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A TANGENT METHOD DERIVATION OF THE ARCTIC CURVE
FOR q-WEIGHTED PATHS WITH ARBITRARY STARTING POINTS

PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

ABSTRACT. We use a tangent method approach to obtain the arctic curve in a model of non-
intersecting lattice paths within the first quadrant, including a q-dependent weight associated
with the area delimited by the paths. Our model is characterized by an arbitrary sequence
of starting points along the positive horizontal axis, whose distribution involves an arbitrary
piecewise differentiable function. We give an explicit expression for the arctic curve in terms of
this arbitrary function and of the parameter q . A particular emphasis is put on the deformation
of the arctic curve upon varying q , and on its limiting shapes when q tends to 0 or infinity. Our
analytic results are illustrated by a number of detailed examples.
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1. INTRODUCTION

The study of two-dimensional non intersecting lattice path (NILP) configurations is a sub-
ject of constant investigation, in particular because they provide alternative descriptions for
a number of statistical models, including tiling problems [CEP96, JPS98] or dimer models on
regular lattices. Quite generally, their statistics exhibits a number of interesting properties,
among which is the remarkable arctic curve phenomenon which may be described as follows:
for prescribed boundary conditions (obtained for instance by fixing the starting and ending
points of the paths), the paths may by construction visit only a fixed domain D in the lat-
tice. In the thermodynamic limit, i.e. for a large number of paths and under the appropriate
scaling, this accessible domain D is then split into one or several liquid disordered phases
in which paths may fluctuate with a finite entropy, and frozen (crystalline) ordered phases
in which paths develop some underlying order generally imposed by some nearby boundary.
Frozen phases may correspond either to fully filled regions with a compact arrangement of
the paths characterized by a fixed common orientation or, on the contrary, to regions not vis-
ited by paths. In the thermodynamic limit, the transition between frozen and liquid phases is
sharp and takes place along a well defined arctic curve (with possibly several connected com-
ponents) whose shape depends only on the boundary conditions and on some local weights
possibly attached to the paths. The arctic curve phenomenon was described in a quite gen-
eral setting in [KOS06, KO06, KO07]. Several methods were designed to obtain, for specific
NILP problems, the precise location of their arctic curve. These are in general based on the
identification of the various phases in the bulk and their implementation, which requires the
evaluation of bulk expectation values, is achieved by use of quite involved techniques such as
inversion of the Kasteleyn matrix, or more recently by exploiting the underlying cluster inte-
grable system structure of the equivalent dimer problem [DFSG14, KP13].

On the other hand, an elegant new technique, referred to as the tangent method, was re-
cently invented by Colomo and Sportiello [CS16]: it produces the arctic curve via a simple
geometric construction, without recourse to any bulk order parameter evaluation. The idea is
the following: many NILP problems have several equivalent formulations involving different
families of paths and a given portion of the arctic curve may always in practice be understood,
for the appropriate path family, as the separation between a liquid phase and a region empty
of all paths. In particular, the shape of the arctic curve is dictated by the most likely trajectories
of outermost paths in the NILP configuration since these are precisely the paths which delimit
the visited region. Based on this remark, the tangent method consists in reconstructing the



TANGENT METHOD FOR q-WEIGHTED PATHS 3

arctic curve from the location of the outermost path trajectories for the various equivalent
path families defining the model. In practice, the trajectory of the outermost path is obtained
by perturbing it upon moving one of its endpoints outside of the originally allowed domain
D , so as to force it to cross the empty region before it eventually exits D . The perturbed and
unperturbed trajectories are expected to share a common part before they eventually split
tangentially (hence the name of the method). After splitting, the perturbed trajectory which
takes place in some empty region is somewhat trivial as it is no longer influenced by the other
paths: as a consequence, it follows a geodesic and one may thus easily reconstruct the posi-
tion of the tangency (splitting) point from that of the point where the path most likely exits
D . The latter is determined by a variational principle. By varying the displaced endpoint, one
then reconstructs the entire unperturbed outermost trajectory as the envelope of the family
of geodesics thus produced, yielding the desired portion of arctic curve. The tangent method
was tested successfully in a number of problems [CS16, DFL18, DFG18] where it was shown to
reproduce already known results and yielded new explicit predictions.

In a recent paper [DFG18], we concentrated on a particular NILP problem involving paths
traveling up and left along the edges of the first quadrant of a regular square lattice and with
an arbitrary sequence of starting points along the positive horizontal axis, with abscissa a0 =
0, a1, a2, ..., an , and with the fixed sequence of endpoints along the positive vertical axis at po-
sitions 0,1,2, ...,n. Applying the tangent method, we were able to obtain the corresponding
arctic curve in terms of the asymptotic distribution of starting points in the thermodynamic
limit. In particular, this allowed us to recover via simple geometrical constructions the results
of [DM15] and de facto to validate the tangent method.

