007)

αcov =
Nvar − Nbins − 2

Nvar − 1
, (14)

where Nvar (which equals Nbias in our analysis) is the number
of simulations used to estimate the covariance matrix, to cor-
rect for the bias that would otherwise be present in the inverse
covariance matrix that is used in the likelihood. We construct
two likelihoods: one based on the conservative multipole range
8 ≤ L ≤ 400, for which the number of band-power bins Nbins = 9
and 1/αcov = 1.035 (i.e., effectively a 3.5% increase in band-
power covariance); and one on the aggressive multipole range
8 ≤ L ≤ 2048, for which Nbins = 16 and 1/αcov = 1.06. After our
semi-analytical realization-dependent debiasing, the covariance
matrix shows no obvious structure on either multipole range.
We find all individual cross-correlation coefficients to be smaller
than 10% and consistent with zero, a constraint limited by the
number of simulations available. We choose to include the off-
diagonal elements in the likelihood.

Following PL2015 we subtract a point-source template cor-
rection from our band powers, with an internally measured
amplitude (the point-source shot-noise trispectrum Ŝ 4). We
neglect the contribution to the error from point-source subtrac-
tion uncertainty, since for this release the estimated error on Ŝ 4
would formally inflate band-power errors by at most 0.4% at
L ' 300, where the correction is strongest, and much less else-
where.

2.3. Inhomogeneous filtering

Approximating the noise as isotropic for filtering is subopti-
mal because the Planck scanning results in significant noise
anisotropy with a dynamic range of 10 for polarization and
5 for temperature, after allowing for residual foregrounds (see
Fig. 2). In this section we describe a new polarization-only
reconstruction using inhomogeneous filtering, demonstrating a
large improvement over polarization results that use homoge-
neous filtering. However, inhomogeneous filtering is not used
for our main cosmology results including temperature, where it
makes little difference but would complicate the interpretation.

The SMICA CMB map is constructed from Planck frequency
maps using isotropic weights wX, f

`
per frequency channel f . To

construct the noise variance map used in the inhomogeneous
filtering, we first combine the variance maps from the individ-
ual frequency maps with the SMICA weights to obtain the total
noise variance in each pixel of the SMICA map. More specifi-
cally, in polarization, neglecting Q,U noise correlations, defin-
ing the pixel noise variance σ2

P ≡
(
σ2

Q + σ2
U

)
/2, and neglecting

differences between σ2
Q and σ2

U , we have
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Fig. 2. Noise-variance maps (shown as noise rms in µK-arcmin) that we
use to filter the SMICA CMB maps that are fed into the quadratic estima-
tors when performing inhomogeneous filtering. The upper panel shows
the temperature noise map, with median over our unmasked sky area of
27 µK-arcmin. We use a common noise map for Q and U polarization,
also neglecting Q and U noise correlations, shown in the lower panel,
which spans an entire order of magnitude, with median 52 µK-arcmin
(larger than

√
2 times the temperature noise because not all the Planck

detectors are polarized). In temperature, the variance map has a homo-
geneous (approximately 5 µK-arcmin) contribution from the isotropic
additional Gaussian power that we add to the simulations to account for
residual foreground contamination.

σ2
P(n̂) =

∑
freq. f

∫
S 2

dn̂′σ2
P, f (n̂′)

∑
s=±2

1
4

[
ξ

E, f
2,s (n̂ · n̂′) ± ξB, f

2,s (n̂ · n̂′)
]2
,

(15)

where

ξ
X, f
s,s′ (µ) ≡

∑
`

(
2` + 1

4π

)
wX, f
`

d`s,s′ (µ), (16)

and d`s,s′ are reduced Wigner d-matrices. This equation follows
from transforming the noise maps at each frequency f , which
have pixel variance σ2

P, f (n̂) and are further assumed uncorre-
lated across frequencies, into their E- and B-modes, applying
the SMICA weights wX,E

`
and wB, f

`
, and transforming back to Q

and U in pixel space. Averaging the pixel variances of the result-
ing Q and U noise maps yields σ2

P. Physically, the variances of
the frequency maps are combined non-locally with kernels that
derive from the convolutions implied by the SMICA weights. In
temperature,

σ2
T (n̂) =

∑
freq. f

∫
S 2

dn̂′σ2
T, f (n̂′)

[
ξ

T, f
0,0 (n̂ · n̂′)

]2
· (17)

The pixel noise is expected to be correlated to some degree,
both due to the mapmaking process and the SMICA weighting.

We have seen no evidence that this is relevant to the recon-
struction and for simplicity neglect it for the filter. SMICA uses
a hybrid method with two different set of weights in temper-
ature. Only the second set, used for high multipoles and well
away from the Galactic plane, is relevant for the sky area and
multipoles used by the lensing analysis. The small mismatch in
the power in the FFP10 simulations and the data is corrected as
described in Sect. 2.1. The noise variance maps are shown in
Fig. 2.

Using the variance maps in our filtering slightly slows down
convergence to the solution, especially in temperature. Empir-
ically, we found that using smoothed variance maps produces
reconstructions with the same signal-to-noise ratio (S/N), as
long as the mostly quadrupolar structure of the map is resolved.
We use the variance maps of Fig. 2 smoothed with a Gaussian
width of 10◦ for our quoted results; the impact on the execution
time compared to homogeneous filtering is negligible, with the
outputs virtually identical to filtering with the high-resolution
variance maps. Using the noise anisotropy in the filter down-
weights modes in more noisy regions of the map, and hence
improves the optimality of the estimator, especially in polariza-
tion, where the Planck data are noise dominated on most scales.
The expected cross-correlation coefficient of the lensing poten-
tial estimate to the true signal improves by 20% over the conser-
vative multipole range 8 ≤ L ≤ 400, and the S/N of the band
powers increases by 30%. The filter has less impact on the tem-
perature, which is signal dominated, and the reconstruction is
of essentially the same quality with or without inhomogeneous
filtering.

One disadvantage of the anisotropic filter is that it compli-
cates the estimator’s response: the correct normalization of the
estimator becomes position dependent. We have not attempted
to perform a full map-level normalization, instead simply mak-
ing the additional correction as part of the Monte Carlo correc-
tion we apply to our band powers. At Planck’s noise levels we
expect this procedure to be very close to optimal for polarization,
and for most (but not all) scales for temperature. Approximating
the sky as a collection of independent patches with roughly con-
stant noise within a patch, a full-sky optimal lensing spectrum
estimation is obtained by inverse-variance weighting correctly-
normalized spectra in each patch. Since the estimators are opti-
mal in each patch, the estimator normalization in each patch is
identical to the reconstruction noise level N(0). Therefore, when-
ever the reconstruction noise dominates the lens cosmic variance
in the band-power errors, inverse-variance weighting of the patch
spectra is equivalent to uniform weighting of the unnormalized
estimators’ spectra.

We can predict the lensing spectrum’s Monte Carlo cor-
rection fairly accurately using the simple independent-patch
approximation. Let RL denote the response of the quadratic esti-
mator to the lensing signal, such that under idealized conditions
the properly normalized lensing map estimate is (as in Eq. (7))

φ̂LM ≡
ĝLM

RL
· (18)

Applying a single fiducial response Rfid
L on the full-sky estimate,

the local estimate in a patch centred on n̂ is biased by a factor
RL(n̂)/Rfid

L , where RL(n̂) is the true response according to the
local temperature and polarization filtering noise levels. We may
then write the multipoles of the full-sky lensing map as a sum of
multipoles extracted over the patches,
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Fig. 3. Monte Carlo-derived multiplicative normalization corrections
for the polarization reconstruction, using inhomogeneous filtering (blue
points). Band powers are divided by these numbers to provide our final
estimates. This correction is not small, and is sourced by the large spa-
tial variation of the estimator response; however, it is very well repro-
duced by the approximate analytic model of Eq. (21), shown as the
dashed blue line. The correction for our baseline MV band powers using
homogeneous filtering is shown as the orange points.

φ̂LM '
∑

patches p

RL(n̂p)
Rfid

L

φ̂
p
LM , (19)

where each unbiased component φ̂p
LM is obtained from the patch

p. Using a large number of patches, neglecting correlations
between patches, and turning the sum into an integral gives the
following useful approximate result for the correlation of the
estimator with the input〈

Ĉφ̂φin
L

〉
Cφφ,fid

L

'

∫
dn̂
4π

RL(n̂)
Rfid

L

 , (20)

and equivalently for the estimator power spectrum,〈
Ĉφφ

L

〉
Cφφ,fid

L

'

∫
dn̂
4π

RL(n̂)
Rfid

L

2

. (21)

The spectrum-level correction of Eq. (21) is only close to the
squared map-level correction of Eq. (20) (which can be made
close to unity using a refined choice of fiducial response) if
the true responses do not vary strongly across the sky. This is
the case for the signal-dominated temperature map; however,
the responses vary by almost an order of magnitude in the
polarization map. The blue points in Fig. 3 show the empiri-
cal Monte Carlo correction we apply to our inhomogeneously-
filtered polarization band powers, together with the prediction
from Eq. (21). The agreement is visually very good, with a
residual at low-L that originates from masking, also found on
our baseline, homogeneously-filtered MV band powers (orange
points). This large-scale MC correction has a significant depen-
dence on the sky cut, but little dependence on other analysis
choices; the lensing reconstruction is close to local in real space,
but this breaks down near the mask boundaries. Finally, while
our power-spectrum estimator in Eq. (8) does not attempt to
remove any mode-mixing effect of masking on the lensing esti-
mate, we note that the large-scale MC correction is not simply
just a φ mode-mixing effect: using a pseudo-C` inversion to con-
struct the band powers from the masked φ map makes almost no
difference to the MC correction.

As part of the Planck 2018 release, we make available
products containing both versions of lensing maps. Optimally-
weighted maps can be used if S/N is critical, while the
isotropically-weighted maps can be used to simplify cross-
correlation analyses if required. Our baseline results and likeli-
hoods are still derived from the simpler isotropic filtering, but
there is a substantial improvement in the polarization-only recon-
struction when using the more optimal weighting. In all cases the
reconstruction noise properties of the maps are best assessed using
the corresponding set of released simulations.

3. Results

3.1. Lensing-reconstruction map and power spectrum

In Fig. 1 we show our baseline Wiener-filtered minimum-
variance lensing deflection estimate from the Planck temperature
and polarization SMICA CMB maps. This is shown as a map of

α̂WF
LM =

√
L(L + 1)

Cφφ,fid
L

Cφφ,fid
L + Nφφ

L

φ̂MV
LM , (22)

where Cφφ,fid
L is the lensing potential power spectrum in our

fiducial model and Nφφ
L is the noise power spectrum of the

reconstruction. The quantity αWF
LM =

√
L(L + 1)φWF

LM is equiv-
alent to the Wiener-filtered gradient mode (or E mode) of the
lensing deflection angle. For power-spectrum estimates we plot
[L(L + 1)]2Cφφ

L /2π = L(L + 1)Cαα
L /2π, so that a map of α has the

same relation to the plotted power spectrum as the CMB tem-
perature map does to `(` + 1)CTT

` /2π. As in 2015 we exclude
L < 8 due to the high sensitivity to the mean-field subtraction
there. The characteristic scale of the lensing modes visible in the
reconstruction is L ' 60, corresponding to the peak of the deflec-
tion power spectrum, where the S/N is of order 1. The left panel
in Fig. 4 shows our corresponding baseline MV reconstruction
power spectra over the conservative and aggressive multipole
ranges.

In addition to the MV reconstruction, we also provide
temperature-only results, as well as two variants of the
polarization-only reconstruction: the first polarization recon-
struction uses the same homogeneous filtering as the temperature
and MV results; the second uses the more optimal filter, based on
the variance maps shown in Fig. 2. The inhomogeneous filtering
gives a large improvement in the precision of the polarization-
only reconstruction, as shown in the right panel in Fig. 4. No sig-
nificant improvement with inhomogeneous filtering is expected
(or found) for the temperature and MV reconstructions, so we do
not give results for them.

Table 1 lists our band-power measurements. For each spec-
trum, we provide the amplitude relative to the fiducial band
powers in the first column, and the fiducial band powers in
the second. The binning function was given in Eq. (11) and
uses an approximate analytic inverse-variance weighting of the
unbinned spectra. The fiducial band powers can therefore show
slight variations because the noise varies between the different
reconstructions.

Section 3.2.1 introduces our new lensing-only likelihood,
marginalizing over the CMB spectra. Using this likelihood to
obtain lensing amplitude summary statistics Â, (with Â = 1 for
Ĉφφ

L equal to the best-fit ΛCDM model to the Planck tempera-
ture and polarization power spectra and the reconstructed lensing
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Fig. 4. Planck 2018 lensing reconstruction band powers (values and multipole ranges are listed in Table 1). Left: minimum-variance (MV) lensing
band powers, shown here using the aggressive (blue, 8 ≤ L ≤ 2048) and conservative (orange, 8 ≤ L ≤ 400) multipole ranges. The dots show
the weighted bin centres and the fiducial lensing power spectrum is shown as the black line. Right: comparison of polarization-only band powers
using homogeneous map filtering (blue boxes, with dots showing the weighted bin centres) and the more optimal inhomogeneous filtering (orange
error bars). The inhomogeneous filtering gives a scale-dependent increase in S/N, amounting to a reduction of 30% in the error on the amplitude
of the power spectrum over the conservative multipole range shown. The black line is the fiducial lensing power spectrum.

Table 1. Lensing-reconstruction power-spectrum band-power amplitudes and errors for the temperature-only (TT ), combined temperature-and-
polarization minimum-variance (MV), and polarization estimators (PP).

Lmin − Lmax fidÂφ,TT TT -fid. fidÂφ,MV MV-fid. fidÂφ,PP
fidÂφ,PP(inhom. filt.) PP-fid.

Conservative multipole range (8 ≤ L ≤ 400)
8–40 . . . . . . . . . . 1.10 ± 0.12 1.40 1.05 ± 0.09 1.40 1.18 ± 0.43 1.08 ± 0.32 1.40

41–84 . . . . . . . . . . 1.12 ± 0.07 1.28 1.04 ± 0.05 1.28 0.77 ± 0.25 0.96 ± 0.19 1.28
85–129 . . . . . . . . . 1.02 ± 0.07 9.90 × 10−1 1.01 ± 0.05 9.92 × 10−1 0.90 ± 0.28 0.97 ± 0.21 9.95 × 10−1

130–174 . . . . . . . . . 0.91 ± 0.08 7.59 × 10−1 0.92 ± 0.06 7.61 × 10−1 0.84 ± 0.42 0.82 ± 0.26 7.65 × 10−1

175–219 . . . . . . . . . 0.84 ± 0.09 5.97 × 10−1 0.88 ± 0.08 5.98 × 10−1 0.16 ± 0.65 0.55 ± 0.38 6.01 × 10−1

220–264 . . . . . . . . . 0.93 ± 0.12 4.83 × 10−1 0.87 ± 0.10 4.84 × 10−1 0.28 ± 1.03 0.62 ± 0.66 4.86 × 10−1

265–309 . . . . . . . . . 1.15 ± 0.13 4.00 × 10−1 1.07 ± 0.11 4.01 × 10−1 1.54 ± 1.61 1.54 ± 0.92 4.02 × 10−1

310–354 . . . . . . . . . 1.10 ± 0.15 3.38 × 10−1 1.17 ± 0.14 3.38 × 10−1 0.64 ± 2.71 1.02 ± 1.18 3.38 × 10−1

355–400 . . . . . . . . . 0.74 ± 0.16 2.88 × 10−1 0.89 ± 0.16 2.88 × 10−1 1.42 ± 2.83 1.13 ± 1.36 2.89 × 10−1

Aggressive multipole range (8 ≤ L ≤ 2048)
8–20 . . . . . . . . . . 1.05 ± 0.27 1.24 1.07± 0.20 1.24

21–39 . . . . . . . . . . 1.13 ± 0.13 1.40 1.06± 0.11 1.40
40–65 . . . . . . . . . . 1.23 ± 0.09 1.34 1.07± 0.08 1.34
66–100 . . . . . . . . . 1.02 ± 0.07 1.14 1.02± 0.05 1.14

101–144 . . . . . . . . . 0.98 ± 0.07 9.02 × 10−1 0.96 ± 0.05 9.04 × 10−1

145–198 . . . . . . . . . 0.83 ± 0.08 6.83 × 10−1 0.89 ± 0.06 6.86 × 10−1

199–263 . . . . . . . . . 0.91 ± 0.09 5.10 × 10−1 0.91 ± 0.08 5.13 × 10−1

264–338 . . . . . . . . . 1.14 ± 0.11 3.80 × 10−1 1.10 ± 0.10 3.82 × 10−1

339–425 . . . . . . . . . 0.92 ± 0.14 2.85 × 10−1 0.99 ± 0.13 2.85 × 10−1

426–525 . . . . . . . . . 0.89 ± 0.16 2.13 × 10−1 0.95 ± 0.14 2.13 × 10−1

526–637 . . . . . . . . . 0.77 ± 0.20 1.60 × 10−1 0.82 ± 0.19 1.60 × 10−1

638–762 . . . . . . . . . 0.29 ± 0.24 1.21 × 10−1 0.45 ± 0.23 1.21 × 10−1

763–901 . . . . . . . . . 0.53 ± 0.28 9.34 × 10−2 0.77 ± 0.28 9.34 × 10−2

902–2048 . . . . . . . . 0.66 ± 0.32 5.18 × 10−2 0.70 ± 0.30 5.18 × 10−2

Notes. The last two columns show the polarization reconstruction with inhomogeneous filtering, using the variance maps displayed in Fig. 2.
Amplitudes Â are quoted in units of the FFP10 fiducial cosmology band powers of 107 L2(L + 1)2Cφφ

L /2π , displayed in the adjacent column.
These fiducial band powers are obtained from a suitably-defined bin centre multipole, as described in Sect. 2, and can differ slightly for the
different reconstructions as the binning functions are constructed using approximate inverse-variance weighting of the unbinned spectra. The two
polarization-only reconstructions differ by the use of homogeneous or inhomogeneous noise filtering. They do share the same fiducial band powers
given in the last column.
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power7), we obtain

b.f.Â
φ,MV
8→400 = 1.011 ± 0.028 (CMB marginalized) (23)

over the conservative multipole range L = 8–400. This corre-
sponds to a slightly higher value of the lensing spectrum than
PL2015 (for which b.f.Â

φ,MV
40→400 = 0.995 ± 0.026) with a simi-

lar significance. The shift is mostly driven by the temperature
reconstruction, whose amplitude is higher than 2015 by 0.8σ.
This shift is consistent with that expected from the change in
methodology and data: the bin 8 ≤ L ≤ 40 was not included in
the 2015 lensing likelihood, and is around 1σ high in tempera-
ture (causing a 0.3σ amplitude shift), and the mask and SMICA
weights have changed. We have evaluated the expected devi-
ation for these two changes by comparison to reconstructions
on the new SMICA maps with the 2015 mask, and on the new
mask, using the 2015 SMICA weights. Using the observed shifts
in the simulated reconstructions after the indicated changes, we
find expected amplitude differences of 0.18σ and 0.33σ, respec-
tively. Discarding any additional changes in the data processing,
adding these in quadrature results in the observed total amplitude
shift of 1.3σ. Over the aggressive multipole range, the measured
amplitude is

b.f.Â
φ,MV
8→2048 = 0.995 ± 0.026 (CMB marginalized). (24)

As discussed in detail in Sect. 4, the high-L range fails a pair of
consistency tests and we advise against using the full range for
parameter constraints.

The temperature reconstruction still largely dominates our
MV estimate, with amplitudes

b.f.Â
φ,TT
8→400 = 1.026 ± 0.035 (CMB marginalized), (25)

b.f.Â
φ,TT
8→2048 = 1.004 ± 0.033 (CMB marginalized). (26)

Amplitude statistics for the polarization-only reconstructions are
as follows (neglecting the CMB marginalization and other very
small likelihood linear corrections):

b.f.Â
φ,PP
8→400 = 0.85 ± 0.16 (homogeneous filtering); (27)

b.f.Â
φ,PP
8→400 = 0.95 ± 0.11 (inhomogeneous filtering). (28)

This is formally a 5σ measurement for our baseline filtering,
and roughly 9σ with the optimized filtering. As can be seen
in Fig. 4, the improvement of the polarization reconstruction
is scale-dependent, with most gain achieved on small scales.
This behaviour is consistent with analytic expectations, calcu-
lated using the independent-patch approximation introduced in
Sect. 2.3.