In the present paper, we address the same question of the arctic curve, for the same NILP
problem, but including a new q-dependent weight for the NILP configurations, associated
with the area under the paths. More precisely, let Ai be the area delimited by the coordinate
axes and a path Pi in the first quadrant. A NILP configuration then receives a total statistical
weight q

∑
i Ai where the sum runs over all the paths in the configuration. A small value of q

favors configurations in which the paths are squeezed towards the origin of the first quadrant
so as to lower the cumulative area

∑
i Ai . On the contrary, a large value of q pushes the paths

away from this origin. Such choice of q-dependent weight is quite natural and was already
considered in [MP17] in a more specific situation1. There the model is presented in its equiv-
alent tiling formulation, which may itself be viewed as a plane partition, or equivalently as a
three-dimensional piling of elementary cubic bricks (see [MP17, DFG18]). In this language,
the above cumulative area

∑
i Ai has a nice geometrical interpretation as a measure of the vol-

ume below the surface of the brick piling (and above some appropriate base plane, see [MP17]
for details).

1This situation corresponds in fact to a particular instance of our general framework with a sequence of start-
ing points corresponding to so-called freezing boundaries only.
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Our main result is an explicit parametric expression for the arctic curve in terms of the (arbi-
trary, piecewise differentiable) distribution of starting pointsα(u) = limn→∞ abn uc/n, u ∈ [0,1],
and of the renormalized parameter q= q1/n :

Theorem 1.1. Let x(t ) be the q-deformed exponential moment-generating function for the dis-
tribution α(u) of starting points, namely:

(1.1) x(t ) := q
−t

∫ 1
0

du
t−qα(u) .

The arctic curve for the asymptotic configurations of NILP with prescribed endpoints is given in
the following parametric form (X (t ),Y (t )), for admissible ranges of t ∈R:

(1.2) qX (t ) = t 2 x ′(t )

t x ′(t )+x(t )(1−x(t ))
, qY (t ) = t x ′(t )+1−x(t )

t x ′(t )+x(t )(1−x(t ))
.

The precise relevant admissible domains for t are discussed in the paper. Using this result,
we may follow the deformation of the arctic curve for varying q, and obtain its limiting shape
whenever q tends to 0 or to infinity.

The paper is organized as follows. In Section 2, we give a precise definition of the NILP
problem under study, which is first presented in its “original" form (Section 2.1) involving a
first family of paths along the edges of the first quadrant of a regular square lattice, and then
reformulated in terms of a second, dual family of paths (Section 2.2), with a detailed analy-
sis of the mapping between these two formulations. The model is entirely characterized by
a its fixed arbitrary sequence of starting points as well as by the weight parameter q and we
give in Section 2.1 an explicit expression for its partition function. Section 3 is devoted to the
computation of the basic quantities required to apply the tangent method to our problem.
These include in particular the so-called one-point function, computed in Section 3.1, which
enumerates path configurations in which the outermost path is perturbed so as to exit the
allowed domain D at a prescribed exit point. The associated scaling expression in the ther-
modynamic limit of a large number of paths is discussed in Section 3.2 where we also analyze
the position of the most likely exit point. Section 4 proves our main result, namely the above
parametric equation (1.2) for the arctic curve . Its derivation requires computing the equation
for “geodesics" (Section 4.1), i.e. free trajectories of the (perturbed) outermost path within an
unvisited region empty of all the other paths. The arctic curve is then obtained from the tan-
gent method principle as the envelope of the geodesics passing via the previously identified
most likely exit points (Section 4.2). The above construction, based exclusively on the original
path family of Section 2.1, produces only one portion of the arctic curve, its so-called “right
part". We show in Section 5 how to get other portions of the arctic curve, a generic "left part"
(Section 5.1) obtained from outermost trajectories in the second path family of Section 2.2, as
well as possible additional portions (Section 5.2) arising for so-called "freezing boundaries"
in the presence of either fully filled intervals or gaps in the sequence of starting points. Sec-
tion 6 is devoted to the description of the arctic curve in the limit where q tends to 0 or to
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infinity, either via heuristic arguments (Section 6.1) based on the identification of the most
likely limiting NILP configuration, or via a rigorous treatment analyzing the limit of the arc-
tic curve equation (1.2) when q becomes large (Section 6.2) or small (Section 6.3). Section 7
presents a number of explicit examples of this deformation of the arctic curve when q varies
for a fairly generic class of starting point distributions (Section 7.1), including situations with
freezing boundaries resulting from a fully filled interval in the starting point sequence (Sec-
tion 7.2) or from a gap (Section 7.3). As a final example we revisit the path formulation of the
classical rhombus tiling problem of a hexagonal domain [CLP98] in Section 7.4. We show how
the arctic curve, known to be an ellipse for q = 1 is deformed for large or small q as a result
of the invasion of the liquid phase by frozen regions. We gather a few concluding remarks in
Section 8.

Acknowledgments.
We thank L. Petrov for suggesting the q-deformed problem and A. Sportiello for useful dis-
cussions. PDF is partially supported by the Morris and Gertrude Fine endowment and the
NSF grant DMS18-02044. EG acknowledges the support of the grant ANR-14-CE25-0014 (ANR
GRAAL).

2. PARTITION FUNCTION FOR q-WEIGHTED NON-INTERSECTING LATTICE PATHS

2.1. Direct path formulation. As in [DFG18], we consider configurations of non-intersecting
lattice paths consisting of (n +1) paths Pi , i = 0,1, · · · ,n, making west- or north-oriented unit
steps along the edges of the regular square latticeZ2, starting at respective position Oi = (ai ,0)
along the x-axis and ending at position Ei = (0, i ) along the y-axis. Here (ai )0≤i≤n denotes
an arbitrarily fixed strictly increasing sequence of integers with a0 = 0. The paths are non-
intersecting in the sense that any two distinct paths may not share a common vertex. Clearly,
the domain D accessible to the paths is a rectangle of size an ×n in the first quadrant, with its
lower left corner at the origin.

The novelty of the present paper is that each path Pi now receives a weight qAi , where
q is some arbitrary positive real number and Ai measures the area “to the left of the path"
Pi , i.e. the number of unit squares in the domain delimited by the path Pi and its projection
along the y-axis (see figure 1). Note that in the present case, this area may also be viewed
as the area “under the path", i.e. the number of unit squares in the domain delimited by
Pi and its projection along the x-axis. The total weight of a NILP configuration is then the
product of its path weights, namely q

∑n
i=0Ai . Alternatively, the weight qAi of the path Pi may

be obtained by assigning to each north-oriented step (x, y) → (x, y + 1) of the path a local
weight q x . Since this latter formulation involves only local edge weights, the partition func-
tion Zn(q) := Zn(q ; (ai )0≤i≤n) of the model may be obtained via the famous Lindström-Gessel-
Viennot (LGV) lemma [Lin73, GV85] as

(2.1) Zn(q) = det
((

Ai , j
(
q
))

0≤i , j≤n

)
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0 151210632

O4

E4

P4

FIGURE 1. A sample configuration of n +1 = 7 non-intersecting lattice paths made of
west- or north-oriented unit steps. The i -th path Pi starts at position Oi = (ai ,0) and
ends at position Ei = (0, i ) (here for the sequence (ai )0≤i≤n = (0,2,3,6,10,12,15)). For
illustration, we colored the domain “to the left of the path" P4 whose number of unit
squares defines the areaA4 (here = 31). The weight of the configuration is q

∑n
i=0Ai (here

q0+1+5+16+31+53+75 = q181).

where Ai , j (q) denotes the partition function of a single path P (made of west- and north-
oriented steps) connecting Oi to E j , and with weight qA if A is the area to the left of the path
P. Since a path from Oi to E j is made of a total of ai + j steps among which exactly j are
oriented north, we have clearly

Ai , j (q) =
[

ai + j

j

]
q

in terms of the q-binomial

(2.2)

[
a

b

]
q

:=
b∏

s=1

q s+a−b −1

q s −1
for a ≥ b ≥ 0

and
[a

b

]
q := 0 otherwise2. As in [DFG18], the value of the determinant (2.1) is easily obtained

by performing the LU decomposition of the matrix A(q) with elements Ai , j (q) above, i.e. upon
writing A(q) as the product of a uni3-lower triangular square matrix L(q) by an upper triangu-
lar square matrix U (q), so that Zn(q) =∏n

i=0Ui ,i (q).

2Note that the product expression for the q-binomial is in practice valid for all a ≥ 0 as it gives 0 for 0 ≤ a < b.
Note also that

[a
b

]
q = [ a

a−b

]
q .