All reconstruction band powers are consistent with a ΛCDM
cosmology fit to the Planck CMB power spectra. Figure 5
presents a summary plot of our new MV band powers together
with a compilation of other recent measurements, and the previ-
ous results from PL2015.

3.2. Likelihood and parameter constraints

We construct a lensing likelihood from the power-spectrum
reconstruction following the same method as PL2015. We now
expand the default conservative multipole range to 8 ≤ L ≤

7 This likelihood combination corresponds to that denoted
Planck TT,TE,EE+lowE+lensing in Planck Collaboration VI (2020);
this is the baseline combination advocated there for parameter
constraints.

400, but exclude the higher multipoles to be conservative, given
marginal evidence for null-test failures in the lensing curl and
frequency consistency at L > 400. Multipoles L < 8 are very
sensitive to the fidelity of the simulations due to the large mean
field there, and we continue to exclude them for robustness
(though only L = 2 looks clearly anomalous). The likelihood for
the band powers over 8 ≤ L ≤ 400 is approximated as Gaus-
sian, with a fixed covariance estimated from simulations, but
the power-spectrum band powers are corrected perturbatively for
changes in normalization and N(1) due to parameter-dependent
deviations from the fiducial model. We neglect a possible depen-
dence on cosmology of the small Monte Carlo correction.

The final likelihood is of the form8

−2 logLφ = BL
i (Ĉφφ

L −Cφφ,th
L )

[
Σ−1

]i j
BL′

j (Ĉφφ
L′ −Cφφ,th

L′ ), (29)

where Σ is the covariance matrix and the binning functions BL
i

are defined in Eq. (11). The binned “theory” power spectrum for
cosmological parameters θ is given in the linear approximation
by

BL
i Cφφ,th

L ' BL
i Cφφ

L

∣∣∣
θ

+ Ma,`′
i

(
Ca
`′

∣∣∣
θ
− Ca

`′

∣∣∣
fid

)
, (30)

where a sums over both the Cφφ
L and CMB power-spectra terms,

and the linear correction matrix Ma,`′
i can be pre-computed in

the fiducial model. The linear correction accounts for the N(1)

dependence on Cφφ
L , and the dependence of the lensing response

and N(1) on the CMB power spectra; explicitly,

Mφ,L′

i = BL
i

∂

∂Cφ
L′

∆Cφ̂1φ̂2
L

∣∣∣∣
N1

(31)

MX,`′
i = BL

i
∂

∂CX
`′

(
∆Cφ̂1φ̂2

L

∣∣∣∣
N1

+ ln
(
[RφL]2

)
Cφ

L

∣∣∣
fid

)
, (32)

where Cφ
L derivatives are understood not to act on the lensing

contribution to lensed power spectra, X is one of the CMB power
spectra, and CX

` derivatives do not act on the fiducial power spec-
tra in the estimator weights.

The 2015 CMB likelihoods were based on an LFI polar-
ization likelihood at low multipoles, but the new 2018 low-
` likelihood now uses the HFI data for the low-` polarization
and gives a constraint on the optical depth with a considerably
smaller uncertainty (Planck Collaboration V 2020). Since uncer-
tainty in the optical depth is the main limitation to inferring
the perturbation power-spectrum amplitude from CMB power-
spectrum measurements, this means that the 2018 CMB likeli-
hoods can constrain amplitude-related parameters significantly
better than in 2015, reducing the relative impact of the infor-
mation coming from the lensing likelihood. However, it is still
important to check consistency using the lensing power spec-
trum. The lensing spectrum also contains some shape informa-
tion and can probe extensions to ΛCDM in some directions of
parameter space that cannot be constrained with primary CMB
power-spectrum measurements alone (e.g., due to the geometric
degeneracy). The new 8 ≤ L < 40 bin only has a small impact on
ΛCDM parameter constraints, but is valuable for some extended
models. For example, some modified gravity models, or the pres-
ence of compensated isocurvature modes, can give substantial
changes to the lensing spectrum at low multipoles as discussed
in PCP18 and Planck Collaboration X (2020).
8 Planck Collaboration XVII (2014) lists in Appendix C several argu-
ments and tests (performed with more simulations than we are using
in this paper) that justifies our use of a Gaussian likelihood. These
tests performed on the updated simulations do not show any qualitative
difference.
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Fig. 5. Planck 2018 lensing power-spectrum band powers (pink boxes) over the aggressive multipole range. The 2015 analysis band powers
(green) were calculated assuming a slightly different fiducial model and have not been (linearly) corrected to the 2018 model. Also shown are
recent measurements by the ACTPol (Sherwin et al. 2017), SPTpol (Story et al. 2015), and SPT-SZ (Simard et al. 2017) collaborations. The SPT-
SZ measurement is not completely independent, since the SPT-SZ reconstruction also uses temperature data from Planck, but with subdominant
weight over the smaller sky area used. The black line shows the lensing potential power spectrum for the ΛCDM best-fit parameters to the Planck
2018 likelihoods (Planck TT,TE,EE+lowE, which excludes the lensing reconstruction).

3.2.1. Constraints from lensing alone and comparison with
CMB

To do a “lensing-only” analysis, in PL2015 we fixed the theoret-
ical CMB power spectra, which are required for the linear cor-
rection in Eq. (30), to a ΛCDM fit to the CMB power-spectrum
data. We now remove any dependence on the theoretical model
of the CMB power spectra by marginalizing out the theoretical
CCMB
`

by approximating their distribution as Gaussian, where up
to a constant

−2 ln P(CCMB|ĈCMB) '
(
CCMB − ĈCMB

)
cov−1

CMB

(
CCMB − ĈCMB

)
. (33)

Here, CCMB and ĈCMB are vectors of CMB TT , T E, and EE
power-spectrum values at each multipole, with ĈCMB a data
estimate of the CMB power spectra without foregrounds (or
noise), which could be measured in various ways. The covari-
ance matrix of the CMB power spectra is covCMB. Integrating out
CCMB, the likelihood then takes the form of Eq. (29) with covari-
ance increased to account for the uncertainty in the CMB power
spectra,

Σ̄i j = Σi j + MX,`
i covX `;Y `′

CMB MY,`′
j , (34)

and the theory spectrum shifted by the linear correction for the
observed CMB power,

BL
i C̄φφ,th

L '
(
BL

i + Mφ,L
i

)
Cφφ

L

∣∣∣
θ

− Mφ,L
i Cφφ

L

∣∣∣
fid + MX,`

i

(
ĈX
` − CX

`

∣∣∣
fid

)
, (35)

where X,Y are summed only over CMB spectra. The combined
term on the second line is now a constant, so the likelihood

only depends on cosmological parameters via Cφφ
L |θ. We evalu-

ate the CMB power correction using the plik_lite band pow-
ers, which are calculated from the full plik high-` likelihood
by marginalizing over the foreground model without any further
assumptions about cosmology (Planck Collaboration XI 2016;
Planck Collaboration V 2020). To relate plik_lite bins to the
MX,`′

i bins, we assume that the underlying CMB power spectra
are represented only by modes that are smooth over ∆` = 50.
The plik_lite bandpower covariance covCMB is similarly used
to calculate Eq. (34). The increase in the diagonal of the covari-
ance is about 6% at its largest, and the linear correction shifts
lensing amplitude estimates slightly compared to using a ΛCDM
best fit. The shift is largely explained because, over the ` range
that the lensing reconstruction is sensitive to, the CMB TT
data are somewhat less sharply peaked than the ΛCDM model
(which also shows up in a preference for the phenomenologi-
cal lensing amplitude parameter AL > 1 when fitting just CMB
power-spectrum data, as discussed in Planck Collaboration VI
2020); smaller dC`/d` between the acoustic peaks leads to a
smaller lensing signal response, so the theory model value C̄φφ,th

L
is decreased (by approximately 1.5% compared to the ΛCDM
best fit).

We follow PL2015 in adopting some weak priors for con-
straining parameters from the lensing likelihood without using
the Planck CMB power-spectrum data. Specifically, we fix
the optical depth to reionization to be τ = 0.055, put a prior on
the spectral index of ns = 0.96 ± 0.02, and limit the range of the
reduced Hubble constant to 0.4 < h < 1. We also place a prior
on the baryon density of Ωbh2 = 0.0222 ± 0.0005, motivated by
D/H measurements in quasar absorption-line systems combined
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Fig. 6. Constraints on Ωm and σ8 in the base-ΛCDM model from CMB
lensing alone (posterior sample points coloured by the value of the
Hubble constant in units of km s−1 Mpc−1) using the priors described in
the text. Grey bands give corresponding 1σ and 2σ lensing-only con-
straints using the approximate fit σ8Ω

0.25
m = 0.589 ± 0.020. The joint

68% and 95% constraints from CMB lensing with the addition of BAO
data (Beutler et al. 2011; Ross et al. 2015; Alam et al. 2017) are shown
as the dashed contours, and the constraint from the Planck CMB power-
spectrum data is shown for comparison as the solid contours.

with the predictions of big-bang nucleosynthesis (BBN)9. The
exact choice of Ωbh2 prior has very little effect on lensing-only
constraints, but the prior is useful to constrain the sound horizon
(since this has a weak but important dependence on Ωbh2) for
joint combination with baryon oscillation (BAO) data. We adopt
the same methodology and other priors as Planck Collaboration
VI (2020; hereafter PCP18), using camb (Lewis et al. 2000) to
calculate theoretical predictions with HMcode to correct for non-
linear growth (Mead et al. 2016). Our CosmoMC (Lewis 2013)
parameter chains are available on the Planck Legacy Archive10,
where for comparison we also provide alternative results with a
different set of cosmological priors consistent with those used
by the DES collaboration (DES Collaboration 2018b). Parame-
ter limits, confidence contours and marginalized constraints are
calculated from the chains using the GetDist package (Lewis
2019), following the same conventions as Planck Collaboration
XIII (2016).

Figure 6 shows the lensing-only ΛCDM constraint on σ8 and
Ωm. As discussed in detail in PL2015, the lensing data constrain
a narrow band in the 3D σ8−Ωm−H0 parameter space, corre-

9 From a set of seven quasar absorption-line observations, Cooke et al.
(2018) estimate a primordial deuterium ratio 105D/H = 2.527 ± 0.030.
Assuming that standard BBN can be solved exactly, the D/H mea-
surement can be converted into an Ωbh2 measurement with notional
1σ statistical error of 1.6 × 10−4. However, as discussed in PCP18,
the central value depends on various nuclear rate parameters that are
uncertain at this level of accuracy. For example, adopting the theo-
retical rate of Marcucci et al. (2016), rather than the defaults in the
PArthENoPE code (Pisanti et al. 2008), results in a central value shifted
to Ωbh2 = 0.02198 compared to Ωbh2 = 0.02270, while Cooke et al.
(2018) quote a central value of Ωbh2 = 0.02166 using Marcucci et al.
(2016) but a different BBN code. Our conservative BBN prior is centred
at the mid-point of these two differences, with error bar increased so
that the different results (and other rate uncertainties) lie within approx-
imately 1σ of each other.
10 Chains at https://pla.esac.esa.int, description and parameter
tables in Planck Collaboration (2018).

sponding to

σ8

0.8

(
h

0.67

)−1 (
Ωm

0.3

)−0.27

= 0.999 ± 0.026 (68%, lensing only),

(36)

or the tighter and slightly less prior-dependent 2% constraint

σ8

0.8

(
Ωm

0.3

)0.23 (
Ωmh2

0.13

)−0.32

= 0.986±0.020 (68%, lensing only).

(37)

The allowed region projects into a band in the Ωm–σ8 plane with

σ8Ω0.25
m = 0.589 ± 0.020 (68%, lensing only). (38)

The corresponding result using a fixed CMB fit for the CMB
power spectrum is σ8Ω0.25

m = 0.586 ± 0.020, which is consis-
tent with the similar constraint, σ8Ω0.25

m = 0.591 ± 0.021, found
in PL2015. The roughly 0.25σ shift down in this parameter is
consistent with the slight increase in Âφ because of the anti-
correlation of σ8Ω0.25

m with the lensing deflection power, as dis-
cussed in PL2015. While the tight three-parameter constraints of
Eqs. (36) and (37) depend on our priors (for example weakening
by a factor of 2–4 if the baryon density prior and other priors are
weakened substantially) the 2D projection of Eq. (38) is much
more stable (see Table 2 for examples of prior sensitivity). The
Planck 2018 power-spectrum constraints give slightly lower val-
ues of σ8 compared to the 2015 analysis due to the lower opti-
cal depth, which increases the overlap between the lensing-only
and CMB power-spectrum contours, making them very consis-
tent within the ΛCDM model.

Combining CMB lensing with BAO data (Beutler et al. 2011;
Ross et al. 2015; Alam et al. 2017), and recalling that we are
placing a prior on Ωbh2 so that the sound horizon is fairly well
constrained, we can break the main degeneracy and constrain
individual parameters, giving the ΛCDM constraints

H0 = 67.9+1.2
−1.3 km s−1 Mpc−1

σ8 = 0.811 ± 0.019
Ωm = 0.303+0.016

−0.018

 68%, lensing+BAO. (39)

The value of the Hubble constant inferred here assuming ΛCDM
is in good agreement with other inverse distance-ladder measure-
ments (Aubourg et al. 2015; DES Collaboration 2018a), and the
ΛCDM result from Planck power spectra in PCP18, but is some-
what in tension with (i.e., lower than) more model-independent
values obtained using distance-ladder measurements (Riess et al.
2018).

Massive neutrinos suppress the growth of structure on scales
smaller than the neutrino free-streaming scale. The combina-
tion of CMB lensing and BAO data is expected to be a partic-
ularly clean way to measure the absolute neutrino mass scale
via this effect. Allowing for a varying neutrino mass, the con-
straints from lensing with BAO are very broad and peak away
from the base

∑
mν = 0.06 eV we assumed for ΛCDM, though

not at a significant level (see Table 2). Remaining degeneracies
can be broken by using the acoustic-scale measurement from the
Planck CMB power spectra. The acoustic scale parameter θ∗,
the ratio of the sound horizon at recombination to the angular
diameter distance, is very robustly measured almost indepen-
dently of the cosmological model (since many acoustic peaks
are measured by Planck at high precision). Using θ∗ is equiv-
alent to using an additional high-precision BAO measurement
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Table 2. Parameter constraints for different lensing datasets and priors, with and without galaxy BAO data.

ΛCDM ΛCDM +
∑

mν

Lensing Lensing+BAO Lensing Lensing+BAO

σ8Ω
0.25
m σ8 H0 Ωm σ8Ω

0.25
m σ8 Σmν [eV]

MV conservative 8 ≤ L ≤ 400 . . . . . . . . 0.589 ± 0.020 0.811 ± 0.019 67.9+1.2
−1.3 0.303+0.016

−0.018 0.569 ± 0.023 0.730 ± 0.041 1.64+0.59
−1.2

DES lensing joint . . . . . . . . . . . . . . . . . 0.599 ± 0.018 0.805 ± 0.014 67.6 ± 1.0 0.295 ± 0.011 0.586 ± 0.019 0.755+0.037
−0.032 0.78+0.27

−0.66

DES combined joint . . . . . . . . . . . . . . . 0.589 ± 0.014 0.799 ± 0.013 67.1 ± 1.0 0.286 ± 0.009 0.576 ± 0.015 0.748 ± 0.028 0.75+0.33
−0.46

100θMC = 1.0409 ± 0.0006 joint . . . . . . . 0.592 ± 0.020 0.812 ± 0.015 68.0 ± 0.7 0.304 ± 0.009 0.570 ± 0.022 0.786+0.028
−0.023 0.30+0.15

−0.21

Planck TT+lowE joint . . . . . . . . . . . . . . 0.609 ± 0.008 0.809 ± 0.006 67.5 ± 0.5 0.311 ± 0.007 0.603+0.01
−0.008 0.812+0.01

−0.007 < 0.063
Planck TT,TE,EE+lowE joint . . . . . . . . . 0.608 ± 0.006 0.810 ± 0.006 67.7 ± 0.4 0.311 ± 0.006 0.606+0.009

−0.007 0.814+0.01
−0.007 < 0.058

MV conservative 40 ≤ L ≤ 400 . . . . . . . 0.588 ± 0.021 0.813 ± 0.020 68.1+1.3
−1.5 0.306+0.017

−0.021 0.569 ± 0.024 0.729 ± 0.041 1.62+0.59
−1.1

MV aggressive 8 ≤ L ≤ 425 . . . . . . . . . . 0.591 ± 0.019 0.813 ± 0.019 68.1+1.2
−1.3 0.305+0.016

−0.018 0.573 ± 0.023 0.736 ± 0.039 1.54+0.56
−1.1

MV aggressive 8 ≤ L ≤ 2048 . . . . . . . . . 0.578 ± 0.016 0.797 ± 0.016 67.4 ± 1.1 0.295+0.014
−0.016 0.559 ± 0.018 0.715+0.031

−0.038 1.77+0.68
−1.1

TT conservative 8 ≤ L ≤ 400 . . . . . . . . . 0.572 ± 0.022 0.803 ± 0.021 67.0+1.1
−1.3 0.288+0.015

−0.018 0.553 ± 0.023 0.703+0.037
−0.045 1.95+0.68

−1.2

TT aggressive 8 ≤ L ≤ 2048 . . . . . . . . . . 0.557+0.019
−0.016 0.786 ± 0.017 66.4 ± 1.1 0.275 ± 0.014 0.541 ± 0.018 0.693+0.031

−0.036 1.93+0.68
−1.0

CompSep mask 8 ≤ L ≤ 400 . . . . . . . . . 0.591 ± 0.020 0.812 ± 0.019 68.1+1.2
−1.3 0.306+0.016

−0.019 0.572 ± 0.023 0.735 ± 0.040 1.53+0.55
−1.1

DES priors . . . . . . . . . . . . . . . . . . . . . . 0.591 ± 0.020 0.808+0.024
−0.028 69.5+4.9

−11 0.302+0.021
−0.026 0.586 ± 0.020 0.775 ± 0.030 –

′′ + (Ωbh2 = 0.0222 ± 0.0005) . . . . . . . . 0.593 ± 0.020 0.807+0.022
−0.026 68.0 ± 1.5 0.306 ± 0.022 0.586 ± 0.020 0.773+0.026

−0.029 –
Best-fit CCMB

` . . . . . . . . . . . . . . . . . . . . 0.586 ± 0.020 0.806 ± 0.019 68.0+1.2
−1.3 0.305+0.016

−0.018 0.566 ± 0.023 0.726 ± 0.041 1.62+0.58
−1.2

′′ (MV aggressive 8 ≤ L ≤ 2048) . . . . . . 0.575 ± 0.016 0.793 ± 0.016 67.6 ± 1.1 0.296+0.014
−0.016 0.557 ± 0.018 0.712+0.032

−0.038 1.73+0.67
−1.1

Takahashi halofit . . . . . . . . . . . . . . . . 0.587 ± 0.020 0.809 ± 0.020 67.9+1.2
−1.3 0.302+0.016

−0.018 0.560 ± 0.025 0.720 ± 0.044 1.72+0.61
−1.2

′′ (MV aggressive 8 ≤ L ≤ 2048) . . . . . . 0.574 ± 0.017 0.795 ± 0.017 67.3 ± 1.1 0.293+0.013
−0.016 0.548 ± 0.020 0.703+0.036

−0.042 1.87+0.70
−1.2

Linear theory . . . . . . . . . . . . . . . . . . . . 0.597 ± 0.020 0.820 ± 0.020 68.3+1.2
−1.4 0.309+0.016

−0.020 0.578 ± 0.024 0.742 ± 0.042 1.56+0.57
−1.1

Notes. The top block shows parameter constraints using the default conservative Planck lensing likelihood, alone and in combination with the DES
lensing likelihood, the DES combined lensing and galaxy clustering likelihood, the Planck CMB acoustic scale, as well as the full Planck CMB
power spectra. The middle block shows results for lensing alone when changing the lensing multipole range, using only temperature reconstruction
(TT) rather than the minimum-variance combination with polarization (MV), or changing the binning scheme. In this context, “conservative” and
“aggressive” refer to the individual bin boundaries listed in the upper and lower parts, respectively, of Table 1, so that, for instance, “MV aggressive
8 ≤ L ≤ 425” uses the first nine bins in the lower part of that table. The “CompSep mask” row shows results when constructing the lensing mask
using the final common mask from Planck Collaboration IV (2020), rather than the earlier SMICA mask used by default throughout this paper. The
lower block gives results from the default conservative (or aggressive) lensing likelihood when varying assumptions. The best-fit CCMB

` row shows
the result of using a fixed ΛCDM fit to Planck TT,TE,EE+lowE for the CMB power spectra (as in the 2015 analysis) rather than marginalizing out
the theoretical CMB spectra. The two “DES prior” rows (following DES Collaboration 2018b) use flat priors on 0.1 < Ωm < 0.9, 0.03 < Ωb < 0.07,
0.87 < ns < 1.07, 0.55 < h < 0.91, 0.5 < 109As < 5, and, when varying neutrino mass, 0.05 eV <

∑
mν < 1 eV (which is then unconstrained over

this interval). All other results use flat priors on 0.001 < Ωch2 < 0.99, 0.5 < θMC < 10, 1.61 < log(1010As) < 3.91 and (except when combined
with Planck CMB power spectra) our default lensing priors of 0.4 < h < 1, ns = 0.96 ± 0.02, Ωbh2 = 0.0222 ± 0.0005; when varying the neutrino
mass, the flat prior is

∑
mν < 5 eV with three degenerate neutrinos. Note these prior sensitivities have no impact on joint constraints with the

CMB power spectra, where the lensing likelihood can be calculated self-consistently without additional priors. The small sensitivity to nonlinear
modeling is demonstrated by using the Takahashi et al. (2012) variant of the halofit nonlinear model (Smith et al. 2003) rather than the default
HMcode (Mead et al. 2016), and by comparison to the linear theory result when the nonlinear corrections are entirely neglected. All limits in this
table are 68% intervals, and H0 is in units of km s−1 Mpc−1.

at the recombination redshift. For convenience we use the θMC
parameter, which is an accurate approximation to θ∗, and con-
servatively take 100θMC = 1.0409 ± 0.0006 (consistent with the
Planck data in a wide range of non-ΛCDM models). Using this,
we have a neutrino mass constraint based only on lensing and
geometric measurements combined with our priors:∑

mν < 0.60 eV (95%, lensing+BAO+θMC). (40)

The other parameters determining the background geometry are
very tightly constrained by the inverse distance ladder, and the
amplitude parameter is still well measured, though with lower
mean value, due to the effect of neutrinos suppressing structure
growth:

H0 = (67.4 ± 0.8) km s−1 Mpc−1

σ8 = 0.786+0.028
−0.023

Ωm = 0.306 ± 0.009

 68%, lensing+BAO+θMC.