3By uni-lower triangular, we mean a lower triangular matrix with all its diagonal elements equal to 1.
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Let us show that we may take for L(q) the inverse of the uni-lower triangular matrix L−1(q)
with matrix elements

(2.3) L−1(q)i , j =



i−1∏
s=0

(q ai −q as )

i∏
s=0
s 6= j

(q a j −q as )

for i ≥ j ,

0 for i < j ,

i.e. that U (q) := L−1(q) A(q) is upper triangular. We may compute directly

Ui , j (q) = (
L−1 (

q
)

A
(
q
))

i , j =
i∑

k=0

i−1∏
s=0

(q ai −q as )

i∏
s=0
s 6=k

(q ak −q as )

[
ak + j

j

]
q

=
i−1∏
s=0

(q ai −q as )
∮
C(q a0 ,q a1 ,··· ,q ai )

d t

2iπ

1
i∏

s=0
(t −q as )

j∏
s=1

t q s −1

q s −1
,

where the contour C(q a0 , q a1 , · · · , q ai ) encircles all the finite poles q a0 , q a1 , · · · , q ai of the inte-
grand. The contour integral is then easily obtained as minus the residue of its integrand at
t =∞, which clearly vanishes if j < i since the integrand is an O(t j−i−1) at large t : this shows
that U (q) is upper triangular as announced. Moreover, picking the residue at t = ∞ when
j = i , we also have

Ui ,i (q) =
i−1∏
s=0

(q ai −q as )
i∏

s=1

q s

q s −1
= q i 2

i−1∏
s=0

q ai −q as

q i −q s

and the partition function finally reads

(2.4) Zn(q ; (ai )0≤i≤n) =
n∏

i=0
Ui ,i (q) = q

1
6 n(n+1)(2n+1) ∆(q a0 , q a1 , q a2 , · · · , q an )

∆(1, q, q2, · · · , qn)
,

where ∆(x0, x1, x2, · · · , xn) =∏
i< j (x j −xi ) is the Vandermonde determinant.

2.2. Alternative path formulation. As explained in [DFG18], the NILP configurations of our
model may be bijectively transformed into particular tiling configurations which in turn may
be reformulated into alternative path configurations. Here we shall concentrate on one par-
ticular alternative path description of our model, referred to as the “second set" of paths
in [DFG18]. Its configurations consist again of (n + 1) NILP P̃i , i = 0,1, · · · ,n, now made of
northeast- and east-oriented unit steps, with respective starting points Õi of coordinates (an−i+
1/2,0) along the x-axis and endpoints Ẽi of coordinates (an + 1/2 + i , i ) along the line y =
x − an −1/2 (see figure 2). The bijection between the original NILP configurations and these
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0 151210632 Õ4

Ẽ4

P̃4

FIGURE 2. The second set of paths (in red) associated to the original configuration (in
blue) of figure 1. For illustration, we colored the domain “to the left of the path" P̃4, with

area Ã4 = 39. The weight of the new configuration is q
∑6

i=0 Ãi = q0+14+26+34+39+40+28 =
q181, equal to that of the original configuration.

second set of non-intersecting paths may be obtained directly as follows: given the original
NILP configuration, the i -th path P̃i in the associated second set of paths is obtained, start-
ing from Õi , by performing east-oriented unit steps as long as these steps do not intersect a
path of the first original set and by overpassing any encountered such path via a northeast-
oriented step crossing a north-oriented step of the original path (see figure 2). The procedure
is continued until the final point Ẽi is reached (after i crossings, so that Ẽi has the desired
y-coordinate i ). Note that, as opposed to the original path numbering from left to right, the
paths in the second set are now numbered from right to left. It is clear that the mapping from
{Pi }0≤i≤n to {P̃i }0≤i≤n is a bijection since, from the data of any {P̃i }0≤i≤n in the second set of
paths, we may easily reconstruct its unique pre-image {Pi }0≤i≤n by a similar construction.

Let us now discuss how to transfer the weight of the original NILP configuration to its image
by the above bijection: this weight is clearly recovered in the second setting by assigning to
each northeast-oriented step (x−1/2, y) → (x+1/2, y+1) a weight q x as any such step is “dual"
to a north-oriented step (x, y) → (x, y+1) in the original configuration. By performing a simple
shear of the original unit squares into elementary rhombi of the same unit area, this in turn

corresponds to assigning a weight qÃi to each path P̃i of the new configuration, where Ãi

denotes again the area to the left of P̃i , now defined as the total area (number of rhombi)
of the domain delimited by the path P̃i and its projection along the “vertical sawtooth line"
surrounding the y-axis (see figures 2 and 3). Again the total weight of a NILP configuration is

the product of its path weights, namely q
∑n

i=0 Ãi . With this weight, the partition function of the
second path configurations is, by construction, identical to that, Zn(q ; (ai )0≤i≤n), of the first
path configurations, namely given by (2.4).
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ã6=a6ã0=0 ã1 ã2 ã3 ã4 ã5

R

P̃i

R(P̃i)

FIGURE 3. The mapping R from the configuration of figure 2 to a NILP configuration
made of north- and west-oriented steps, now associated to the sequence (ãi )0≤i≤6 =
(0,3,5,9,12,13,15). The area to the left of the transformed path R(P̃i ) (shaded domain)

is given by
(
i (a6 +1)+∑i−1

y=0 y
)
−Ãi where Ãi is the area to the left of P̃i before mapping

(colored domain).

As in [DFG18], we may, on the other hand, transform a path configuration in the second
NILP set back into a configuration made of north- and west-oriented steps in a much more
straightforward way: this direct transformation is achieved by first performing a shear trans-
formation (x, y) 7→ (x−y, y) (transforming northeast-oriented steps into north-oriented steps)
followed by a reflection (x, y) → (an +1/2− x, y) (transforming east-oriented steps into west-
oriented steps), as displayed in figure 3. The resulting mapping

R : (x, y) 7→ (an +1/2+ y −x, y)

sends the endpoints Ẽi to R(Ẽi ) = (0, i ) and the starting points Õi to R(Õi ) = (ãi ,0) involving
the strictly increasing sequence of integers (with ã0 = 0)

(2.5) ãi := an −an−i .
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We thus recover path configurations as those of the original setting but with a new set of start-
ing points now characterized by the sequence (ãi )0≤i≤n .

As for the weight q x assigned to any northeast-oriented step (x − 1/2, y) → (x + 1/2, y + 1)
of, say, the path P̃i , it is attached after the mapping R, to a north-oriented step (an +1+ y −
x, y) → (an+1+y−x, y+1) of the path R(P̃i ), In other words4, any north-oriented step (x̃, ỹ) →
(x̃, ỹ + 1) of the path R(P̃i ) receives a weight q an+1+ỹ−x̃ . Since the path R(P̃i ) has exactly i
north-oriented steps (x̃, ỹ) → (x̃, ỹ+1) whose ordinates ỹ take the respective integer values j =
0,1, · · · , i −1, the above weight is recovered by assigning a weight q−x̃ to each north-oriented
steps (x̃, ỹ) → (x̃, ỹ +1) together with a global weight

n∑
i=0

(
i (an +1)+

i−1∑
j=0

j

)
=

n∑
i=0

i
2an + i +1

2
= 1

6
n(n +1)(3an +n +2) .

We deduce the identity

(2.6) Zn(q ; (ai )0≤i≤n) = q
1
6 n(n+1)(3an+n+2) Zn(q−1; (ãi )0≤i≤n)

relating the partition functions of NILP configurations in the same original setting made of
north- and west-oriented steps but associated with different sequences (ai )0≤i≤n and (ãi )0≤i≤n

respectively. This identity may also be verified by a direct calculation from the explicit expres-
sion (2.4) and the relation (2.5) between ai and ãi .

The above (back and forth) bijective mappings between NILP configurations of the two dif-
ferent settings may appear here as a pure academic exercise but they will prove very useful
in Section 5.1 when using the second set of paths to compute the so-called “left part" of the
arctic curve.

3. ONE-POINT FUNCTION AND FREE TRAJECTORY PARTITION FUNCTION

3.1. Exact expressions. The tangent method consists in slightly modifying the NILP configu-
rations by moving the endpoint En of the n-th path r steps north to the position En(r ) = (0,n+
r ). This forces this path to exit the domain y ≤ n (hence the domain D) by a north-oriented
step at some x-coordinate ` between 0 and an . Let us denote by E(`) = (`,n) this “exit point"
(see figure 4). As in [DFG18], the so-called one-point function Hn,`(q) := Hn,`(q ; (ai )0≤i≤n)
corresponds precisely to the partition function for configurations where we let the n-th path
Pn stop at a fixed exit point E(`), normalized by the original partition function Zn(q) (so that
Hn,0(q) = 1 since E(0) = En). Here, the weight of the truncated path Pn is chosen to be qAn ,
where An denotes the number of unit squares in the region delimited by this truncated path
Pn and its projection along the y-axis. This corresponds to our notion of area “to the left of the
path", but note that it is no longer identical to the area “under the (truncated) path" whenever
`> 0 (the difference between the two areas being n`).

4Note thatR is an involution, hence setting (an+1+y−x, y) = (x̃, ỹ) amounts to setting (x, y) = (an+1+ ỹ−x̃, ỹ).
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En(r) = (0, n+ r)

E(`) = (`, n)

`

rY`,r(q)

Hn,`(q)

{
{

FIGURE 4. A modified NILP configuration where the n-th path ends at position
En(r ) = (0,n + r ). This forces this path to exit the domain y ≤ n by a north-oriented
step at E(`) = (`,n) for some ` between 0 and an . The (normalized) partition function
for the part of the configuration below the y = n line is given by Hn,`(q), including a
weight qAn corresponding to the area An to the left of the portion of the n-th path be-
low this line (colored domain). The partition function for the part of the configuration
above the y = n line is given by Y`,r (q), including a weight q` for the first (shaded) strip.