(41)

3.2.2. Joint Planck parameter constraints

The CMB lensing power spectrum is consistent with expec-
tations from the Planck CMB power-spectrum results, and
combining the two can tighten constraints on the amplitude
parameters and geometrical parameters that are limited by geo-
metrical degeneracies when measured from the anisotropy power
spectrum alone. Figure 7 shows the combined constraint in the
σ8–Ωm plane, giving the tight (sub-percent) amplitude ΛCDM
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Fig. 7. Constraints on Ωm andσ8 in the base-ΛCDM model from Planck
temperature and polarization power spectra (red), and the tighter com-
bined constraint with CMB lensing (blue). The dashed line shows the
joint result when the reionization redshift is restricted to zre > 6.5 to be
consistent with observations of high-redshift quasars (Fan et al. 2006).
Contours contain 68% and 95% of the probability.

result

σ8 = 0.811±0.006 (68%,Planck TT,TE,EE+lowE+lensing).
(42)

This result uses the temperature and E-mode polarization CMB
power spectrum likelihoods, including both at low-`, which
we denote by Planck TT,TE,EE+lowE following PCP18. Con-
straints on some other parameters, also in combination with
BAO, are shown in Table 2; for many more results and further
discussion see PCP18. As in the previous analyses, the Planck
high-` CMB power spectra continue to prefer larger fluctuation
amplitudes (related to the continuing preference for high AL at
a level nearing 3σ; see PCP18), with the low-` optical depth
constraint from E-mode polarization pulling the amplitude back
to values that are more consistent with the lensing analyses.
Even with the low-` polarization, the power-spectrum data pre-
fer around 1σ higher σ8 than the lensing data alone, with the
joint constraint lying in between. Values of σ8 inferred from the
CMB power-spectrum data in a given theoretical model cannot
be arbitrarily low because the reionization optical depth cannot
be arbitrarily small; observations of high-redshift quasars (Fan
et al. 2006) indicate that reionization was largely complete by
redshift z ' 6.5, and this additional constraint is shown in the
dotted line in Fig. 7.

3.2.3. Joint CMB-lensing and galaxy-lensing constraints

Cosmic shear of galaxies can be used to measure the lensing
potential with lower-redshift sources than the CMB. Since the
source galaxies and lines of sight to the CMB partly overlap,
in general the signals are correlated due to both correlated lens-
ing shear and the intrinsic alignment of the source galaxies in
the tidal shear field probed by CMB lensing. Since our CMB
lensing reconstruction covers approximately 70% of the sky, the
area will overlap with most surveys. The cross-correlation sig-
nal has been detected with a variety of lensing data (Hand et al.

0.2 0.4 0.6 0.8

Ωm

0.5

0.75

1

1.25

σ
8

DES lensing

Planck lensing

(DES+Planck) lensing
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Fig. 8. Constraints on Ωm and σ8 in the base ΛCDM model from DES
galaxy lensing (green), Planck CMB lensing (grey), and the joint con-
straint (red). The Planck power-spectrum constraint is shown in blue.
Here, we adopt cosmological parameter priors consistent with the CMB
lensing-only analysis, which differ from the priors assumed by the DES
collaboration (Troxel et al. 2018). The odd shape of the DES lensing and
joint contours is due to a non-trivial degeneracy with the intrinsic align-
ment parameters, giving a region of parameter space with large nega-
tive intrinsic alignment amplitudes that cannot be excluded by current
lensing data alone (but is reduced by different choices of cosmological
parameter priors; see PCP18). Contours contain 68% and 95% of the
probability.

2015; Liu & Hill 2015; Kirk et al. 2016; Harnois-Déraps et al.
2017; Singh et al. 2017) and may ultimately be a useful way
to improve parameter constraints and constrain galaxy-lensing
systematic effects (Vallinotto 2012; Das et al. 2013; Larsen &
Challinor 2016; Schaan et al. 2017).

Here we do not study the correlation directly, but simply
consider constraints from combining the CMB lensing likeli-
hood with the cosmic shear likelihood from the Dark Energy
Survey (DES; Troxel et al. 2018). In principle the likelihoods
are not independent because of the cross-correlation; however,
since the fractional overlap of the full CMB lensing map with the
DES survey area is relatively small, and since the Planck lensing
reconstruction is noise dominated on most scales, the correlation
should be a small correction in practice and we neglect it here.
We use the DES lensing (cosmic shear) likelihood, data cuts,
nuisance parameters, and nuisance parameter priors as described
by Troxel et al. (2018), DES Collaboration (2018b), and Krause
et al. (2017). However we use cosmological parameter priors
consistent with our own CMB lensing-only analysis described
in Sect. 3.2.111.

Figure 8 shows the Planck and DES lensing-only ΛCDM
constraints in the Ωm–σ8 plane, together with the joint con-
straint, compared to the result from the Planck CMB power
spectra. The DES lensing constraint is of comparable statistical
power to CMB lensing, but due to the significantly lower mean
source redshift the degeneracy directions are different (with DES

11 In particular, our flat parameter prior 0.4 < h < 1 on the Hubble
constant 100h km s−1 Mpc−1 is wider than the 0.55 < h < 0.91 range
assumed by Troxel et al. (2018), and our flat prior on Ωch2 shifts some
of the probability weight with respect to the flat prior on Ωm used by
DES. We also approximate the contribution of massive neutrinos as a
single mass eigenstate with mν = 0.06 eV in our base-ΛCDM model,
rather than marginalizing over the sum of the neutrino masses with a
flat prior, and use HMcode (Mead et al. 2016) for nonlinear corrections.
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Fig. 9. ΛCDM model constraints on Ωm, σ8, and H0 (in units of
km s−1 Mpc−1) from DES galaxy lensing+BAO (green), Planck CMB
lensing+BAO (grey), and the joint constraint of DES lensing, CMB
lensing, and galaxy BAO (red). All these results use the standard lens-
ing priors described in the text, including the baryon density prior
Ωbh2 = 0.0222 ± 0.0005. The Planck power-spectrum constraints are
shown in blue. Contours contain 68% and 95% of the probability.

cosmic shear approximately constraining σ8Ω0.5
m and CMB lens-

ing constraining σ8Ω0.25
m ). The combination of the two lensing

results therefore breaks a large part of the degeneracy, giving
a substantially tighter constraint than either alone. The lensing
results separately, and jointly, are both consistent with the main
Planck power-spectrum results. The joint result in the Ωm–σ8
plane constrains the combined direction

σ8(Ωm/0.3)0.35 = 0.798+0.024
−0.019 [68%, (DES+Planck) lensing],

(43)

although the posterior is not very Gaussian due to a non-trivial
DES lensing-intrinsic-alignment parameter degeneracy. If instead
we adopt the cosmological parameter priors of Troxel et al.
(2018), but fixing the neutrino mass, then the lensing-only joint
result is more Gaussian, with σ8(Ωm/0.3)0.4 = 0.797+0.022

−0.018; this
is tighter than the constraint obtained by Troxel et al. (2018) in
combination with galaxy clustering data12.

Cosmological parameter degeneracies (and degeneracies
with intrinsic-alignment and other nuisance parameters) limit
the precision of the DES lensing-only results. Results can be
tightened by using different priors (as in the DES analysis
DES Collaboration 2018b, see also the analysis in PCP18
using the DES priors). Adding additional data also substantially
reduces the degeneracy. For example, adding BAO data gives the
tighter contours shown in Fig. 9. DES lensing+ BAO gives the
marginalized constraints on individual parameters

12 For fixed neutrino mass, the DES joint constraint using the DES pri-
ors described in the caption of Table 2 is σ8(Ωm/0.3)0.5 = 0.793±0.024.
Marginalizing over neutrino mass, the joint DES-Planck lensing-only
result using DES priors is σ8(Ωm/0.3)0.5 = 0.786+0.023

−0.019.

H0 = 70.8+2.1
−2.8 km s−1 Mpc−1

σ8 = 0.728 ± 0.052
Ωm = 0.348+0.034

−0.041

 68%,DES lensing+BAO,

(44)

also consistent with the main Planck power-spectrum parame-
ter analysis. However, as shown in Fig. 9, even after combining
with BAO, the DES lensing results have a substantial remaining
σ8–Ωm–H0 degeneracy that limits the individual constraints. For
CMB lensing the situation is much better, since the CMB lens-
ing comes from a single well-defined source redshift plane that
leads to a tight σ8–Ωm–H0 degeneracy that intersects with the
BAO Ωm–H0 degeneracy in a much narrower region of parame-
ter space (giving the parameter constraints of Eq. (39)). Adding
CMB lensing data to the DES result therefore gives much tighter
constraints on individual parameters:

H0 = (67.6 ± 1.0) km s−1 Mpc−1

σ8 = 0.805 ± 0.014
Ωm = 0.295 ± 0.011

 68%,DES lensing
+Planck lensing+BAO.

(45)

The constraining power on individual parameters is dominated
by CMB lensing+BAO, but the DES lensing data do help partly
to break the remaining CMB lensing degeneracy, giving tighter
constraints than from CMB lensing+BAO alone. The tight joint
constraint on the Hubble constant here is consistent with the
result of DES Collaboration (2018a), but without the use of
galaxy clustering data (which are sensitive to details of bias mod-
eling). Our combined result with the full DES joint likelihood,
including galaxy clustering and galaxy–galaxy lensing (DES
Collaboration 2018b), is given in Table 2.

3.2.4. Parameters from likelihood variations

The baseline conservative likelihood, restricted to 8 ≤ L ≤ 400,
was chosen to be robust; however, we cannot rule out the possi-
bility that the moderate null-test failures at higher L that motivate
our choice L ≤ 400 are simply statistical fluctuations, in which
case it would be perfectly legitimate to use the full multipole
range for parameter constraints. Comparing different likelihood
variations also allows us to assess how changes in the spectrum
propagate into changes in parameters, and hence robustness of
the parameter constraints.

Table 2 compares parameter constraints from the baseline
likelihood with a number of variations with different binning,
multipole ranges, and with and without using polarization in
the reconstruction. As a general trend the higher multipoles are
below the best-fit to the conservative range, so including lens-
ing multipoles up L ≤ 2048 tends to pull amplitude parameters
to lower values, although for the MV reconstruction only to an
extent that is compatible with expected shifts when including
more data. The shift between TT and MV results is, however,
more anomalous: over the full multipole range the mean value of
σ8Ω0.25

m shifts by more than 1σ despite the error bar only shrink-
ing by a bit more than 10% (assuming Gaussian statistics, the
shift is greater than 2σ unusual). Over the conservative multi-
pole range the shift is more acceptable, although still somewhat
conspicuous. Even over the conservative range the band powers
are slightly tilted with respect to a ΛCDM best fit, which gives a
mild (1–2)σ preference for non-zero neutrino mass when com-
bined with BAO. We discuss the consistency of the different data
ranges in more detail at the data level in Sect. 4 below.
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3.3. Joint CIB–CMB lensing potential reconstruction

The Planck lensing reconstruction has S/N peaking at unity
around the peak of the deflection-angle power spectrum at
L ' 60, but is noise dominated on smaller scales. How-
ever, the cosmic infrared background (CIB) is a high-redshift
tracer of the matter distribution and known to be correlated
at the roughly 80% level to the CMB lensing potential and
hence, potentially, is a good proxy for it (Song et al. 2003;
Planck Collaboration XVIII 2014; Sherwin & Schmittfull 2015).
The CIB is well measured by Planck’s higher frequency chan-
nels (Planck Collaboration XVIII 2011; Planck Collaboration
XXX 2014; Planck Collaboration Int. XLVIII 2016; Mak et al.
2017), with high S/N to much smaller scales than probed directly
by the lensing reconstruction. It has already been demonstrated
that Planck’s CIB measurement can be used to delens the CMB
acoustic peaks with about the same efficiency as Planck’s inter-
nal measurement (Larsen et al. 2016; Carron et al. 2017), with
the CIB carrying substantially more information on small scales.
For the purpose of delensing degree-scale B modes, most of
the lensing signal required is from lensing multipoles L ' 500,
where the Planck MV lensing reconstruction map is fully noise
dominated, making the CIB especially valuable until higher-
sensitivity internal CMB-polarization-based reconstructions are
available. The main difficulty in using the CIB as a tracer
is contamination by Galactic dust and modeling of the cross-
correlation coefficient. The Galactic dust is more of a problem
on large scales, just where the Planck lensing reconstruction S/N
peaks. This suggests that a joint analysis could potentially give a
substantial improvement to the lensing potential determination,
and hence also improve the efficiency of delensing based on
Planck data (Sherwin & Schmittfull 2015). A combined tracer
map, including galaxy number counts from WISE in addition to
the CIB and the 2015 Planck lensing map, has recently been pre-
sented over 43% of the sky by Yu et al. (2017). Here we focus
on the Planck-based combination of the CIB and lensing recon-
structions on 60% of the sky, with similar maximum delensing
efficiency, and use them to delens all four Planck CMB spectra.

We combine the (internal) MV quadratic estimator recon-
struction with the CIB map provided by the GNILC (Generalized
Needlet Internal Linear Combination) component-separation
method at 353, 545, and 857 GHz (Planck Collaboration Int.
XLVIII 2016, based on the 2015 Planck data release and avail-
able at the Planck Legacy Archive). We use a mask given by
the union of the lensing mask and the GNILC mask, leaving 60%
of the sky unmasked (58% after apodization). Given the strong
coherence of the CIB across this range of frequencies, we see
very little gain in using combinations of the three frequency
maps, and our baseline results use the 545-GHz CIB map only.
Figure 10 shows the cross-spectra of the lensing temperature-
only, polarization-only and MV reconstructions with the GNILC
545-GHz map. The bispectrum between residual foregrounds
in the CMB temperature maps that enter the quadratic esti-
mator and the CIB can potentially bias the CIB-lensing cross-
spectra. Figure 10 shows two tests of such bias, neither of which
shows any evidence for systematic contamination. The first per-
forms lens reconstruction with a SMICA CMB map constructed
to deproject the thermal-SZ effect (i.e., the weighting across fre-
quencies nulls any component with the frequency spectrum of
the thermal SZ effect). The second uses only polarization in the
lensing reconstruction, which is expected to be essentially free
of extragalactic foregrounds, at the cost of significantly larger
reconstruction noise for Planck. Contamination from residual
CIB in the SMICA temperature map is assessed below.
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Fig. 10. Empirical cross-spectra between our lensing reconstructions
(temperature-only in blue, polarization-only in orange, and MV in
green) and the GNILC 545-GHz CIB map. The red points use the tem-
perature lensing reconstruction from the thermal-SZ-deprojected SMICA
CMB map. The dashed line shows the smooth spline fit to the green
points, which we use to weight the lensing tracers when forming our
combined lensing potential estimate.

We build lensing estimates as follows. Consider a set of trac-
ers Ii of the lensing potential, with auto-power spectra CIiIi

L ,
cross-correlation coefficient matrix ρL, and cross-correlation
coefficients to the true lensing potential ρiφ

L . Assuming that we
can treat the lensing and tracer fields as being approximately
jointly Gaussian, it is straightforward to obtain a maximum a
posteriori (MAP) estimate for the true lensing given the tracers,
yielding an optimally-filtered potential map φ̂MAP. We can write
this in terms of (isotropic) weights wL acting in harmonic space
on renormalized maps with unit spectra, through

φ̂MAP
LM√

Cφφ,fid
L

≡
∑

i

wi
L

Ii
LM√
CIiIi

L

, (46)

where the optimal weights are given at each lensing multipole
by

w j
L =

∑
i

ρ
φi
L (ρ−1

L )i j. (47)

The expected resulting squared cross-correlation coefficient ρ2
L

is the weighted sum
∑

i wi
Lρ

φi
L . To compare the noise in the joint

reconstruction to the quadratic-estimator reconstruction noise
N(0)

L , we can also define an effective noise level NL so that

Cφφ,fid
L

Cφφ,fid
L + NL

= ρ2
L =

∑
i

wi
Lρ

φi
L . (48)

We adopt a purely empirical approach to obtain the weights,
together with the auto-spectra on the right-hand side of Eq. (46),
and take Cφφ,fid

L as our FFP10 fiducial lensing spectrum. For each
pair of tracers, we perform a bicubic spline fit across 12 bins of
the observed cross-correlation coefficient and auto-spectra, with
errors for each bin determined from the observed scatter. The
spectra and cross-spectra entering the cross-correlation coeffi-
cient are calculated by deconvolving the effects of the mask from
pseudo-C` spectra (Wandelt et al. 2001), using a 12′ apodization
window. To estimate the cross-correlation of the tracers to the
true lensing potential, we assume that the quadratic estimator is
unbiased (which, according to the FFP10 simulations, is a very
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Fig. 11. Top: expected cross-correlation coefficient of the true lens-
ing potential to the minimum-variance (MV) estimator, the 545-GHz
GNILC CIB map (orange), and their combination (green). To build these
curves, the cross-spectrum of the CIB map to the true lensing potential
is approximated by its cross-spectrum to the MV (quadratic-estimator)
lensing reconstruction, displayed in Fig. 10, and GNILC CIB curves
are smooth spline fits. The red curve shows for comparison the cross-
correlation coefficient of the CIB to the MV quadratic estimator. This
cross-correlation is suppressed by instrument noise, foreground resid-
uals, and shot noise in the CIB map and reconstruction noise in the
lensing quadratic estimator. The black curves show the lensing kernels
that contribute to the lensing of the temperature (solid), E-mode polar-
ization (dashed), and B-mode polarization (dash-dotted) power spectra,
as described in the text. Bottom: effective reconstruction noise levels NL
for each of these tracers, as defined by Eq. (48), and, for comparison, the
theoretical lensing spectrum Cφφ

L . The quadratic estimator reconstruc-
tion noise is slightly underestimated at low L in this figure, since we
have neglected Monte Carlo corrections when combining the tracers.

good approximation except at the very lowest multipoles); the
cross-spectra of the CIB maps to the quadratic estimator are then
used as proxies to the true CCIB φ at the corresponding frequency.

These CIB-lensing cross-spectra get a contribution from the
CIB bispectrum from residual CIB present in the CMB maps.
However, this is very small: Sect. 4.5 discusses foreground
contamination to our lensing estimates more generally using
a dedicated simulation set. Using these simulations, we can
cross-correlate the quadratic estimator applied to the expected
residual CIB in the SMICA maps to the CIB component at
545 GHz. We find a bias of at most 1% at ` ' 2000, which we
can safely neglect when building the tracers.

The cross-correlation coefficients ρφGNILC
L built in this way

have significant noise, but can barely be distinguished from
each other across frequencies. We choose to use the same fidu-
cial ρφCIB at all frequencies, which we obtain by averaging the

estimates at 353 and 545 GHz. Figure 11 shows (smoothed)
cross-correlation coefficients of the true lensing map to the MV
estimator (blue), together with that of the 545-GHz GNILC map
(orange), and their combination (green). Delensing efficiencies,
εL ≡ ρ2

L, are a good measure of how much lensing can be
removed at each lensing multipole if the maps are used for a
delensing analysis (see Sect. 3.4). Effective noise levels from
Eq. (48) are shown in the lower plot for the MV reconstruction,
the 545-GHz GNILC lensing estimate, and their combination,
showing how the CIB particularly improves the S/N at smaller
scales.

We apply the weights given by Eq. (47) to the pseudo-aLMs
of the tracers, obtained using the apodized mask, keeping after-
wards the multipole range 10 ≤ L ≤ 2000. We do not perform
any further low-L cuts to the GNILCmaps, since, for our purposes
at least, they do not display obvious signs of dust contamination,
and they make only a small contribution to the combination with
the internal lensing reconstruction on large scales. We note that
our delensing analysis below is robust to the low-L quadratic
estimator mean field, as demonstrated by Carron et al. (2017).

Our joint CIB and internal lensing reconstruction maps are
shown in Fig. 12. As expected, adding the CIB tracer dra-
matically improves the resolution of the lensing reconstruction,
effectively filling in the small-scale modes by using the phase
information about the sky realization from the CIB, with ampli-
tude determined from cross-correlation of the CIB with the lens-
ing reconstruction. The joint map is available in the 2018 Planck
public release. It could be used for delensing future low-` polar-
ization data, and is independent of the CMB at ` < 100 (where
we cut the input CMB maps), except for possibly a small con-
tamination in the CIB map. We have also constructed a version
of the map that uses no input B modes, to avoid delensing biases
(see Sect. 3.4.1 below for further discussion).

The joint CIB-lensing map is an excellent tracer of the real-
ization of the lensing field; however, the lensing amplitude infor-
mation that it contains all comes from the lensing reconstruction,
since we do not have an accurate predictive model for the CIB
signal. It cannot therefore be used directly to improve parameter
constraints from its power spectrum.

3.4. Delensing Planck power spectra

CMB B-mode polarization from lensing is present on all scales,
and for small tensor-to-scalar ratios could become an impor-
tant source of confusion for the signal from primordial grav-
itational waves. However, using a lensing reconstruction it is
possible to estimate and subtract most of the B-mode signal, a
process known as delensing (Knox & Song 2002; Kesden et al.
2002; Hirata & Seljak 2003). This may ultimately be crucial for
future observations to detect low levels of primordial gravita-
tional waves. Delensing can also be applied to the temperature
and E-mode polarization maps, so that the corresponding peak-
smoothing effect in the power spectra can be partly removed,
sharpening the acoustic peaks and restoring more of the infor-
mation to the power spectrum (Green et al. 2017). Peak sharpen-
ing by delensing has been convincingly demonstrated by Larsen
et al. (2016, using CIB maps as a lensing tracer) and Carron et al.
(2017, using the internal Planck 2015 lensing reconstruction).
Carron et al. (2017) and Manzotti et al. (2017) (the latter using
the CIB as measured by Herschel at 500 µm to delens SPT data)
have also successfully demonstrated that delensing can reduce
the power in the B-mode polarization, although currently instru-
mental noise rather than lensing is still limiting the detectable
level of primordial B modes.
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Fig. 12. Comparison of lensing maps constructed from the minimum-variance quadratic estimator alone (upper panel) and in combination with
the CIB, as traced by the 545-GHz GNILC frequency map (lower panel). The combination is performed on 60% of the sky, defined as the union of
the lensing mask and the GNILC mask. Maps show the orthographic projection of the Wiener-filtered displacement E mode, the scalar field with
multipoles α̂LM =

√
L(L + 1)φ̂LM , with 10 ≤ L ≤ 2000. The left and right panels are centred on the north and south Galactic poles, respectively.

While the two reconstruction maps are clearly strongly correlated, the combined map has substantially more small-scale power, due to the higher
S/N of the CIB on small scales.

The three black lines in the upper panel of Fig. 11 show
the leading eigenvector of the matrix `∂CTT,EE,BB

`
/∂ ln Cφφ

L , for
100 ≤ ` ≤ 2048, showing the scales over which lensing modes
are relevant for lensing of the power spectra. Peak sharpening
in T, E requires good delensing efficiency at lensing multipoles
L . 250, while removal of BB lensing power requires smaller-
scale lensing reconstruction. As discussed in Sect. 3.3, a joint

CIB/internal delensing analysis is expected to be significantly
better for delensing all signals because of the complementarity
of scales.

For characterization of our delensing analysis, we need to
extend the FFP10 simulation suite to include CIB components.
We perform this in the simplest manner, simulating the CIB as
an isotropic Gaussian field, obeying our estimates of the various

A8, page 18 of 42

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833886&pdf_id=12


Planck Collaboration: Planck 2018 results. VIII.

cross-correlations. To produce the CIB tracers Ii at each fre-
quency νi, we first rescale the FFP10 input lensing potential
harmonic coefficients according to ρφi, then add independent
Gaussian noise εi:

Ii
LM =

√√
ĈIiIi

L

Cφφ,fid
L

ρ
φi
L φ

input
LM +

√
ĈIiIi

L ε i
LM , (49)

where the noise is generated according to the reduced covariance〈
ε i

LMε
j∗
LM

〉
= ρ

i j
L − ρ

φi
L ρ

φ j
L . (50)

After convolving with the GNILC 5′ FWHM Gaussian beam, the
maps are masked and analysed in the same way as the data maps.
We separately use a simulation suite that includes no lensing
effects, but are generated with lensed CMB spectra. In this case
the simulated CIB maps are just the noise components described
by Eq. (49), with ρφi

L = 0. The simulated harmonic coefficients
are conservatively computed over a range of scales `max ≤ 2500,
slightly larger than the one used for the data combination to
avoid edge effects due to masking.

We first delens the BB power spectrum using a template sub-
traction method in Sect. 3.4.1. We then use a debiasing tech-
nique to isolate the delensing signature on the CMB signal for
the TT,T E, EE and BB spectra, with the help of a direct remap-
ping method in Sect. 3.4.2.

3.4.1. CBB
` -delensing

Using a filtered version of the E-mode map, and a tracer of
the lensing φ field, we can build a template for the lensed
B modes that we can subtract from the data to reduce the
B-mode power. To reduce the B-mode power as much as pos-
sible, the fields must be Wiener filtered (Smith et al. 2009, 2012;
Sherwin & Schmittfull 2015). The extent by which we can then
reduce the B-mode power depends on the quality of the tracer
and the noise in the E-mode map. The correlations of the lens-
ing tracer maps to the true lensing field are shown in Fig. 11.
For the relevant lensing multipoles (L ' 500) about 0.62, that is,
35% of the lensing can be removed using GNILC, with a moder-
ate improvement in combination with the Planck internal recon-
struction. The Planck small-scale polarization data are noisy,
and at CMB E-mode scale ` ' 500, from where the large-scale
B-power takes significant contributions, the E-mode filter qual-
ity CEE

` /(CEE
` + NEE

` /b2
` ) (where b` is the combined beam and

pixel window function) is no greater than 0.6, so we cannot
expect to remove more than about 20% of the lensing B-mode
power. This is in contrast to current ground-based experiments,
for which the much lower polarization noise level makes the
lensing map fidelity the main limiting factor, as demonstrated
by Manzotti et al. (2017).

We now describe our template in more detail. We start with
the Wiener-filtered E-mode map, the same as produced by our
pipeline for input to the quadratic estimators (EWF in Eq. (2)).
We use the inhomogeneously-filtered version, since this visi-
bly increases the local fidelity of the template and our delens-
ing efficiencies. We build the polarization (Stokes parameters)
P(E) ≡ Q(E) + iU(E) from this E-mode map, and simply remap
the polarization according to the deflection angle determined by
the lensing tracer, that is,

Ptemplate(n̂) = P(E)(n̂ + ∇φ̂WF). (51)

After projecting into the B-mode component, this forms our tem-
plate for the lensed B modes. The simplified notation n̂ + ∇φ̂WF

denotes the displacement of length |∇φ̂WF| on the sphere along
the geodesic defined by ∇φ̂WF, including the small rotation of
the spherical-polar polarization components induced by the par-
allel transport of the polarization tensor (Challinor & Chon 2002;
Lewis 2005). We perform the interpolation using the Python
curved-sky lensing tools from LensIt13, with a bicubic spline
interpolation algorithm. The observed E-mode map we use to
build the template is itself lensed, while ideally one would use
an unlensed E-mode map. In principle, we could try and improve
on that by obtaining an optimally-filtered E map including our
deflection tracer in the Wiener filtering, using the algorithm
developed by Carron & Lewis (2017); however, the difference
is a second-order effect in the deflection, and we neglect it here.

The cross-correlations of these templates to the B-mode
CMB map provide strong indirect detections of the lensing
B-mode power in the data. The cross-spectra are displayed in
Fig. 13, for templates constructed from the lensing quadratic
estimator (blue), the CIB at 545 GHz (orange), and in com-
bination (green). These templates are cross-correlated to our
B-mode map, obtained from the Wiener-filtered BWF

`m after divid-
ing by CBB,fid

`
/
(
CBB,fid
`

+ NBB
` /b2

`

)
, where b` is the combined

beam and pixel window function. This is an unbiased estimate of
the B-mode map away from the mask boundaries. The black line
shows the fiducial lensing B-power of roughly (5 µK-arcmin)2

at low multipoles. We use the quadratic TT+T E+EE estimator,
discarding the EB and T B parts, so that all tracers are statisti-
cally independent from the B-mode map. The raw cross-spectra
actually provide only a filtered version of the B-mode power,
since the Wiener-filtering of E and φ maps reduces the power in
the template. We follow Hanson et al. (2013), assuming isotropy
of the filtering, and simply rescale the cross-spectra by the ratio
of the result calculated on the FFP10 simulation suite to the
simulated B-mode power. In all cases, the data cross-correlation
amplitudes are consistent with the fiducial model within 1σ, with
the lensing B-mode power detected at 13, 18, and 20σ for tem-
plates constructed from the lensing quadratic estimator, the CIB,
and in combination, respectively.

To delens, the lensed B-mode template is simply subtracted
from our B-mode map estimate, obtained as described above.
Figure 14 shows the result of this procedure for different choices
of tracer, after building the delensed difference spectrum that
partly cancels cosmic variance and noise:

∆Ĉ` ≡ Ĉdel
` − Ĉdat

` . (52)

The spectra are obtained from the position-space B-mode maps
before and after the B-mode template subtraction, using (scalar)
deconvolution of the pseudo-C` spectra to account for the effect
of the mask. Table 3 lists the results of fitting a single delensing
efficiency parameter ∆CBB

` = −εCBB,fid
`

across all the bins shown
in Fig. 14. The efficiency defined in this way reaches 12% for
the combined tracers. Large-scale B modes are better delensed,
but with larger statistical errors. For instance, for 100 ≤ ` ≤ 300
we find a delensing efficiency of 0.217 ± 0.047 (φ̂MV+CIB at
545 GHz), with a predicted value of 0.214, in accordance with
the naive expectations laid out at the beginning of this section
based on the E and φ map quality.

The presence of common B modes in the quadratic esti-
mator reconstruction noise and the field being delensed would
create a spurious delensing signature coming from leading dis-
connected correlators (Teng et al. 2011; Carron et al. 2017). As
we did when estimating the lensing B-mode power spectrum

13 https://github.com/carronj/LensIt
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Fig. 13. Estimates of the lensing B-mode power spectrum from cross-
spectra between the B-mode polarization map and various B-mode tem-
plates constructed using different lensing tracers, as measured on 58%
of the sky: the TT+T E+EE quadratic estimator (blue); the CIB map
at 545 GHz (orange); and their combination (green). The raw cross-
spectra are a filtered version of the B-mode spectrum and have been
rescaled using the expected scaling computed from simulations assum-
ing an isotropic filter. The dashed black line is the FFP10 fiducial lens-
ing B-mode spectrum.

above, we avoid this by using the quadratic estimator involving
only TT+T E+EE, discarding the EB and T B parts. The lensing
tracers used in Fig. 14 are then statistically independent from the
B-mode map, at negligible cost in tracer fidelity.

3.4.2. Acoustic peak sharpening (de-smoothing)

We now test the expected acoustic peak re-sharpening of the T
and E power spectra after delensing. For the case of the quadratic
estimator, internal delensing biases originate from the statisti-
cal dependence between the lensing reconstruction noise and the
CMB maps. Here, the biases are more difficult to avoid than for
BB-delensing in the previous section, and we refer the reader
to Carron et al. (2017) for a detailed discussion of these biases.
Proposed methods to correct for such biases include using a non-
overlapping set of modes (Sehgal et al. 2017), at the cost of some
loss of S/N, or a much more elaborate realization-dependent
higher-point function estimation (Namikawa 2017). We follow
the procedure of Carron et al. (2017), which we summarize
below, to correct for these biases and evaluate our delensing effi-
ciencies. This procedure has no impact on the covariance of the
biased delensed spectra. This covariance has not been well stud-
ied, and this procedure will probably not be optimal for ambi-
tious future experiments aiming to transfer information from the
lensing higher-point statistics back to the CMB power spectrum,
as advocated by Green et al. (2017).

The procedure is as follows: using our lensing tracers, we
remap an estimate of the CMB temperature and polarization
fields, filtered in the multipole range 100 ≤ ` ≤ 2048, accord-
ing to the estimate of the inverse displacement −∇φ̂WF. The
CMB maps are built from the inverse-variance, homogeneously-
filtered T , E, and B CMB harmonic coefficients, rescaled by the
isotropic limit of the filter (since we neglect the T E correlation
in the filtering, these limits are simply given by CTT,EE,BB,fid

`
+

NTT,EE,BB
`

/b2
` ); the resulting filtered maps are expected to be

unbiased away from the mask boundaries. As before, we cal-
culate differences of delensed and raw T , E, and B spectra after
deconvolution of their pseudo-C` power spectra for the effects of

102 103
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

10
6

(C
de

l
C

da
t ) 

[
K2 ]

-CBB

FFP10 pred.
TT + TE + EE

CIB 545 GHz
TT + TE + EE + CIB 545 GHz

102 103
3

2

1

0

1

2

3

10
6

(C
de

l
C

da
t ) 

[
K2 ]

-CBB

FFP10 pred.
MV

CIB 545 GHz
MV + CIB 545 GHz

Fig. 14. Difference between the delensed and original B-mode power
spectrum for the SMICA CMB polarization maps. In the upper panel,
the delensed B-mode map is obtained by template subtraction. The tem-
plates are constructed using the labelled lensing tracers, and the Wiener-
filtered E-mode map, as discussed in Sect. 3.4.1. The dashed lines show
predictions obtained by repeating these operations on the FFP10 set
of Planck simulations. The black curve, −CBB

` for our fiducial model,
shows the difference expected for perfect delensing. Summary statistics
are presented in Table 3. In the lower panel, a remapping method is
used, and the delensing signature is obtained after subtraction of biases,
as described in Sect. 3.4.2, with summary statistics in Table 4. In this
case, the actual total B-mode power is not decreased after delensing.

the mask. To assess the delensing effects and subtract the inter-
nal delensing biases, we subtract the same spectral differences
obtained using the same delensing procedure, but on Gaussian
simulations (generated using lensed CMB spectra) and uncorre-
lated CIB:

BGauss
` ≡

〈
Ĉdel
` − Ĉdat

`

〉
Gauss

. (53)

The combination Ĉdel
` −Ĉdat

` −BGauss
`

should vanish in the mean by
construction in the absence of lensing, and we use these spectra
to quantify the significance of the delensing that we detect. How-
ever, to assess how much delensing was really performed on the
CMB, further corrections are required. First, BGauss

`
subtracts not

only the spurious delensing bias, but also the CMB peak smooth-
ing effect due to independent reconstruction noise of the tracer.
Second, the spectral difference Ĉdel

` − Ĉdat
` − BGauss

`
still contains

the difference of the noise spectra caused by the signal part of the
tracer. To isolate the CMB peak-sharpening, we therefore build
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Table 3. Reduction in the BB power spectrum after lensing B-mode
template subtraction, for combinations of different lensing tracers.

BB-delensing template Efficiency ε, Planck data FFP10 Pred.

φ̂TT . . . . . . . . . . . . . . 0.048 ± 0.008 (χ2
9 = 1.12) 0.036

φ̂MV . . . . . . . . . . . . . . 0.051 ± 0.009 (χ2
9 = 1.21) 0.044

CIB at 545 . . . . . . . . . . 0.098 ± 0.013 (χ2
9 = 2.92) 0.106

φ̂TT + CIB at 545 . . . . . 0.122 ± 0.014 (χ2
9 = 2.36) 0.120

∆ε CIB improv. . . . . . 0.024 ± 0.007 0.014
φ̂MV + CIB at 545 . . . . . 0.122 ± 0.014 (χ2

9 = 2.34) 0.125
∆ε CIB improv. . . . . . 0.024 ± 0.008 0.019

Notes. The spectral differences ∆CBB
` are calculated over 58% of the

sky, and a delensing efficiency ε is defined as a scaling of our fidu-
cial lensing B-mode power, so that ∆C` = −εCBB

` , computed over the
` range 100 ≤ ` ≤ 2048 (i.e., ε is the fraction by which the lens-
ing B-mode power can be reduced). The right-hand column gives the
expected efficiency, as estimated from FFP10 simulations. We neglect
the T B and EB quadratic estimators in the default MV estimator when
building the combined TT , T E, and EE estimators used here; including
them introduces large signals from disconnected correlators unrelated to
actual delensing, for a negligible increase in delensing efficiency. The
efficiency is scale-dependent, with a maximum close to 20% on large
scales. Also listed are reduced χ2 (χ2

ν , for ν = 9 degrees of freedom),
for ∆Ĉ` compared to the best-fit model −εCBB,fid

` . This model does not
capture very well the delensing results including the CIB. However, all
results are fully consistent with the simulation predictions.

the combination

∆Ĉ`,debias ≡ Ĉdel
` − Ĉdat

` − BGauss
` − BNoise

` + BCMB
` , (54)

with

BNoise
` ≡

〈
Ĉdel
` − Ĉdat

`

〉
signal φ̂WF

, (55)

and

BCMB
` ≡

〈
Ĉdel
` − Ĉdat

`

〉
independent φ̂WF

. (56)

In Eq. (55), the lensing tracer only contains its signal part, and in
Eq. (56) the lensing tracer is constructed using a Gaussian sim-
ulation independent of the one being delensed. Only the noise
part of the simulation is considered in Eq. (55), and only the
CMB part in Eq. (56).

Figure 15 shows the resulting spectral differences and
Table 4 collects summary statistics. We list delensing efficiencies
ε, obtained as a straightforward χ2-minimization of the observed
binned spectral differences

χ2(ε) =
∑
bins b

1
σ2
`b

[
∆Ĉ`b,debias − ε

(
Cunl,fid
`b

−Clen,fid
`b

)]2
, (57)

together with predictions obtained from our simulations and the
best-fit reduced χ2. Here, Cunl,fid

`b
−Clen,fid

`b
is the binned difference

of the unlensed and lensed power spectra in the fiducial model,
and σ2

`b
is the variance of the binned ∆Ĉ`b,debias estimated from

simulations. We detect delensing at high significance in the dif-
ference between the delensed and raw spectra, which removes
most of the cosmic variance and noise common to both. When
combining the tracers we also list the improvement achieved
(defined with respect to the most powerful single tracer). The
improvement is always significant except for the B-mode power,
where the quadratic estimator provides only a little additional
information on the required scales.