Denoting by Zn(q,`) := Zn(q,`; (ai )0≤i≤n) the partition function of these configurations
with exit point E(`), the one-point function Hn,` is simply obtained as the ratio

Hn,`(q) = Zn(q,`)

Zn(q)
= det

(
A(q,`)

)
det

(
A(q)

) ,

where the new LGV matrix A(q,`) differs from A(q) only in its last column:

Ai , j (q,`) =


Ai , j (q) for j < n ,

qn`

[
ai +n −`

n

]
q

for j = n .

Since A(q,`) and A(q) differ only in their last column, the matrix U (q,`) := L−1(q)A(q,`) dif-
fers also from U (q) = L−1(q)A(q) in its last column only, hence it is upper triangular, leading
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immediately to Hn,`(q) =Un,n(q,`)/Un,n(q), where

Un,n(q,`) =
n∑

k=0
L−1

n,k (q)Ak,n(q,`) = qn`
n∑

k=0

n−1∏
s=0

(q an −q as )

n∏
s=0
s 6=k

(q ak −q as )

[
ak +n −`

n

]
q

= qn`
n−1∏
s=0

(q an −q as )
∮
C(q ak |ak≥`)

d t

2iπ

n∏
s=0

1

t −q as

n∏
s=1

t q s−`−1

q s −1
.

Here the contour C(q ak |ak ≥ `) encircles the finite poles q ak of the integrand only for values of
k such that ak ≥ `. Other values of k (with ak < `) are indeed absent de facto from the sum in
the first line due to the vanishing of the q-binomial

[ak+n−`
n

]
q whenever ak < `.

This yields the desired expression

(3.1) Hn,`(q) = Un,n(q,`)

Un,n(q)
= qn`−n(n+1)/2

∮
C(q ak |ak≥`)

d t

2iπ

n∏
s=0

1

t −q as

n∏
s=1

(t q s−`−1) .

Note finally that the last product in the integrand vanishes for t = q a when a = `−n, · · · ,`−1
so that the contour C(q ak |ak ≥ `) may be extended to C(q ak |ak ≥ `−n) by also encircling poles
q ak with `−n ≤ ak < ` since these poles contribute 0 to the integral.

To obtain the full partition function for NILP configurations where the n-th path ends at the
shifted position En(r ) = (0,n + r ), we also need the partition function Y`,r (q) of the remaining
part of the n-th path, leading from E(`) = (`,n) to En(r ), hereafter referred to as the “free
trajectory" of the n-th path as it is not affected by the other paths. It is simply given by

Y`,r (q) = q`
[
`+ r −1

`

]
q

since the first step must be north-oriented (with weight q`) and the q-binomial precisely in-
corporates the desired weight qA for the area A to the left of the new portion of path lying
above the y = n +1 line (see figure 4).

The modified (normalized) partition function for configurations with a fixed shifted end-
point En(r ) for the n-th path is simply obtained by summing over all possible intermediate
positions E(`) of the exit point, namely given by

(3.2)
an∑
`=0

Hn,`(q)Y`,r (q) .

3.2. Scaling limit. The tangent method uses the most likely value ` for the exit point E(`), i.e.
that which maximizes the modified partition function (3.2) for fixed r . The relation between
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the optimal ` and r is easily obtained in the limit of large n by analyzing the asymptotics of
the various functions at hand under the appropriate scaling, namely

`= ξn, r = z n, ai = nα(i /n)

with ξ and z remaining finite, and where α(u) is an increasing piecewise differentiable func-
tion for u ∈ [0,1] such that its derivative, when defined, satisfies α′(u) ≥ 1 since the sequence
(ai )0≤i≤n is strictly increasing. To get a non-trivial large n limit, it is also necessary to adjust
the weight q by setting:

q = q1/n

with a finite q.
From the product expression (2.2) for the q-binomial, we immediately deduce the asymp-

totic equivalent:

Y`,r (q) ∼ enS1(ξ,z) ,

S1(ξ, z) =
∫ ξ

0
du Log

(
qu+z −1

qu −1

)
while, from the expression (3.1), we deduce

Hn,`(q) ∼
∮

d t

2iπ
enS0(t ,ξ) ,

S0(t ,ξ) =
(
ξ− 1

2

)
Log(q)+

∫ 1

0
du Log

(
t qu−ξ−1

t −qα(u)

)
.

(3.3)

Here the contour must encircle only those qα(u) such that α(u) ≥ ξ. For q > 1 (i.e. q > 1),
it must therefore surround the segment [qξ,qα(1)], hence cross the real axis anywhere in the
interval ]qξ−1,qξ[ (recall indeed that the poles q ak for `−n ≤ ak < ` do not contribute to the
integral) and in the interval ]qα(1),+∞[ (there are no poles larger than q an ). Similarly, for q< 1
(i.e. q < 1), it must surround the segment [qα(1),qξ], hence cross the real axis in the interval
]−∞,qα(1)[ and in the interval ]qξ,qξ−1[. At large n, the integral is estimated by a saddle-point
method, namely

Hn,`(q) ∼ enS0(t∗,ξ) ,

∂S0(t ,ξ)
∂t

∣∣∣
t=t∗

= 0 .