The last column of Table 4 and the lower panel of Fig. 14
show the delensing of the B-mode power with the remapping
method. The procedure we follow in this section, using Eq. (54),
is designed isolate the change in the CMB signal power spec-
trum due to the delensing remapping. This is not, by construc-
tion, the same as the actual change in the power spectrum of
the maps: for example, for B-mode delensing, remapping by
the reconstruction noise produces B modes, and remapping the
instrument noise also changes the B-mode power. The delensing
efficiency figures for BB that are quoted in Table 4 are there-
fore not directly comparable to those reported in Table 3 for
the template-delensing method, which are based on the actual
change in B-mode power after delensing. The template method
is also optimized to account for instrument noise (through
the Wiener-filtering of the E-mode map in the construction
of the template). The template-based efficiencies are, there-
fore, the relevant ones for assessing improvements in primor-
dial B-mode limits from delensing. However, since the Planck
B-mode measurement is noise dominated, there would be a neg-
ligible improvement in primordial B-mode limits due to the
small decrease in the lensing component.

The peak sharpening in the other CMB spectra could in
principle slightly improve parameter constraints (Green et al.
2017); however, the likelihood model is complicated and the
forecast improvement for Planck is very small, so we do not use
the delensed spectra for cosmological parameter analyses. Our
demonstration of peak sharpening is an important proof of prin-
ciple, and also a useful consistency check on the lensing analysis.

4. Null and consistency tests

We now turn to various consistency tests of the lensing and lens-
ing curl reconstruction band powers. In Sect. 4.1 we first dis-
cuss the empirical distribution of the band powers in simulations
and the presence of features. In Sect. 4.2 we focus on the tem-
perature reconstruction, and present detailed consistency tests
based on comparisons of different reconstructions; Sect. 4.3 then
compares results from various polarization estimators with the
temperature reconstruction. In Sect. 4.4 we present cross-half-
mission data splits and noise null tests. In Sect. 4.5 we test for the
impact of correlations between the foregrounds and lensing sig-
nal. Our entire analysis uses the FFP10 cosmology as the fiducial
model; we test in Sect. 4.6 that this does not affect our results.
Section 4.7 discusses the impact of the non-Gaussianity of the
lensing field, and Sect. 4.8 presents alternative calculations of
the N(1) bias.

4.1. Band-power distribution and features

We first discuss the empirical statistical behaviour of our base-
line data band powers compared to the result expected from
FFP10 fiducial simulations. PL2015 already hinted at two pos-
sible features in the temperature-only lensing reconstruction
(a sharp dip in the lensing spectrum at L ' 700, and a low curl
spectrum over a broad range of scales). These two features are
still present, as displayed in Fig. 16. The upper panel shows the
relative deviation of Ĉφφ

L to the Planck TT,TE,EE+lowE+lensing
best-fit cosmology and the lower panel the curl spectrum, both
on the aggressive multipole range.

The dip in the measured Ĉφφ
L band powers in the upper panel

of Fig. 16 is slightly less pronounced than in the previous release;
the bin covering 638 ≤ L ≤ 762 shows now a 2.8σ devia-
tion from the best-fit spectrum, compared to 3.8σ in 2015 for
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Fig. 15. Acoustic peak re-sharpening after delensing of the SMICA CMB maps. From top to bottom: difference between the delensed and original
TT,T E, and EE spectra. Data points show delensing with our internal, minimum-variance, quadratic lensing estimate (blue), with the GNILC CIB
map (orange), and with their optimal combination (green), as described in the text. For reference, the black line shows half the difference of the
unlensed to lensed CMB spectra in the fiducial cosmology. In all cases, the solid coloured lines show the FFP10 simulation predictions, obtained
after performing the same operations on each simulation as for the data. The dashed lines show the noise delensing bias defined by Eq. (55) (only
relevant here for EE at high multipoles), while the dot-dashed lines show the CMB peak smoothing caused by the tracer reconstruction noise,
Eq. (56).

Table 4. Delensing summary efficiencies using the remapping technique described in Sect. 3.4.2, calculated from χ2-minimization of Eq. (57).

CTT
`

CT E
`

CEE
`

CBB
`

φ̂TT . . . . . . . . . . . . . . . . . 0.208± 0.022 (χ2
17 = 0.90) 0.212± 0.021 (χ2

17 = 1.26) 0.191± 0.032 (χ2
17 = 2.17) 0.048± 0.043 (χ2

9 = 1.75)
Prediction . . . . . . . . . . . 0.207 0.222 0.211 0.080

φ̂MV . . . . . . . . . . . . . . . . . 0.277± 0.025 (χ2
17 = 0.98) 0.276± 0.025 (χ2

17 = 0.81) 0.236± 0.038 (χ2
17 = 2.32) 0.042± 0.050 (χ2

9 = 1.01)
Prediction . . . . . . . . . . . 0.267 0.271 0.265 0.091
GNILC at 545 GHz . . . . . . . . 0.265± 0.019 (χ2

17 = 1.74) 0.247± 0.021 (χ2
17 = 1.20) 0.277± 0.033 (χ2

17 = 1.89) 0.385± 0.069 (χ2
9 = 0.99)

Prediction . . . . . . . . . . . 0.210 0.228 0.231 0.275
φ̂TT + GNILC at 545 GHz . . . 0.368± 0.026 (χ2

17 = 1.05) 0.371± 0.027 (χ2
17 = 1.21) 0.392± 0.042 (χ2

17 = 2.52) 0.392± 0.078 (χ2
9 = 1.75)

Prediction . . . . . . . . . . . 0.332 0.372 0.367 0.313
Impr. ∆ε (and pred.) . . . . . 0.103 ± 0.019 (0.121) 0.124 ± 0.019 (0.144) 0.115 ± 0.027 (0.136) 0.008 ± 0.032 (0.038)

φ̂MV + GNILC at 545 GHz . . . 0.411± 0.028 (χ2
17 = 0.99) 0.407± 0.030 (χ2

17 = 1.04) 0.402± 0.047 (χ2
17 = 2.56) 0.383± 0.080 (χ2

9 = 1.26)
Prediction . . . . . . . . . . . 0.375 0.396 0.398 0.314
Impr. ∆ε (and pred.) . . . . . 0.134 ± 0.014 (0.108) 0.130 ± 0.018 (0.126) 0.124 ± 0.034 (0.167) −0.002 ± 0.038 (0.039)

Notes. The first three rows show results using as lensing tracer the temperature-only quadratic estimator (φ̂TT ), the minimum-variance estimator
combining temperature and polarization (φ̂MV), and the GNILC CIB map at 545 GHz. We also show the expected efficiencies, as predicted from
the FFP10 simulations, and the reduced χ2 (χ2

ν , for ν = 17 (CTT
` ,CT E

` ,CEE
` ) and 9 (CBB

` ) degrees of freedom) for the best-fit efficiencies estimated
from the delensed spectra. The next two rows show the results obtained combining these tracers, and the significance of the improvement found
over the most efficient single tracer in the combination. This delensing of CBB

` (last column) does not actually reduce the total B-mode power (in
contrast to the template delensing of Table 3), but isolates the delensing signature using subtraction of the fiducial biases explained in the text.
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Fig. 16. Top: fractional differences between the lensing power spec-
trum band powers from the φTT reconstruction over the aggres-
sive multipole range and the Planck 2018 best-fit cosmology using
Planck TT,TE,EE+lowE+lensing (blue points). Bottom: temperature-
only curl reconstruction band-power amplitudes. In both cases, the
orange points show the same data with a coarser binning, where the con-
struction of the binning function and mid-points follows the same pro-
cedure as the blue points (see Sect. 2.1). The curl bin at 264 ≤ L ≤ 901
deviates from zero with a formal significance of 4.3σ. This bin was
chosen to maximize the deviation; after simple consideration of “look-
elsewhere” effects as described in the text, we evaluate the PTE of that
deviation to be 0.41% (or roughly 2.9 Gaussian σ), still suggestive of a
problem in the curl reconstruction.

the same best-fit spectrum. This significance is unchanged after
marginalization of the CMB spectra uncertainties. Despite the
large errors at high-L, the measurement can affect results if these
multipoles are used for parameter inference. Can the dip be a
statistical fluke? Empirically, we find that 5% of our simulated
temperature reconstructions show equal or stronger outliers (the
most extreme TT outlier across all aggressive bins and simu-
lations is −4σ at L ' 50). The feature in the data is therefore
consistent with a fluctuation that is only slightly unusual. A sta-
tistical fluctuation is also consistent with Fig. 10, which shows
that the cross-spectrum with the GNILC CIB tracer has no signif-
icant dip at these multipoles.

The lower panel of Fig. 16 shows our lensing curl recon-
struction, which is expected to be zero to within tiny post-Born
corrections that can be safely neglected at Planck noise levels
(Pratten & Lewis 2016; Fabbian et al. 2018). Our curl ampli-
tudes fidÂΩ,TT are built using the same binning procedure as for
the lensing gradient in Eq. (10), using a reference flat spectrum

L2(L + 1)2

2π
CΩΩ,fid

L ≡ 10−7. (58)

Orange points use a coarser binning and emphasise the low curl
found over a fairly wide range of scales at 300 ≤ L ≤ 900,
very similar to the result found in PL2015. None of our origi-
nal aggressive band powers (blue) are anomalous individually,
but the resulting coarse central bin lies formally 4.2σ away from
zero. This binning was custom-made in order to emphasise the
feature, and any assessment of its true significance must take
this into account. We have done so as follows: for each of our
FFP10 simulations, we identified within the aggressive binning
the longest sequence of adjacent positive or negative curl ampli-
tudes, and inverse-variance weighted these points to produce
the largest outlier possible14. While there are plenty of longer
sequences of consistently low or high amplitudes, only one of
the 240 simulations shows a larger combined deviation. Hence
we may assign an approximate revised PTE of 1/240 ' 0.4%
to the feature. This PTE roughly matches the analytic prediction
from Gaussian statistics for our band powers (0.6%). This is still
very suggestive of the presence of an uncontrolled component
affecting our curl band powers; the following section presents
additional curl consistency checks in more detail.

4.2. Temperature lensing and lensing curl consistency and
stability tests

We now turn to how the band powers differ between various
reconstructions. We focus this subsection on temperature-only
reconstructions, which dominate the signal and show stronger
features than the MV estimator. For each one of these recon-
structions, the methodology follows that described in Sect. 2, and
uses the same set of 300 FFP10 simulations. All lensing biases,
the point-source and Monte-Carlo corrections are recalculated
consistently.

Figure 17 presents a visual summary of our consistency tests
based on gradient reconstructions, and Fig. 18 for tests based
on the curl. We now describe these in detail. For each pair of
reconstructions, as listed below, we use the band powers to fit
an amplitude relative to the fiducial model spectrum (or the flat
spectrum of Eq. (58) for the curl), and build the difference of
the amplitudes between the two reconstruction, both on data
and FFP10 simulations. In the simulations, this difference is
very well described by a Gaussian centred on zero. The matri-
ces of differences shown in Figs. 17 and 18 are colour-coded by
the value of the difference in the data in units of the standard
deviation of the difference from simulations. The lower triangle
shows the results over our conservative range 8 ≤ L ≤ 400,
and the upper triangle the high-L range 401 ≤ L ≤ 2048. Read-
ing the lower triangle from the left, the reconstruction labelled
on the left-hand side has an inferred lensing amplitude larger
than the one labelled on the top if it has a red colour, and a
smaller amplitude if it has a blue colour. Likewise, reading the
upper triangle from the top, the reconstruction labelled on the
top is larger for a red colour. If the amplitude shift is larger than
twice the expected standard deviation, the precise value is indi-
cated, normally in black. A small number of cells show the devi-
ation written in white. This indicates that even though the devia-
tion is anomalously large, it is still small in absolute terms (less
than one fifth of the standard deviation of the left or upper recon-
struction amplitude, whichever is larger), hence not relevant for

14 Due to the lack of a sufficiently precise realization-dependent N̂(0)

de-biaser for all simulations, for this analysis we have used the covari-
ance matrix built with a realization-independent Monte Carlo N(0)

(defined similarly to the gradient-mode MC-N(0) in Appendix A) con-
sistently on simulations and data.
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Fig. 17. Summary of lensing-amplitude-measurement consistency tests using temperature-only reconstructions. Upper panel: difference between
the measured lensing amplitude from pairs of reconstructions in units of the standard deviation of the difference from simulations. This tests
whether the observed shifts are compatible with the behaviour expected from the FFP10 simulations. The lower triangle shows the amplitude
measured from the conservative range 8 ≤ L ≤ 400, with a red colour indicating a larger amplitude of the reconstruction labelled on the left; the
upper triangle uses the high-L range (401 ≤ L ≤ 2048), with red indicating a larger amplitude of the reconstruction labelled at the top. Numerical
significances are quoted for those tests that show differences greater than twice the expected standard deviation. The first entry is our baseline
temperature-only reconstruction; see the text for a description of all the other reconstructions. Lower panel: actual amplitudes (relative to our
FFP10 fiducial model), with the result using the conservative range in blue and the high-L range in orange. The dashed lines show for reference
the values in our baseline reconstruction.

practical purposes. The black solid lines separate for clarity the
following classes of test (boldface refers to the labels used to
identify the various reconstructions in Fig. 17).

Component-separation methods. In addition to using our
baseline SMICA map, we perform reconstructions on the CMB
maps from the three other component-separation methods,
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Fig. 18. Same as Fig. 17, but for the curl reconstruction. Here the lower panel shows the curl amplitude over the conservative multipole range
(8 ≤ L ≤ 400; blue) and over the range covering the negative curl feature shown in Fig. 16 (264 ≤ L ≤ 901; orange). We use the same binning
scheme as for the lensing gradient (Eq. (10)), with an amplitude of unity corresponding to a flat L2(L + 1)2/2πCΩΩ,fid

L = 10−7 curl spectrum.

NILC, SEVEM, and COMMANDER, as described in Planck
Collaboration IV (2020), and the version of the SMICA CMB
map that deprojects the thermal SZ signal (SMICA noSZ).
In each case, the lensing reconstruction is performed on the
union of the temperature and polarization confidence masks rec-
ommended by Planck Collaboration IV (2020), together with
the same fsky = 70% Galactic mask, CO mask, point-source

mask, and SZ-cluster-targeted mask we use for our baseline
reconstruction.

Sky cuts. We test a series of sky cuts, with corresponding
masks shown in Fig. 19. Conservative Galactic dust masks with
fsky = 57% (du57) and fsky = 44% (du44) test for Galac-
tic foreground contamination. A reconstruction using a more
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2018 lensing mask (67%) Change from 2015 mask du44 (44% dust mask)

du57 (57% dust mask) f80 (80% mask) SENW

SWNE ecl.pol. ecl.eq.

1 0 1

Fig. 19. Various masks used for the lensing analysis and consistency tests. The top-left mask is the default lensing mask, including cutting out
point sources, resolved SZ clusters, and the Galaxy; the top-middle mask shows the difference between the new mask and the one used for the
2015 analysis. The remaining masks are used for consistency tests, as described in Sect. 4.2. The dust masks are constructed by thresholding
the smoothed pixel variance obtained from the product of the two half-mission 545-GHz Planck maps after filtering to include only multipoles
1000 ≤ ` ≤ 2000.

aggressive galactic mask with fsky = 80% is also shown (f80).
Masking to keep only the ecliptic poles (ecl.pol.) or the ecliptic
equator (ecl.eq.) tests effects related to the scanning. Masking,
in Galactic coordinates, to keep only the south-east and north-
west quadrants (SENW), or the southwest and northeast quad-
rants (SWNE), is relevant for effects related to HEALPix (Gorski
et al. 2005) pixelization. We have used further two additional
masks (not shown in Fig. 19), testing for contamination from SZ
clusters. The SZ-unm. reconstruction uses our baseline mask but
without masking SZ clusters, and SZ-cons. includes a more con-
servative SZ-cluster mask. This conservative cluster mask was
constructed by extending our SZ-cluster mask to at least three
times the virial radius (θ500) of each cluster, and enlarging the
cluster catalogue: instead of using only the internally-detected
Planck SZ catalogue, we added X-ray clusters listed in the Meta-
Catalog of X-ray detected Clusters of galaxies (MCXC; Piffaretti
et al. 2011). This contains additional objects that are not individ-
ually detected within Planck data but whose SZ decrement is
clearly visible after stacking.

CMB multipole cuts and other analysis choices. Most of
the signal in the lensing reconstruction comes from CMB multi-
poles centred around ` ' 1450, with the Gaussian reconstruction
noise N(0) over the range 8 ≤ L ≤ 400 taking roughly equal con-
tributions from either side of ` = 1450. The `max = 1450 recon-
struction only includes CMB multipoles 100 ≤ ` ≤ 1450, and
`min = 1451 only uses 1451 ≤ ` ≤ 2048. Further, `max = 1900
excludes the contribution from the smallest scales by consider-
ing 100 ≤ ` ≤ 1900. We also test consistency between two vari-
ations of our pipeline. In our baseline analysis, power spectra

are evaluated from harmonic coefficients (either of the Wiener-
filtered CMB maps, or the lensing potentials) using the simple
estimator in Eq. (8). With the PCL variation, we first remap the
harmonic coefficients of the convergence field estimate κ̂ to real
space, compute pseudo-C` power spectra after further masking
with a 20′ apodized mask, and deconvolve the effects of the
apodized mask to obtain our final power spectrum estimates.
Finally, with the W2500 reconstruction we test details of our
filtering code, by reconstructing the Wiener-filtered map over a
larger range of scales (2 ≤ ` ≤ 2500), and cutting the map to
our baseline range (100 ≤ ` ≤ 2048) afterwards. This tests for
leakage very close to the boundary (` = 2048 in our baseline
analysis).

Bias-hardened estimators. This block tests a series of
temperature-only lensing estimators orthogonalized to poten-
tial contaminants, called “bias-hardened” estimators, follow-
ing Namikawa et al. (2013). Sources of statistical anisotropy in
the data that are not properly accounted for in the simulations
can contaminate the lensing signal. Any such source, s, with
a simple parametrization of its impact on the CMB covariance
can be assigned an optimal quadratic estimator ĝs. We can then
define a new lensing estimate (before mean-field subtraction and
normalization)

ĝ
φ−s
LM ≡ ĝ

φ
LM −

R
φs
L

Rss
L
ĝs

LM , (59)

which has vanishing response to s, at the cost of an increase
in variance. Here, the response functions Rφs

L and Rss
L describe
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the responses to s of the lensing estimator ĝφ and source
estimator ĝs, respectively. We give results bias hardened
against point-source (S 2) contamination (Osborne et al. 2014;
S-hard.), where a spatially-varying point source signal S 2(n̂)
is sought in the CMB data covariance,

〈
T dat(n̂i)T dat(n̂j)

〉
3∫

d2 n̂ S 2(n̂)B(n̂i, n̂)B∗(n̂j, n̂). The corresponding unnormalized
optimal estimator is

ĝS 2
(n̂) ≡ T̄ 2(n̂). (60)

We also harden against anisotropy in the variance of the
instrumental noise (N-hard.). In this case the anisotropy is
parametrized as

〈
T dat(n̂i)T dat(n̂j)

〉
3 σ2(n̂i)δn̂i n̂j , with quadratic

esimator

ĝσ
2
(n̂) ≡

∑
`m

T̄`m
b`

0Y`m(n̂)

2

, (61)

where b` is an effective, isotropic approximation to the beam
and pixel transfer function. We further tested hardening against
spatial modulation of the CMB signal by a field m(n̂) (for exam-
ple as a check against an effective spatial variation in calibra-
tion), which we denote by M-hard. The anisotropy is of the form
T dat(n̂i) 3

∫
d2 n̂B(n̂i, n̂)T (n̂) [1+m(n̂)], with resulting estimator

ĝm(n̂) ≡ T̄ (n̂)T WF(n̂). (62)

We have additionally attempted hardening against a residual dust
amplitude (D-hard.). The motivation in this case is to look for a
dust component consisting of a statistically-isotropic field d(n̂)
with spectral shapeDdd

`
≡ `(`+1)Cdd

`
/(2π) modulated by a vary-

ing amplitude Ad(n̂):

T dust(n̂) ≡ [1 + Ad(n̂)]d(n̂); Dd
` ≡

(100/`)0.4[
1 + (`/160)2]0.085 · (63)

The power spectrum shape Ddd
`

is similar to that used to model
unmasked dust power in the Planck CMB likelihood (Planck
Collaboration V 2020) or in Mak et al. (2017), based on mea-
sured spectral differences between various Galactic masks. The
quadratic estimator for the squared dust amplitude has the form

ĝAd (n̂) ≡ T̄ (n̂)

∑
`m

Cdd
` T̄`m 0Y`m(n̂)

 . (64)

We also applied this hardened estimator to the 217-GHz channel
(217 GHz D-hard.). All these contaminant estimators are orthog-
onal to the lensing curl mode and do not appear in Fig. 18.

Frequency maps. We test temperature reconstructions using
the HFI 143- and 217-GHz frequency channels. When using
frequency maps, we perform a simple foreground cleaning of
the maps by projecting out dust and CIB templates in the fil-
tering step. This ensures that these two modes of the data are
not used in the reconstruction, but, of course, the extent to
which they remove dust and CIB depends on the quality of the
templates. We take the 857-GHz channel as a dust template,
and the GNILC CIB map at 353 GHz for the CIB. Figure 17
lists several reconstruction variations, one using our baseline
fsky = 67% mask (143 GHz, 217 GHz), and another using an
fsky = 44% mask specifically built to minimize dust contamina-
tion (143 GHz du44, 217 GHz du44). We also list a reconstruc-
tion using the 143-GHz channel with more aggressive SZ-cluster

masking (143 GHz SZ-cons.) or no SZ-cluster masking at all
(143 GHz SZ-unm.).

The most striking inconsistencies appearing in Fig. 17 are
from the frequency reconstructions. These reconstructions use a
simple template-cleaning method that is cruder than that used
for the main component-separated products. On the conser-
vative multipole range only the 217 GHz reconstruction has
possible anomalies, but on the high-L range, both 143- and
217-GHz reconstructions display a striking series of incon-
sistencies. This demonstrates the importance of precise tem-
perature cleaning for lensing reconstruction. Specifically, this
figure strongly suggests that the 217 GHz reconstruction
contains substantial Galactic foreground contamination: the
dust-masked 217 GHz du44 shows very large, anomalous shifts
compared to 217 GHz, on both multipole ranges displayed.
While the 217 GHz row and column are predominantly red, so
this reconstruction has larger lensing amplitude than most of the
others, the situation is reversed for 217 GHz du44, which has
slightly lower amplitudes. This is also visible on the lower panel,
where 217 GHz shows a much larger lensing amplitude, which
is substantially reduced on the fsky = 44% dust mask.

All five component-separation methods show good consis-
tency over the conservative range. However, we do see some
anomalous behaviour at high-L. Notably, we find

fidÂφ,TT ,NILC
401→2048 − fidÂφ,TT ,SEVEM

401→2048 = 0.088 ± 0.029, (65)

formally a 3σ deviation from zero. The actual shift in the high-
L amplitude between these two reconstructions is not that large
however: about 0.5σ of our high-L baseline measurement. None
of the component-separation methods show large shifts in an
absolute sense. Our baseline band powers using SMICA appear
to be stable with respect to choice of mask, giving shifts con-
sistent with expectations for the change in sky area. The recon-
struction using the aggressive galactic mask f80 does not display
suspicious deviations on either lensing multipole range, nor does
it exacerbate the band-power features even slightly. SMICA
noSZ relies more on the 217-GHz channel, and gives a slightly
larger amplitude. While in itself not suspicious, du57 shows a
significant decrease in amplitude from SMICA noSZ, and this
could indicate a higher level of Galactic dust contamination in
the SMICA noSZ map. We find generally no evidence for ther-
mal SZ (tSZ) contamination: we obtain almost identical band
powers using our baseline tSZ-cluster mask, the conservative
tSZ-cluster mask, or no cluster mask at all, both from the 143-
GHz channel or on the SMICA maps. At 143-GHz, we do how-
ever detect and subtract a much larger point-source correction
without the SZ-cluster mask. This is consistent with the predic-
tions of further tSZ-dedicated tests provided in Sect. 4.5.

The 143-GHz channel shows some consistency issues on
the high-L range significant at around the 2.5σ level, where it
displays consistently lower amplitudes than all other reconstruc-
tions. This is true independently of sky-cuts and bias-hardening
tests. The cause of these issues is currently not understood and
this further motivates us to use the conservative multipole range
for our baseline cosmology results.

Figure 18 shows the same tests for the lensing curl spectrum
estimated from temperature-only reconstructions. The curl esti-
mator has less sensitivity to many sources of systematic effects;
apart from the lensing gradient mode, it is also orthogonal
(i.e., has zero linear response) to residual point-source contami-
nation, CMB signal modulation, or to the dust amplitude estima-
tor discussed above. Hence, the curl reconstruction is a stringent
test of the noise properties of the simulations versus those of the
data maps. Figure 18 shows that our lensing curl power is very
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stable across reconstructions, and that we find the same extended
region of negative curl in all tests. The curl spectrum on the con-
servative multipole range shows sensitivity to small-scale modes
of the maps used for the reconstruction (around ` ' 2000). The
shifts between W2500 and `max = 1900 compared to our base-
line are formally significant. As shown in the lower panel, the
absolute value of the W2500 shift is very small, so this proba-
bly indicates a slight mischaracterization of the covariance rather
than a systematic effect that is important for the cosmological
interpretation of the baseline analysis. `max = 1900 shifts by a
standard deviation on the conservative range, giving mild evi-
dence of a tension. However, a similar problem is not seen in
our lensing reconstruction. On the high-L range, the only poten-
tially problematic test is `min = 1451, which gives a lower curl.
This reconstruction is noisy and only weakly constraining on
the high-L range, and shows no suspicious offset on the con-
servative L-range. The largest shifts overall are observed on the
ecliptic poles compared to the ecliptic equators, and to a sim-
ilar extent on SWNE versus SENW, for both ranges. These
two cuts define regions with substantial overlap, with the curl
power being higher (i.e., more consistent with zero) on the eclip-
tic poles, where the noise is considerably lower. However, the
two reconstructions being compared share no common sky area,
so differences are expected, and these shifts are not anomalous
compared to simulations. The curl feature is negative, which
makes it hard to explain by small inaccuracies in the simulations:
after RD-N(0) subtraction, which already corrects for errors in
the power in the simulations to linear order, any error in the
reconstructed lensing power from inaccuracies in the simulations
should be quadratic in the difference and positive, so a negative
curl power cannot easily be explained by a mismatch between
the data and the simulations alone.

There is also a shift between SWNE and SENW (and eclip-
tic poles and equator) in the φ reconstruction, with the regions
around the ecliptic poles (SENW) having higher lensing ampli-
tude. However the variance from splitting the sky in two is large,
and as before these shifts are not clearly significant compared
to simulations. It is interesting to note that the SWNE region
gives a larger AL than SENW when fitting for the amplitude of
the lensing smoothing effect in the temperature power spectrum
(see PCP18 for discussion of AL more generally). This is the
opposite to what one would expect if the difference were due to
lensing, but could be consistent with a statistical fluctuations.

4.3. Individual estimator crosses and
temperature-polarization consistency

The baseline MV reconstruction optimally combines all the
information in the temperature and polarization maps (in the
approximation of neglecting T−E correlations in the filtering).
We can also construct estimators separately for each pair of T , E,
and B maps, giving five15 distinct lensing estimators. These can
easily be constructed from the MV pipeline simply by zeroing
the input maps that are not required for each estimator. Figure 20
shows a comparison of the MV power spectrum and all 15 dis-
tinct auto- and cross-spectra of the separate reconstructions. The
lensing spectrum is measured with high S/N by many of the
estimators. The polarization EB estimator is nearly independent
of the TT estimator, but their cross-spectrum shows very good
agreement with the baseline reconstruction.

15 The BB estimator has no linear response to lensing in the absence of
primordial B-modes.

Figure 21 shows the reconstructed lensing curl spectra. Curl
reconstruction summary amplitude statistics are very consistent
on the conservative range between all pairs of estimators; how-
ever, this is less true at higher lensing multipoles. Of particular
interest is the range 264 ≤ L ≤ 901, built to emphasise the tem-
perature curl feature seen in Fig. 16. Using the fiducial lensing
response functions and N(1) subtraction, we find

fidÂΩ,TT
264→901 = −0.072 ± 0.017. (66)

The feature is specific to the temperature-only reconstruction;
the next most constraining estimator over this multipole range is
TT × EB, with

fidÂΩ,TT×EB
264→901 = 0.016 ± 0.039. (67)

The polarization-only estimator is much noisier but does not
show anomalies on this range either:

fidÂΩ,P
264→901 = 0.07 ± 0.17. (68)

The amplitude of the curl feature is reduced by almost a factor
of 2 in the minimum-variance reconstruction compared to the
temperature-only reconstruction. This reduction is larger than
expected from the FFP10 simulation behaviour. We find

fidÂΩ,MV
264→901 − fidÂΩ,TT

264→901 = 0.0327 ± 0.0094, (69)

a shift that is unexpected at the 3.5σ level (neglecting look-
elsewhere effects). There is no similarly surprising shift in the
lensing spectrum, however.

4.4. Noise tests

We now present tests of the noise by considering reconstruc-
tions using the two SMICA half-mission maps (HM1 and HM2)
and their difference. First, we perform gradient and curl lensing
reconstructions on their half-difference, nulling the CMB signal.
We use only the noise part of the simulation suite for this anal-
ysis. The result is shown in Fig. 22 as the blue points labelled
(HM1 − HM2)4 (rescaled by a factor of 20 for visibility). The
band powers are consistent with zero to within 2σ, as expected,
with overall amplitude

fidÂφ,TT
8→2048 = 0.002 ± 0.004,

fidÂΩ,TT
8→2048 = −0.00046 ± 0.00024.

(70)

Second, we compare our baseline reconstruction to that obtained
from half-mission maps. We consider two types of reconstruc-
tion, labelled (HM1 × HM2)2 and HM2

1 × HM2
2. In the first

reconstruction, we estimate the lensing spectrum using a single
lensing map, built using the first half-mission and second half-
mission maps. In this way, there is no noise mean field in the
estimate, and the power spectrum reconstruction noise only has
one noise contraction. In the second reconstruction, we cross-
correlate the lensing map built using the first half-mission data
to another lensing map built using the second half-mission data.
Both lensing maps now have a noise mean field, but the lensing
reconstruction noise comes purely from CMB fluctuations. One
caveat to these consistency tests is that there are no half-mission
FFP10 CMB simulations accompanying the 2018 Planck release
(only noise simulations). Instead, we use FFP9 half-mission
CMB simulations built for the 2015 release, co-adding the fre-
quency CMB simulations with the SMICA weighting of the 2018
release. The FFP9 and FFP10 CMB simulations share the same
random seed, and apart from the weights the main differences
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Fig. 20. Lensing reconstruction band powers over the full aggressive multipole range for the minimum-variance estimator (MV), and separately
for all auto- and cross-spectra of the five quadratic lensing estimators that can be formed from the temperature (T ) and polarization (E and B)
SMICA CMB maps. The black line shows the Planck TT,TE,EE+lowE+lensing best-fit spectrum. In each lower left corner the χ2 probability to
exceed (PTE) is given for the reconstruction (evaluated at the fiducial lensing spectrum), calculated across our conservative multipole range.

lie in the details of the effective beam across the sky, which is
important at low lensing multipoles for the lensing mean field.
Using beam-processed CMB simulations also has a slight impact
on the RD-N(0) bias. Hence, these half-mission reconstructions
should not be considered as reliable as our baseline ones. The
gradient and curl half-mission spectra are displayed in the upper
and lower plots, respectively, in Fig. 22, and show overall con-
sistency with our baseline. The curl feature is less pronounced in
(HM1 × HM2)2, but only slightly so. Using the FFP10 fiducial
model to build summary amplitudes over the multipole range
L = 264–901 covering the curl feature, we find

fidÂΩ,TT
264→901 = −0.058 ± 0.018

[
(HM1 × HM2)2

]
,

fidÂΩ,TT
264→901 = −0.071 ± 0.018

[
HM2

1 × HM2
2

]
,

(71)

compared to −0.072±0.017 for our baseline. The shifts are con-
sistent within 1σ with those obtained from the simulation dif-
ferences. On the other hand, the “dip” in the gradient spectrum

around L ' 700 is more pronounced. We have

fidÂφ,TT
638→762 = 0.11 ± 0.25

[
(HM1 × HM2)2

]
,

fidÂφ,TT
638→762 = 0.20 ± 0.25

[
HM2

1 × HM2
2

]
,

(72)

compared to 0.29 ± 0.24 for our baseline. These shifts are again
within 1σ of the expected differences, but lower the spectrum
further with respect to the ΛCDM prediction. The low value
is driven by the first half-mission map as we now discuss.
Taking amplitudes with respect to the Planck best-fit Planck
TT,TE,EE+lowE+lensing, and marginalizing over CMB uncer-
tainties in order to quantify better the discrepancy, we have

b.f.Â
φ,TT
638→762 = −0.51 ± 0.35

[
(HM1)4; CMB marginalized

]
b.f.Â

φ,TT
638→762 = 0.43 ± 0.32

[
(HM2)4; CMB marginalized

]
.

(73)

The (HM1)4 result is formally a 4.5σ deviation from the best-
fit lensing spectrum value. The remaining band powers of the
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Fig. 21. Same as Fig. 20, but for the lensing curl reconstruction.

HM1 reconstruction show no inconsistencies with the best-fit,
however, and the observed shift between the two amplitudes
in Eq. (73) is within 2σ of the difference expected from sim-
ulations. The origin of these curious dip differences is not cur-
rently understood, but the dip is not included in our conservative
multipole range, so it is not directly relevant for our baseline
results.

The MV baseline lensing spectrum and the half-mission
spectra are still low on these multipole ranges for both curl and
gradient, but less than the temperature-only spectra. We find

fidÂΩ,MV
264→901 = −0.029 ± 0.017

[
(HM1 × HM2)2

]
,

fidÂΩ,MV
264→901 = −0.038 ± 0.018

[
HM2

1 × HM2
2

]
,

(74)

compared to −0.039 ± 0.015 for our baseline, and

fidÂφ,MV
638→762 = 0.43 ± 0.24

[
(HM1 × HM2)2

]
,

fidÂφ,MV
638→762 = 0.30 ± 0.27

[
HM2

1 × HM2
2

]
,

(75)

compared to 0.45 ± 0.23 for our baseline.

4.5. Tests of CMB lensing foreground correlations

We add residual extragalactic foreground power to our simula-
tions as an independent Gaussian component. In reality, extra-
galactic foregrounds are non-Gaussian and are correlated with
the lensing signal since both are affected by the same matter per-
turbations. There is therefore a concern that residual foregrounds
could lead to additional contributions to the quadratic estima-
tor power that are not corrected for in our pipeline. In partic-
ular SZ, CIB, and clustered point-source contributions (and/or
their local power) could be directly correlated with the lens-
ing potential. The polarization reconstruction is expected to be
essentially free from these contaminants due to the much lower
level of foreground power in the small-scale polarization maps.
Our use of foreground-cleaned SMICA maps is also expected
to remove the bulk of the CIB foreground signal in tempera-
ture; however, SZ and unresolved extragalactic radio sources
are largely unaffected, and foreground residuals remain due to
instrumental noise. Semi-analytic estimates suggest that the pos-
sible bias on the temperature reconstruction power should not
be large at the sensitivity level of Planck (Osborne et al. 2014;

A8, page 30 of 42

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833886&pdf_id=21


Planck Collaboration: Planck 2018 results. VIII.

14 30 52 83 122 171 231 301 382 475 581 700 832 1475
L

0.0

0.5

1.0

1.5

10
7

L2 (
L

+
1)

2 C
L

/2

(HM1 HM2)4, (x 20)
(HM1 × HM2)2

HM2
1 × HM2

2

14 30 52 83 122 171 231 301 382 475 581 700 832 1475
L

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

10
7

L2 (
L

+
1)

2 C
L

/2

(HM1 HM2)4 (x 20)
(HM1 × HM2)2

HM2
1 × HM2

2

Fig. 22. Half-mission lensing reconstructions tests for the gradient
(φ; upper) and curl (Ω; lower). Blue points show reconstruction power
spectra from SMICA half-mission difference maps, after multiplication
by a factor of 20. The orange points show the auto-spectrum of the
reconstruction built from HM1 and HM2 (with no noise mean field),
and the green points the cross-spectrum of the reconstruction built from
HM1 with that built from HM2 (with no noise contribution to the recon-
struction noise N(0)). The black line in the upper plot shows the Planck
TT,TE,EE+lowE+lensing best-fit spectrum.

van Engelen et al. 2014; Ferraro & Hill 2018), but it is important
to test this more directly.

To assess the possible impact of correlated foregrounds we
have used a small number of non-Gaussian foreground simula-
tions that are constructed to have approximately the correct cor-
relation structure. The Planck Sky Model (PSM; Delabrouille
et al. 2013; Planck Collaboration XII 2016) software is extended
to consistently generate maps of the CMB lensing potential, CIB,
and SZ components, including their correlations. To do this, the
Boltzmann code class (Blas et al. 2011) is used to calculate the
correlated angular power spectra of the unlensed CMB, lensing
potential, and matter distribution (neglecting matter-CMB cor-
relations) over 64 concentric shells between redshifts z = 0.01
and z = 6 up to a maximum multipole lmax = 4096. The power
spectra for the FFP10 fiducial model are calculated using the
nonlinear halofit model from Takahashi et al. (2012) using
modes up to kmax = 1 h Mpc−1. The lensing potential is assumed
to be Gaussian, but the matter density fields ρi(n̂) in each shell
are simulated as log-normal fields; the covariance from class
is therefore mapped into the covariance of the log fields, so
that a Gaussian realization of si(n̂) can be exponentiated to
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Fig. 23. Estimates of the expected CIB-induced biases (as a fraction
of the lensing potential power spectrum) to the temperature-only lens-
ing spectrum reconstruction at 217 GHz (without any cleaning), and for
the SMICA frequency weighting. The large-scale-structure bispectrum
causes the quadratic estimator applied to the CIB map to correlate with
the lensing signal, sourcing a 2% negative bias at 217 GHz (blue) on
our conservative multipole range. This is reduced by an order of magni-
tude after SMICA cleaning (orange). The bias remains sub-percent in the
tSZ-deprojected SMICAweighting (green). The CIB trispectrum sources
a smaller contribution (red and purple at 217 GHz and for SMICA fre-
quency weighting, respectively). Biases to the curl reconstruction are
negligible. Error bars on this figure are estimated from the scatter of the
unbinned power.

obtain log-normal matter density fields with the correct covari-
ance structure (Greiner & Enßlin 2015). The CMB component is
lensed with the lensing potential using LensPix (Lewis 2005).
We have checked that the impact of lensing of the CIB is negli-
gible, as expected (Schaan et al. 2018).

The CIB galaxies are grouped into three different popula-
tions according to their spectral energy distributions (SEDs):
proto-spheroid, spiral, and starburst. The flux density in each
population is randomly distributed according to the redshift-
dependent number counts from Planck ERCSC (Negrello et al.
2013), JCMT/SCUBA-2 (Chen et al. 2013), AzTEC/ASTE
(Scott et al. 2012), and Herschel/SPIRE (Béthermin et al. 2013)
observations. Each redshift shell is populated with CIB galax-
ies and galaxy clusters with probabilities proportional to the
density contrast distribution, with a population-dependent bias.
The CIB maps constructed in this way have power spectra that
agree with measurements from Planck data at high frequencies
using several different methods for dealing with Galactic dust
and CMB contamination (Planck Collaboration XXX 2014; Mak
et al. 2017; Lenz et al. 2019).

Galaxy clusters are simulated by drawing a catalogue of
halos from a Poisson distribution of the Tinker mass function
(Tinker et al. 2008). The thermal SZ emission of each halo at
a given redshift and mass is modeled according to the temper-
ature (Arnaud et al. 2005) and the pressure profiles given by
Arnaud et al. (2011). The simulated SZ clusters are then dis-
tributed over the redshift shells with probabilities proportional to
matter density fields to have consistent correlations between SZ,
CMB, and CIB. The resulting cluster counts are consistent with
those observed by Planck. The kinetic SZ component is simu-
lated by using the electron density of the clusters and a Gaussian
realization of the 3D cluster velocity field derived from the den-
sity fluctuations (following Peebles 1993).