The optimal value of ξ for fixed z is then obtained by extremizing S0(t∗,ξ)+S1(ξ, z) with re-
spect to ξ at fixed z. The two (saddle-point and extremization) operations may be performed
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simultaneously by solving the two extremization conditions:

∂S0(t ,ξ)

∂t
= 0 =

∫ 1

0
du

{
qu−ξ

t qu−ξ−1
− 1

t −qα(u)

}
= 1

t Log(q)
Log

(
t q−qξ

t −qξ

)
−

∫ 1

0
du

1

t −qα(u)
,

∂(S0(t ,ξ)+S1(ξ, z))

∂ξ
= 0 = Log

(
q
qξ+z −1

qξ−1

)
− t Log(q)

∫ 1

0
du

qu−ξ

t qu−ξ−1
.

Using the definition (1.1) for the q-defomed moment-generating function of the distribution
α, namely

x(t ) = q
−t

∫ 1
0 du 1

t−qα(u) ,

the above equations reduce to

t q−qξ

t −qξ
x(t ) = 1 , q

qξ+z −1

qξ−1
x(t ) = 1 ,

which yield the parametric solution (ξ(t ), z(t )) for the optimal ξ at fixed z:

(3.4) qξ(t ) = t
qx(t )−1

x(t )−1
, qz(t ) = t +x(t )−1

t qx(t )
.

Since qξ(t ) and qz(t ) must be real, t must be real and therefore lie in the specific intervals men-
tioned above when discussing the intersection of the t-contour with the real axis. It is easily
checked that (qξ(t ) − t )/(t −qξ(t )−1) = −qx(t ) < 0 (since x(t ) > 0), hence t cannot lie in the in-
terval ]qξ−1,qξ[ for q> 1 (respectively ]qξ,qξ−1[ for q< 1). The solution above is thus valid only
for a parameter t in the range ]qα(1),+∞[ if q> 1 and for a parameter t in the range ]−∞,qα(1)[
whenever q< 1.

4. ARCTIC CURVE: FIRST PORTION

4.1. Geodesic equation for the free trajectory. So far we obtained in (3.4) the most likely exit
point E(` = n ξ) for a fixed shifted endpoint En(r = n z) in the scaling limit. The tangent
method relies on the assumption that the “geodesic path" connecting E(`) to En(r ), i.e. the
most likely free trajectory passing through these two points, is tangent to the arctic curve at
their meeting point. In other words, the n-th path (travelled backwards from En(r )) contin-
ues to follow a geodesic trajectory below the y = n line until it meets the other paths of the
NILP configuration tangentially along the arctic curve. Here it is important to note that, as
opposed to the case q = 1 considered in [DFG18], the geodesic path is no longer a straight line
but follows a certain curve depending on n, `, r and on the parameter q .

To compute the equation of this most likely free trajectory, let us consider the intersection
point between the path from (`,n +1) (recall that the first step after E(`) is a north-oriented
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step) to En(r ) = (0,n + r ) and, say, a vertical line x = m for m between 0 and `. If (m,n + p)
denotes this intersection point (with p between 1 and r ), the free trajectory partition function
reads

Y`,r (q) =
r∑

p=1
qm(p−1)

[
r −p +m

r −p

]
q

[
`−m +p −1

p −1

]
q

.

At large n, we use again scaling variables ` = ξn, m = µn, r = z n, p = φn and q = q
1
n to

write

Y`,r (q) ∼
∫ z

0
dφen S(φ,µ;ξ,z) ,

S(φ,µ;ξ, z) = µφLog(q)+
∫ z−φ

0
du Log

(
qu+µ−1

qu −1

)
+

∫ φ

0
du Log

(
qu+ξ−µ−1

qu −1

)
.

For fixed ξ and z, the most likely free trajectory φ=φ(µ) is obtained as the saddle-point of the
integrand via

∂S(φ,µ;ξ, z)

∂φ
= Log

(
qµ

qz−φ−1

qz−φ+µ−1

qφ+ξ−µ−1

qφ−1

)
= 0 ,

namely

(1−qξ)qφ+ (1−qz)qµ = 1−qz+ξ .