We first use the simulations to assess the expected impact
of the CIB component on our lensing reconstruction. We test
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Fig. 24. Impact of the thermal SZ (tSZ) on the temperature-only lensing reconstruction spectrum at 143 GHz. We show the fractional difference
between several reconstruction power spectra based on a 143 GHz full-sky simulation and the input lensing potential power spectrum (where the
simulation includes tSZ and CMB, and Gaussian noise generated according to the 143-GHz channel pixel variance map). Without any masking,
the contamination appears predominantly as a large point-source trispectrum contribution (orange). The point-source correction is quite effective
at reducing this term below L ' 400, with visible residual contamination at higher L (green). After applying a fsky = 0.997 cluster mask (red), the
differences from the power reconstructed in the reference CMB-only simulation with no masking (blue) are further reduced to a small fraction of
a standard deviation in all bin. The left panel shows the conservative multipole range and the right panel the higher lensing multipoles.

the 217-GHz channel component (without any cleaning), and a
cleaned map constructed by combining the different frequency
simulations using the SMICA frequency weights. We use the same
multipole cuts as our baseline analysis, but include the full sky
for simplicity. We see a CIB signature in the lensing spectrum
consistent with previous work (van Engelen et al. 2014), with
two principal biases: a positive bias from the CIB trispectrum
(labelled CIB4 in the following); and a larger contribution from
the bispectrum (CIB2 × κ). We isolate the first contribution by
performing direct lensing reconstruction on the simulated CIB
map, then estimating the power spectrum subtracting (discon-
nected) biases with Gaussian isotropic realizations from the CIB
power spectrum. To estimate the bispectrum contribution, we
cross-correlate the lensing estimator φ̂ as applied on the CIB map
to the input lensing potential. The resulting bias is twice this
cross-spectrum. Figure 23 shows the biases that are expected.
For the uncleaned 217-GHz channel (blue) there is at most about
a 2% bias over the conservative multipole range. This dominant
(bispectrum) contribution is effectively reduced by one order of
magnitude after SMICA cleaning (orange), making it negligible.
It is larger, but still sub-percent level, in the case of the tSZ-
deprojected SMICAweighting (green). The trispectrum biases are
even smaller (red and purple). A similar analysis for the lensing
curl shows that all these terms are expected to be completely
negligible for the curl power.

We now turn to the thermal SZ component, focussing on
the 143-GHz channel since it is small in the 217-GHz channel
where the detector bandpasses are centred on the null of the tSZ
spectrum. We perform several reconstructions on the same CMB
simulation, with and without thermal SZ, and with and without
masking to emulate the effect of the cluster mask that we apply
in our baseline analysis. These tests allow us both to demon-
strate the good performance of our point-source correction pro-
cedure, even in the absence of masking, as well as the expected
robustness of our band-powers. To build the simulation clus-
ter mask, we mask the same number of objects as our baseline
mask (rescaled by the respective observed area), starting from
the objects with the strongest integrated Compton Y500 emission,
and using the same criteria to define the masking radii for each

object. This procedure results in a total of 1148 objects masked
(out of 377 563) for a resulting masked sky fraction of roughly
0.3%. Some effectively pure point-source signal remains in the
map, which would be detected by the Planck source-detection
methodology and also masked in our actual data lensing mask.
However, these residual signals have no impact on these tests
and we perform no further cleaning.

Figure 24 collects the different reconstructions, showing for
clarity the conservative multipole range on the left panel, and
the remaining high-L multipoles on the right panel. We show
deviations of the reconstruction from the fiducial input lensing
power spectrum, with the blue points showing the reconstruc-
tion for the reference simulation without the SZ mask. This full-
sky reference simulation includes instrumental noise in the form
of Gaussian noise, independent between pixels but with ampli-
tude in each pixel following the 143-GHz channel variance map.
Owing to the larger sky area, the blue error bars are slightly
tighter than those on our 143-GHz channel data reconstruction.
The tSZ signal appears largely as a point-source-like contamina-
tion, and we distinguish results before (orange) and after (green)
point-source correction, calculated and subtracted from the band
powers in the same way as in the main data analysis. The correc-
tion is very effective at correcting the power over the conserva-
tive range, but residual additional power is clearly visible at high
L. Finally, the red points show the result after application of the
cluster mask. At this point, the contamination (i.e., the differ-
ence from the reconstructed power for the reference simulation)
becomes a negligible fraction of a standard deviation. We also
perform the same tests for the curl reconstruction band powers;
the curl estimator does not respond to point-source signals, and
we find a negligible impact, even without any masking.

Applying a cluster mask systematically removes small
regions of the sky with strong lensing convergence power, and
could bias the lensing spectrum estimate. We assess the size of
this effect on simulations by comparing lensing spectra before
and after masking. The cluster masks are produced for each sim-
ulation in the way described above, and we obtain spectra after
deconvolving from pseudo-Cκκ

L power spectra the effects of the
(slightly enlarged and then apodized) mask. We find this bias to
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Fig. 25. Comparison of reconstructions over the same high-L multi-
pole range on the same simulated map, using different fiducial model
assumptions. The blue points use a fiducial model, set of simulations,
and estimator ingredients based on the FFP10 input cosmology. The
orange points use a cosmology with ΩK ' −0.04, where the lensing
power spectrum is higher by 10–20% (black line), and the CMB spectra
differ by roughly 2% at high `. The linear corrections to the likelihood
account for the differences in fiducial model, and are mostly important
at high-L in this case; they are effective (green) at bringing the recon-
structions with the different fiducial models into good agreement.

be at most 0.25% in amplitude in all bins (limited by sampling
noise), and we do not consider it further.

Finally, we perform test reconstructions using the entire set
of foregrounds available (CIB, thermal and kinetic SZ, and point
sources) using the SMICA frequency weighting, and incorpo-
rating the cluster mask described above. The foregrounds con-
tribute an additional 5% power around ` = 2000 (from the
CIB and point sources), in good agreement with the mismatch
observed in the data compared to the (clean) FFP10 simula-
tion suite. We perform a full lensing reconstruction on this map,
adding Gaussian isotropic power to the Monte Carlo simulations
to account for the difference in power, in the same way as for
our analysis of the actual data, and compare to a reference recon-
struction that includes the CMB component only. We find shifts
in all bins that are typically 0.1(0.13)σ of our baseline recon-
structions in the conservative (aggressive) multipole range. All
deviations seem consistent with the scatter expected from the
addition of the extra power at high CMB multipoles.

4.6. Test of dependence on fiducial model

The lensing pipeline assumes a fiducial model for the true CMB
and lensing power spectra, with the likelihood perturbatively
correcting for differences between the fiducial model and the
actual model spectra at each point in parameter space. For our
results to be robust, they should be almost independent of which
fiducial model was assumed. To test this, we carry out a simpli-
fied analysis using a different fiducial model: a non-flat ΛCDM
model best-fit to the CMB power spectra with ΩK ' −0.04.
The test model has 15–20% more lensing power than the FFP10
fiducial model, and also has CMB power spectra that differ by
approximately 2% at high `. We note that we do not need to
test large deviations of the CMB spectra because they are now
empirically measured to good accuracy: the main variations still
allowed in the spectral shape are due to residual cosmic vari-
ance and foreground uncertainties, both of which are a small
fraction of the total CMB signal on scales relevant for lensing
reconstruction.

Running a full set of FFP10 simulations with a different fidu-
cial model would be numerically very expensive, so we instead
generate a set of simpler idealized isotropic-beam simulations
with the FFP10 fiducial model and the test ΩK , 0 model, and
check for differences in the lensing reconstruction based on these
two sets of simulations and theoretical spectra. The spectra enter
into the filtering of the data, the analytic estimate of the estima-
tor response, and via the simulations used for evaluation of the
mean field, RD-N(0) and MC corrections, and via the likelihood
in the perturbative correction functions and fiducial value of N(1).
The simpler set of simulations we use here lacks the detailed
beam shape and scanning model that affects the signal at low-L.
For this reason we compare the reconstructions not on the actual
Planck data, but on one of the simulations, generated with the
FFP10 CMB spectra as input. We show in Sect. 4.8 below that
the N(1) contribution on the cut sky is accurately modeled by
full-sky analytic results, so we use the full sky for convenience
in this test.

We test robustness to the choice of fiducial model by
analysing a single FFP10 (ΩK = 0) simulation with the con-
sistent fiducial simulation set, and then by analysing it using the
inconsistent (ΩK , 0) fiducial simulation set. With the consis-
tent fiducial model, using the full lensing multipole range to fit
for a lensing amplitude we find

fidÂφ̂,TT
8→2048 = 1.032 ± 0.025 (FFP10 fiducial sim.). (76)

Over this same multipole range, fitting the same reconstructed
power with a lensing amplitude relative to the ΩK fiducial model
results in 0.88 ± 0.021, consistent with the increased lensing
power in this model and excluding the model at more than 5σ.
If we now perform lensing reconstruction on the same data, but
with the ΩK model replacing the fiducial FFP10 model through-
out the analysis, and then fit a lensing amplitude relative to the
FFP10 model in the likelihood, we get

fidAφ̂,TT
8→2048 = 1.009 ± 0.026 (no lin. corrections)

fidAφ̂,TT
8→2048 = 1.026 ± 0.026 (with lin. corrections)

(ΩKfiducial simulations).
(77)

While the estimate without linear corrections differs by one stan-
dard deviation from that in Eq. (76), the linear corrections are
effective at reducing the discrepancy to a small fraction of a
standard devitation, demonstrating consistency of our estimator
and likelihood methodology. Note that we do not expect perfect
agreement, since the estimator’s filtering and quadratic estimator
weights do differ slightly. For the most part, the linear correction
in the likelihood occurs at high lensing multipoles for the N(1)

bias subtraction, where the lensing power spectrum is up to 20%
higher in the ΩK , 0 model than the flat model (see Fig. 25).

4.7. Lensing Gaussianity assumption

The quadratic estimator formalism and FFP10 simulations
assume that the lensing potential is Gaussian, but it is expected
to be non-Gaussian at some level due to nonlinear growth of
large-scale structure (LSS) and post-Born lensing (Pratten &
Lewis 2016). A non-vanishing LSS bispectrum will source con-
tributions to the lensing reconstruction spectrum involving three
powers of φ, potentially giving rise to an additional N(3/2)

L lens-
ing bias as well as the N(0) and N(1) biases that we already
model (Böhm et al. 2016). A subset of the contractions leading to
this bias were first studied by Böhm et al. (2016) assuming tree-
level perturbation theory for the LSS bispectrum and neglecting
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post-Born contributions, finding that the terms are negligible at
Planck noise levels. Beck et al. (2018) and Böhm et al. (2018)
have shown on simulations that including post-Born effects
reduces the signal even further, as expected from the opposite
sign of post-Born and LSS contributions to most configurations
of the lensing bispectrum (Pratten & Lewis 2016). We therefore
consider the bias on the lensing reconstruction power spectrum
to be negligible and neglect it. The bias on cross-correlations
between the lensing spectrum and low-redshift large-scale struc-
ture tracers could, however, be larger due to larger low-redshift
LSS non-Gaussianity, and smaller opposite-sign post-Born con-
tributions at low redshift. However, for Planck noise levels,
following Fabbian et al. (2019) we estimate that the cross-
correlation bias remains below 1% for tracers at z & 0.2 where
there is a useful cross-correlation signal, and hence should also
be negligible compared to errors.

Note that although the lensing signal is expected to be close
to Gaussian, the lensing reconstruction noise is expected to be
non-Gaussian, since it is a nonlinear function of the maps, for
example the reconstruction 1-point function is skewed (Liu et al.
2016). However, this non-Gaussianity does not affect our analy-
sis, and the power spectrum band powers are well approximated
as Gaussian to the required level of accuracy.

4.8. Tests of the N(1) lensing bias

The N(1) bias originates from secondary contractions of the
lensed CMB trispectrum (Kesden et al. 2003; Hanson et al.
2011), and affects both gradient and curl deflection reconstruc-
tions. We follow PL2015 in that our baseline band powers simply
subtract the N(1) bias evaluated in a fiducial model, with the like-
lihood correcting for the model dependence perturbatively. This
section outlines some tests to show that this is not significantly
suboptimal, nor a source of bias. We first discuss two ways to
make N(1)-subtracted band powers without assuming a fiducial
lensing spectrum. We then test a simulation-based N(1) estima-
tor, assessing the impact of sky cuts and sky curvature; this also
forms our baseline N(1) calculation in the case of inhomogeneous
filtering.

The N(1) correction captures the estimator’s linear response
to Cφφ from non-primary contractions. As such, we can write
(neglecting point-source and MC corrections, and complications
due to masking in the following discussion)〈
|φ̂LM |

2
〉

= N(0)
L +

∑
L′

(
δLL′ + N(1)

LL′

)
Cφφ

L′ . (78)

Instead of subtracting the right-most term using a fiducial Cφφ
L ,

we can invert this matrix relation to obtain the lensing spectrum.
This can also be generalized to calculate the curl N(1), which is
used for the curl null test. With X,Y each standing for the gradi-
ent or curl deflection, let N(1),XY be the Y-induced N(1) contribu-
tion to the X-spectrum estimate, we can write
〈
|φ̂LM |

2
〉〈

|Ω̂LM |
2
〉 =

(
N(0),φφ

L
N(0),ΩΩ

L

)
+

∑
L′

(
δLL′ + N(1),φφ

LL′ N(1),φΩ

LL′

N(1),Ωφ
LL′ δLL′ + N(1),ΩΩ

LL′

) (
Cφφ

L′
CΩΩ

L′

)
. (79)

In this equation CΩΩ
L represents a hypothetical curl-like deflec-

tion caused, for example, by an instrumental systematic effect
that we assume is uncorrelated with the lensing signal. Sub-
pixel effects or pointing errors could create such a signal (see
Appendix B).
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Fig. 26. Comparison of reconstruction band powers for various meth-
ods to remove the N(1) lensing bias. Our baseline band powers are built
by subtracting the bias calculated analytically with the FFP10 fiducial
model, and are shown as the blue points with error bars. The curves
labelled “RD-N(1)” and “xpRD-N(1)” invert Eqs. (78) and (79), respec-
tively, and make no assumption about the theory lensing spectrum. The
curves labelled “MC-N(1)” subtract a simulation-based estimate of N(1).
For comparison the red lines show the band powers without any N(1)

subtraction, and the dashed black lines the N(1) bias itself. The top plot
shows the lensing reconstruction from temperature only, and is normal-
ized to the FFP10 fiducial Cφφ,fid

L . The lower plot shows the temperature-
only curl reconstruction (which on small scales appears to be
coincidentally close to the result one would expect with no N(1) at all).

Inverting Eq. (79) provides slightly different lensing gra-
dient and curl band powers, labelled “xpRD-N(1)” in Fig. 26,
while inverting Eq. (78) provides yet another set of lensing band
powers, labelled “RD-N(1).” The results for the temperature-only
reconstructions are shown in Fig. 26. Lensing band powers are
shown in the top panel, after taking the ratio to the FFP10 fidu-
cial spectrum; the lower panel shows the curl band powers. In
both cases, the points with error bars show our baseline recon-
structions, using the fiducial N(1) subtraction. For comparison,
the red curves display the case of no N(1) subtraction, and the
black dashed curves the N(1) bias itself. In implementing the
direct inversion of the linear relations above, we have trun-
cated L′ at 3000, and the matrix elements are evaluated numer-
ically according to the flat-sky isotropic analytic form given in
Appendix A. These different methods for dealing with the N(1)

bias have very little impact on the band powers, with a change
of at most a small fraction of 1σ on the smallest scales, and are
consistent with results from our fiducial model. The N(1) subtrac-
tion method does not substantially affect our curl null-test results
either. A deconvolution of the N(1) bias might also be desirable
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in order to reduce off diagonal contributions to the band pow-
ers’ covariance (Peloton et al. 2017), but we found the gain to be
negligible.

We also test a simulation-based N(1) estimation, labelled
“MC-N(1)” in Fig. 26. We use pairs of simulations that share the
same lensing deflections but have different CMB realizations, to
build an estimate of the bias. The precise way to do this follows
Story et al. (2015), and is also reproduced for completeness in
Appendix A. In contrast to the other methods described above,
this way of estimating the bias takes into account our exact
sky cuts, and also includes sky curvature (which is neglected
in our analytic N(1) calculations). We use simplified, effec-
tively isotropic CMB simulations that do not contain the full
anisotropic Planck beam model or SMICA processing, since a full
re-simulation would be too numerically expensive. The agree-
ment between the simulation-based N(1) estimator and the other
methods is good, to the point that it does not visibly affect the
band powers.

We use the simulation-based MC-N(1) as the baseline for
our results using inhomogeneous filtering. Figure 27 shows
MC-N(1) (blue points) for the polarization reconstruction using
the inhomogeneously-filtered maps. The large dynamic range of
the noise-variance map used for filtering makes the naive ana-
lytic prediction (the orange curve) fail to reproduce the MC-N(1)

shape. However, it is straightforward to understand the simula-
tion result analytically by using the same toy model discussed in
Sect. 2.3. Let N(1)

L (n̂) be the analytic (full-sky) N(1) bias calcu-
lated using the noise levels at angular position n̂, as specified by
the variance map used in the filtering. The green curve in Fig. 27
shows the weighted average

N(1)
L '

∫
dn̂
4π

RL(n̂)
Rfid

L

2

N(1)
L (n̂). (80)

This is evaluated by splitting the sky into 15 patches with
roughly constant noise levels, and successfully reproduces the
simulation-based N(1).

5. Data products

The final Planck lensing data products are available on the
Planck Legacy Archive16, and described in more detail in the
Explanatory Supplement (Planck Collaboration 2018). The lens-
ing analysis data release consists of the following products:

– the baseline MV convergence (κ) reconstruction map up
to Lmax = 4096 based on the SMICA CMB map, along with the
corresponding simulations, mask, mean field, lensing biases and
response functions;

– variations using only temperature information, only polar-
ization information, and with no SZ-cluster mask;

– temperature, polarization and MV lensing maps using opti-
mal filtering for the noise inhomogeneity, together with simula-
tions.

– temperature lensing maps and simulations built from the
SMICA tSZ-deprojected maps (up to Lmax = 2048);

– joint MV+CIB and TT+T E+EE+CIB reconstruction κ
maps, primarily for use with delensing and for plotting the
current best-estimate lensing potential, together with the corre-
sponding simulation suite.

– lensing B-mode templates and simulations built from our
best E-mode estimate and the TT+T E+EE lensing reconstruc-
tion, and in combination with the CIB;

16 https://pla.esac.esa.int
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Fig. 27. Comparison of the simulation-based N(1) lensing bias estimates
(blue points) to analytic estimates in the case of our inhomogeneously-
filtered polarization reconstruction. The orange curve shows the naive
prediction using a single map-averaged noise level, which does not cap-
ture the variation of the N(1) bias across the sky. The green curve shows
the weighted average Eq. (80). The black line shows the fiducial lensing
power spectrum.

– power spectrum band powers, covariance, and linear cor-
rection matrices for the various analyses;

– likelihood code using the band powers for the conservative
and aggressive multipole ranges from the baseline analysis; and

– cosmological parameter tables and MCMC chains.

6. Conclusions

We have presented the final official Planck lensing analysis,
and described in detail the limits of our understanding of the
data. The baseline lensing reconstruction, over nearly 70% of
the sky and using lensing multipoles 8 ≤ L ≤ 400, is robust
to a wide variety of tests. The reconstruction S/N is of order 1
at L . 100, but retains significant statistical power to smaller
scales. It gives interesting constraints on cosmological param-
eters on its own, yielding percent-level estimates of σ8Ω0.25

m ,
and tight constraints on individual parameters when combined
with BAO and a baryon density prior. The Planck lensing results
are currently competitive with galaxy survey constraints, and in
the case of σ8 substantially more powerful due to the weaker
degeneracy with Ωm. In combination with lower-redshift tracers,
degeneracies can be further broken, and CMB lensing provides
a powerful high-redshift baseline for joint constraints.

We showed that a joint analysis with the Planck CIB map can
be used to provide lensing estimates out to much smaller scales
than with lensing reconstruction alone. The combined map pro-
vides our current best estimate of the integrated mass in the Uni-
verse between today and recombination, and can be used for
delensing analyses. We demonstrated that delensing can already
be achieved by Planck, giving peak-sharpening and a reduction
in B-mode power in line with expectations. For future B-mode
polarization observations, delensing will probably be essential.

We studied in detail the limits of our understanding of the
data. In particular, the deficit of curl power on small scales
persists and appears to be very robust to analysis choices. The
roughly 3σ significance of this signal is at a level where it starts
to be concerning, and may be correlated with sky direction in
a way that suggests an unknown systematic issue. However, the
changes could also be purely statistical, and we cannot at this
point give any likely origin of a systematic signal that could
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explain it. The reconstructed power on smaller scales, L > 400,
also shows less stability to changes in foreground modeling and
map choices, so we restrict attention to the conservative multi-
pole range 8 ≤ L ≤ 400 for our main cosmology results. Our
likelihoods are made publicly available for both the conservative
and aggressive (8 ≤ L ≤ 2048) ranges, and users may opt to use
the full multipole range at their discretion. For cross-correlation
studies, where the detailed modeling of the auto-spectrum bias
is not required, the full multipole range may be more reliable,
but we have not performed detailed consistency checks for that
application.

In addition to the baseline analysis, we have also provided a
number of substantial analysis improvements. In particular, we
gave the first demonstration that anisotropic filtering of the polar-
ization can significantly improve the S/N in the reconstruction,
giving our best polarization-only band power lensing estimates.

Our baseline lensing reconstruction maps and simulations
are made publicly available, along with the joint CIB map and
variations with and without SZ-cluster masking. No planned
experiments will be able to provide comparable quality maps
over the full sky for many years. Ongoing and forthcoming
ground-based observations are expected to improve greatly the
reconstruction over patches of the sky, but the Planck reconstruc-
tions are likely to remain the only tracers of the very largest-scale
lensing modes for the immediate future.
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Appendix A: Power spectrum biases
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Fig. A.1. Compilation of the power spectrum reconstruction biases for
our baseline MV analysis. The blue and orange lines show RD-N(0) and
the analytic N(1) estimate. The green curve shows the point-source cor-
rection, and the red points the additive Monte Carlo correction (shown
here after a coarse binning was applied) defined by the difference of
Eq. (A.2) to the simulation input fiducial lensing spectrum. This cor-
rection is most prominent at low lensing multipoles, where it is nega-
tive (dashed) and due to masking. The error bars are obtained from the
240 simulations used to calculate the correction. The black line shows
the fiducial lensing power spectrum. The black dot at L = 1 shows
the almost pure dipole effective deflection caused by our motion with
respect to the CMB frame (aberration). This dipole is included in our
simulations, hence subtracted from our lensing reconstructions together
with other sources of anisotropy through the mean field.

This appendix describes in more detail the calculation of the
lensing power spectrum biases. For brevity, here we only present
results for our baseline analysis, where all four input maps enter-
ing the power spectrum estimator come from the same data and
simulation sets. PL2015 contains a thorough description of the
most general case with mixtures of input maps. Figure A.1 shows
the size of the various biases for our baseline analysis.

We introduce three types of lensing power spectrum estima-
tors built using the simulations: Ĉii

L is the power spectrum of the
quadratic estimator with both legs17 being simulation i; Ĉdi

L is
the analogous spectrum where one leg of the quadratic estimator
is always the data, and the second leg is simulation i; and Ĉi j

L is
where simulation i is the first leg and simulation j the second leg
and i , j. We note that Ĉii

L contains a mean-field subtraction, but
the other two spectra do not (the mean field would vanish, since
the different maps are independent to a very good approxima-
tion). The Gaussian lensing reconstruction noise biases MC-N(0)

and RD-N(0) are then defined as

MC-N(0)
L ≡

〈
2Ĉi j

L

〉
Nbias

,

RD-N(0)
L ≡

〈
4Ĉdi

L − 2Ĉi j
L

〉
Nbias

,
(A.1)

where angle brackets denote an average over simulations, with
index i, and in our implementation j is always equal to i + 1
(cyclically). The numerical factors in front of Ĉi j

L (or Ĉdi
L ) in

Eq. (A.1) account for the fact that the quadratic estimators enter-
ing these spectra are built with two independent CMB maps,
hence only half of the Gaussian contractions are captured. In
principle, many more pairs could be used to estimate

〈
2Ĉi j

L

〉
; this

17 By “leg”, we mean one of the two fields entering the quadratic
estimator.

would require considerably more resources, and the Monte Carlo
error on this term is already a small correction, as demonstrated
in Appendix C. The Monte Carlo reconstruction

〈
Ĉφφ

L

〉
MC

(used
to build the Monte Carlo correction, Eq. (10), after binning) is〈
Ĉφφ

L

〉
MC
≡

〈
Ĉii

L − 2Ĉi j
L − N(1)

L

〉
Nbias

. (A.2)

In the last definition, the analytic expression for N(1) is used,
with the exception of our inhomogeneously-filtered reconstruc-
tions, for which a Monte Carlo estimate MC-N(1) is used instead.
In general, for a source of anisotropy s, the analytic s-induced
N(1) is calculated according to the flat-sky approximation using
(Kesden et al. 2003)

N(1)XYIJ,s
L =

1
RXY

L

1
RIJ

L

∫
d2`1d2`1′

(2π)4 FX
l1 FY

l2 F I
l1′F

J
l2′

×WXY (`1, `2)W IJ(`1′ , `2′ )

×

[
C ss
|`1+`′1|

f XI,s(`1, `
′
1) f Y J,s(`2, `

′
2)

+ C ss
|`1+`′2|

f XJ,s(`1, `
′
2) f YI,s(`2, `

′
1)
]
, (A.3)

with `1 + `2 = L = −(`1′ + `2′ ), and the labels X,Y, I, J stand for
the T , E, or B map. Further, FX

l is the analytic inverse-variance
filter T †Cov−1T in the isotropic limit for field X (diagonal in
T, E, B space since we perform temperature and polarization
filtering separately), WXY are the flat-sky estimator weights as
applied to the inverse-variance filtered X and Y fields, f XY,s is
the CMB XY flat-sky covariance response to anisotropy source
s, and C ss

L is the spectrum of that source of anisotropy. Results in
this paper use lensing as source of anisotropy s almost exclu-
sively, but we have also built curl-induced and point-source
induced N(1) biases for robustness tests.

The Monte Carlo MC-N(1) (Story et al. 2015) is built as
follows. We generate additional noiseless simulations in pairs,
where each pair shares the same input deflection field, but
have independent unlensed CMB. These simulations are not
propagated through the Planck beam processing, since this
would be computationally too expensive, but are generated with
the effective, isotropic transfer function instead (the accuracy
requirements on N(1) are much lower than on N(0), and Sect. 4.8
demonstrates that the impact of the CMB non-idealities on N(1)

are negligible). These simulations also neglect CTφ
L and CEφ

L ,
which are negligible on the relevant scales. We again form spec-
tra mixing quadratic estimates Ĉi j

L and Ĉii′
L from these simula-

tions, where Ĉi j
L is defined as above on the first pair member of

these new simulations, and Ĉii′
L takes the quadratic estimate built

from the first pair member on one leg and the second pair mem-
ber on the second leg. Then

MC-N(1)
L ≡

〈
2Ĉii′

L − 2Ĉi j
L

〉
. (A.4)

Appendix B: Mean fields

In this appendix we characterize the main components of the
mean field, including very high lensing multipoles L > 2048
that are not used in this paper, but are included in the lensing
maps that we release. The mean field is obtained by averaging
lensing reconstruction maps constructed from the FFP10 sim-
ulations, and for many effects we rely on the fidelity of these
simulations for accurate subtraction of the mean field from the
data.
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Fig. B.1. Characterization of the mean-field power spectrum and its components in our temperature-only reconstruction. The left-hand part shows
the convergence-like power spectrum L2(L+1)2Cφφ

L on large scales, while the right-hand part shows the deflection power spectrum L(L+1)Cφφ
L on

smaller scales. The blue line shows the total mean field as obtained from the SMICA FFP10 simulation set. Lines showing the contributions from
statistical anisotropy of the mask (red), noise (orange), and the beam-convolved and pixelized CMB anisotropies (green) are plotted with rough
68% confidence regions shown shaded on the right panel (the uncertainty arises from the finite number of simulations used to estimate the mean
fields). The mask mean field dominates at low multipoles and is barely distinguishable from the total on the left-hand plot. The orange and green
curves were obtained from full-sky lensing reconstructions using idealized, statistically-isotropic CMB or noise components, respectively. The red
curve was obtained by differencing the mean-field spectra on the full anisotropic simulations, with and without masking. Pixelization effects due to
sub-pixel pointing offsets are expected to appear as an approximately white-noise lensing deflection component of amplitude 0.′05 (the brown line
shows the prediction for the 217-GHz channel), and is clearly detected by cross-correlating the mean field to the sub-pixel deflection prediction
(pink curve). The rise of the mean field at L ' 3000 originating in the noise maps is mostly a simulation artefact, sourced by nonlinearities in
the data processing that cause slight correlations between the simulations (due to the fixed fiducial CMB and foregrounds used to make the noise
simulations); the purple curve shows the lensing quadratic estimator applied to the empirical average of the noise simulations. The predicted mean
field due to inhomogeneity of the variance of idealized uncorrelated pixel noise (grey curve, as derived from Eq. (B.1)) is much weaker on smaller
scales and is only visible at low lensing multipoles in this figure.

Figure B.1 shows the different contributions to the mean
field of the temperature-only reconstruction. The left-hand panel
focuses on the low-L range (L ≤ 400) and the right-hand panel
on higher multipoles. The total mean field is shown as the blue
curve. The orange curve shows the contribution to the mean field
from the noise simulations. This captures various effects, includ-
ing the large inhomogeneity of the pixel noise variance (see
below and Fig. 2), and residual noise correlations from the map-
making procedure. The green curve shows the contribution from
statistical anisotropy of the observed CMB, through the effects
of beam anisotropies and pixelization. The orange and green
curves were obtained from full-sky reconstructions to remove
the effect of masking, and used idealized statistically-isotropic
CMB and noise components, respectively (which do not con-
tribute to the mean field). The mask contribution itself is shown
as the red curve, which we obtain by differencing the mean-field
spectra obtained from the full, anisotropic, and masked simula-
tions to the mean field from the same simulations without any
masking.

As in previous releases, the mean field is very large at low
multipoles, where it is mainly due to masking, with the noise
and beam-anisotropy contribution being the next most important.
The pink curve in Fig. B.1 shows the expected contribution from
the inhomogeneities in the pixel noise variance only (using the
variance map in Fig. 2 and assuming there are no pixel-pixel cor-
relations). The expected noise mean-field contribution is, from
Eq. (3),〈

1d̂(n̂)
〉

(noise inhom. only) =
∑
LM

hLσ
2
T,LM 1YLM(n̂), (B.1)

and hence, according to Eq. (6), is a pure gradient field with
gLM = −

√
L(L + 1)hLσ

2
T,LM . Here, σ2

T,LM is the spin-0 harmonic
transform of the temperature noise variance map, and

hL ≡ 2π
∫ 1
−1 dµ ξT̄

0,0(µ) ξT WF

0,1 (µ) dL
−1,0(µ),

ξT̄
0,0(µ) ≡

∑2048
`=100

(
2`+1

4π

) (
b`

b2
`
CTT
`

+N`

)
fid

d`0,0(µ),

ξT WF

0,1 (µ) ≡
∑2048
`=100

(
2`+1

4π

) ( b`CTT
`

b2
`
CTT
`

+N`

)
fid

√
`(` + 1)d`1,0(µ).

(B.2)

Here, b`, CTT
` , and N` are the fiducial combined beam and pixel

window function, fiducial CMB spectrum, and noise spectrum
used in the filtering (we use a flat noise level of 35 µK-arcmin).
The contribution to the mean field from inhomogeneous pixel
noise is only visible at low lensing multipoles.

At higher multipoles, 500 ≤ L ≤ 2500, the noise mean
field drops sharply, but the CMB mean field remains clearly
visible, at least partly because of pixelization effects. To some
approximation, the mapmaking procedure simply bins individ-
ual time-ordered data into the assigned pixels. Approximating
the temperature field locally as a gradient, this gives rise to an
effective deflection field, which can be predicted given the full
pointing information for each frequency channel. Since this sub-
pixel mis-centring is the same in all simulations, it appears rather
directly in the mean-field estimate (with a possible bias, since,
unlike lensing, the sub-pixel deflections act on the sky signal
after beam convolution). The prediction for the 217-GHz chan-
nel sub-pixel deflection spectrum is shown as the purple curve in
Fig. B.1, and has the approximate power spectrum of a white-
noise displacement component Cκκ,sub-pixel

L ∝ L2 (as expected
for a large number of independent hits) with an amplitude of
around 0.′05. The cross-spectrum of the mean-field estimate for
the SMICA map with the predicted sub-pixel displacements for
the 217 GHz channel recovers the expected amplitude in the
range 500 ≤ L ≤ 2500 fairly well.

At yet higher multipoles, L ≥ 2500, while the CMB mean
field can still be seen in cross-correlation, the most striking fea-
ture is a very sharp rise in the mean field sourced by the noise
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simulations. We caution that this rise is likely to be largely
an artefact of the way that the simulations were constructed:
as discussed in Sect. 2, the noise simulations are not exactly
independent, due to small nonlinearities in the data processing
causing correlations after subtraction of the common fiducial
CMB and foreground realizations used to make the simulations.
This introduces a contribution to the mean field given by the
result of applying the lensing quadratic estimator to the common
component of the noise simulations. We estimate this common
component from empirical averages of the first 150 noise simu-
lations and the last 150 noise simulations. By applying the lens-
ing quadratic estimator to each of these simulation averages in
turn, and cross-correlating the results, we attempt to isolate the
mean-field power sourced by the common signal. The result is
shown as the red curve in Fig. B.1; this agrees well with the sharp
increase in the mean field (blue curve) seen at L ≥ 2500. The red
curve contains a residual Monte Carlo noise level of 150−2 in the
mean field, which is visible at low L. On these scales the mean
field of the common component is too small to be separated from
the noise. In polarization, the mean field of the common compo-
nent is slightly larger than in temperature; however, its contribu-
tion to the spectrum is a negligibly small fraction of the standard
deviation of the band powers.

Appendix C: Covariance matrix corrections

As described in Sect. 2.2, our covariance matrix takes into
account Monte Carlo errors in the various quantities obtained
from simulations, increasing the covariance by roughly 10%
over our conservative multipole range. These errors come mainly
from the mean-field estimate and the lensing N(0) bias (see
Appendix A). We use Nbias = 60 simulations for the mean field
and Nbias = 240 independent simulations for N(0). This section
describes how the impact of the Monte Carlo error is calculated.
For simplicity we use the following form of the Monte Carlo-
corrected final power spectrum estimator, where the Monte Carlo
correction is applied additively instead of multiplicatively:

Ĉφφ
L = Ĉdd

L − RD-N(0)
L − N(1)

L −
〈
Ĉφφ

L

〉
MC

+ Cφφ,fid
L

= Ĉdd
L −

〈
4Ĉdi

L − 4Ĉi j
L + Ĉii

L

〉
Nbias

+ Cφφ,fid
L

(C.1)

(and neglecting the point-source correction), obtained combin-
ing Eqs. (A.1) and (A.2). Here, Ĉdd

L is the lensing reconstruction
power spectrum estimate from the data, including mean-field
subtraction (i.e., it is equivalent to Ĉφ̂φ̂

L defined in the main text
in Eq. (8), but here we wish to emphasise that it is constructed
from the data).

C.1. Monte Carlo errors on the mean field

The mean field is defined as an ensemble average φMF
LM ≡

〈ĝLM〉 /R
φ
L, but evaluated with a finite number of simulations

Nbias. The mean field only enters two terms in the reconstructed
spectrum of Eq. (C.1): the data lensing reconstruction spectrum
Ĉdd

L ; and similarly Ĉii
L on the simulations used for the Monte

Carlo correction calculation. To avoid Monte Carlo noise bias in
these spectrum estimates, we use two independent sets of Nbias/2
simulations to subtract the mean field from each quadratic esti-
mator before forming their cross-spectrum. Denoting the (small
and independent) error on the estimated mean field for each

quadratic estimate by δφMF
1,2 , all relevant terms are of the form

Ĉφφ
L ⊃

 ĝLM

R
φ
L

− φMF
LM − δφ

MF
1,LM

  ĝLM

R
φ
L

− φMF
LM − δφ

MF
2,LM

∗ , (C.2)

where ĝLM is either the data lensing map ĝd
LM (for Ĉdd

L ) or that of
simulation i (ĝi

LM for Ĉii
L). Summing the terms from Ĉdd

L and Ĉii
L

at fixed L and M, the contribution to the error on the spectrum is

δĈφφ
L ⊃ −δφ

MF
1,LM


 ĝd

LM

R
φ
L

− φMF
LM

 − 〈
ĝi

LM

R
φ
L

− φMF
LM

〉
Nbias

∗+(1↔ 2)∗.

(C.3)

We note that terms of the form δφMF
1,LM(δφMF

2,LM)∗ cancel between
δĈdd

L and δĈii
L. We proceed to calculate the averaged squared

error on the spectrum. The spectrum of the mean-field error is〈
|δφMF

LM |
2
〉
'

2
NMF

(
Cφφ

L + N(0)
L

)
, (C.4)

neglecting the N(1) contribution. We note that the factor of two
is present since we use only half of the NMF simulations on each
leg. We also have〈∣∣∣∣∣∣∣
 ĝd

LM

R
φ
L

− φMF
LM

 − 〈
ĝi

LM

R
φ
L

− φMF
LM

〉
Nbias

∣∣∣∣∣∣∣
2〉
'

(
Cφφ

L + N(0)
L

)
×

(
1 +

1
Nbias

)
. (C.5)

Finally, averaging over M, allowing crudely for an effective
number of modes (2L + 1) fsky, and neglecting the correction
scaling with 1/Nbias, the total error induced in the reconstruction
spectrum due to Monte Carlo errors in the mean-field evaluation
has variance:

var
(
δĈφφ

L

∣∣∣
MF

)
'

4
NMF

(
Cφφ

L + N(0)
L

)2

(2L + 1) fsky
· (C.6)

C.2. N(0) Monte Carlo errors

We now consider the error on the spectrum due to the finite num-
ber Nbias of simulations in the average in Eq. (C.1),

δĈφφ
L

∣∣∣
Biases ≡ −δ

〈
4Ĉdi

L − 4Ĉi j
L + Ĉii

L

〉
Nbias

. (C.7)

We proceed by approximating the reconstructions ĝLM as Gaus-
sian, in which case correlations between the errors in Ĉii

L, Ĉdi
L ,

and Ĉi j
L vanish. Empirical verification confirms that to a good

approximation, errors in these spectra are independent, with
approximate Gaussian variance

var
(
δ
〈
Ĉii

L

〉
Nbias

)
'

1
Nbias

2
(
Cφφ

L + N(0)
L

)2

(2L + 1) fsky
, (C.8)

var
(
δ
〈
2Ĉdi

L

〉
Nbias

)
= var

(
δ
〈
2Ĉi j

L

〉
Nbias

)
'

1
Nbias

2
(
N(0)

L

)2

(2L + 1) fsky
. (C.9)
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C.3. Total Monte Carlo errors

Combining Eqs. ((C.6)–(C.9)) gives the total variance of the
Monte Carlo error on the power spectrum of the reconstruction.
Neglecting the absence of Cφφ

L in Eq. (C.9), which is accurate on
almost all scales, we obtain

σ2
MC,L '

(
2

NMF
+

9
NBias

) 2
(
Cφφ

L + N(0)
L

)2

(2L + 1) fsky
· (C.10)

This gives Eq. (13) in the main text, after identifying the diago-
nal band-power Gaussian variance with σ2

BP. Figure C.1 shows
a rough empirical estimate of the Monte Carlo errors on our MV
band powers compared with the analytic estimate of Eq. (C.10).
The points were estimated from the scatter of five data band pow-
ers, each constructed using 60 independent simulations (with
Nbias = 12 and Nbias = 48) out of the full set of 300 simula-
tions. The figure shows the empirical variance (divided by 5)
normalized to the statistical variance of the band powers, σ2

BP;
this agrees reasonably well with the analytic estimate (the cor-
rection is small, so it does not need to be calculated accurately).

24 62 107 152 197 242 287 332 377
L

0.025

0.000

0.025
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0.075

0.100
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0.150

0.175

2 M
C/

2 BP

Fig. C.1. Crude empirical estimates of the additional variance on the
MV reconstruction band powers (on the conservative multipole range)
due to the finite number of simulations used for mean-field and bias
correction. The additional variance is normalized by the baseline sta-
tistical variance of the band powers. These empirical estimates were
obtained by splitting the simulations into five independent subsets,
building reconstruction band powers using each subset of the simula-
tions, and measuring the scatter between the five sets of band powers.
The results are scaled by 1/5 to approximate the full simulation set used
in the main analysis. The horizontal line shows the simple constant rela-
tive correction applied to the covariance matrix, Eq. (13), as obtained in
Appendix C. The error bars on the empirical variance (identical for each
bin, after rescaling by σ2

BP) are those expected in the fiducial model of
Eq. (13), assuming Gaussian statistics of the lensing maps.
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