Using rescaled cartesian coordinates X = x/n, Y = y/n, this gives, for fixed ξ and z, the most
likely free (rescaled) trajectory (X ,Y ) = (µ,1+φ) by letting µ vary between 0 and ξ (or equiva-
lently letting φ vary between 0 and z). The above trajectory is equivalently rewritten as

(4.1)
1−qX

1−qξ
+ 1−qY −1

1−qz
= 1

with 0 ≤ X ≤ ξ (or equivalently 1 ≤ Y ≤ 1+ z). The above expression for the geodesic path
emphasizes the fact that the rescaled endpoints (X ,Y ) = (0,1+ z) (corresponding to En(r ))
and (X ,Y ) = (ξ,1) (corresponding to E(`)) lie on the curve, as wanted. The geodesic trajectory
is straightforwardly extended to values of X > ξ (Y < 1) and describes the most likely rescaled
position of the n-th path until it reaches the other paths.

4.2. Tangent method and arctic curve. We are now ready to apply the tangent method prin-
ciples: the arctic curve is obtained as the envelope of the above geodesic trajectories (4.1) for
varying endpoints (characterized by z in the scaling limit) and their associated most likely exit
point (characterized by ξ), i.e. for varying values of ξ and z related via the parametric equation
(3.4). Letting t vary in (3.4) yields a family of “tangent curves" with equation

1−qX

1−qξ(t )
+ 1−qY −1

1−qz(t )
= 1
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parametrized by t . Substituting the solution (3.4) for ξ(t ) and z(t ), we end up with the partic-
ularly simple equation for the tangent curves:

(4.2) x(t )qY + 1−x(t )

t
qX −1 = 0

with x(t ) as in (1.1). The envelope of these curves is the solution of the linear (in qX and qY )
system:

t x(t )qY + (1−x(t ))qX − t = 0 ,

(t x ′(t )+x(t ))qY −x ′(t )qX −1 = 0 ,

leading to the following explicit parametric equation for the arctic curve (X (t ),Y (t )) in terms
of the quantity x(t ) defined in (1.1):

(4.3) qX (t ) = t 2 x ′(t )

t x ′(t )+x(t )(1−x(t ))
, qY (t ) = t x ′(t )+1−x(t )

t x ′(t )+x(t )(1−x(t ))
,

with, as already discussed, t ∈]qα(1),+∞[ whenever q > 1 and t ∈]−∞,qα(1)[ whenever q < 1.
This proves a first instance of Theorem 1.1, for the indicated ranges of t .

For illustration, let us discuss the simple case where the sequence of starting points is taken
as ai = 2 i , i = 1, · · · ,n. This results in a linear functionα(u) = 2u and the function x(t ) is easily
computed from its general expression (1.1) as

x(t ) = 1

q

√
t −q2

t −1
.

The corresponding arctic curve (4.3) is displayed in figure 5 together with the associated family
of tangent curves (as given by (4.2)) for q= 3 and q= 1/3 respectively. Note that these tangent
curves are concave for q = 3 and convex for q = 1/3, which is consistent with a tendency for
a free trajectory with fixed endpoints to increase the area to its left when q > 1 and, on the
contrary, to decrease it whenever q < 1. Note also that the parameter t (in both (4.3) and
(4.2)) varies in ]q2,+∞[=]9,+∞[ for q = 3 and ]−∞,q2[=]−∞,1/9[ for q = 1/3. As apparent
in figure 5, restricting t to the above ranges builds only one portion of the arctic curve, its so-
called “right part". This is due to the particular geometry that we used to apply the tangent
method, namely by shifting north the endpoint En of the outermost path in the original NILP
formulation of the model. As explained in [DFG18], other geometries may be used and lead
to other portions of the arctic curve. Let us now discuss how to obtain these other portions in
practice.

5. OTHER PORTIONS OF THE ARCTIC CURVE

5.1. Left part of the arctic curve. Another portion of the arctic curve, hereafter called its “left
part" for obvious reasons, is obtained by considering the alternative formulation of Section 2.2
through NILP configurations with northeast- and east-oriented steps. Moving the endpoint
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FIGURE 5. The “right part" of the arctic (thick solid blue line) as given by (4.3)
for the appropriate domain of t (see text) for q = 3 (top) and q = 1/3 (bottom)
in the particular case α(u) = 2u. The extremities of this portion of curve are at
(Log(q(q+1)/2)/Log(q),1) and (2,0). We also indicated members of the family of tan-
gent curves (thin lines) whose envelope defines the portion of arctic curve at hand.

Ẽn = (an +1/2+n,n) of the n-th path r steps in the northeast direction to the position Ẽn(r ) =
(an +1/2+n+r,n+r ) forces this path to exit the domain y ≤ n by a northeast-oriented step at
some x-coordinate `+1/2 for some ` between n and an+n. Let us denote by Ẽ(`) = (`+1/2,n)
this exit point (see figure 6). We denote by H̃n,`(q) := H̃n,`(q ; (ai )0≤i≤n) the one-point function
corresponding, as before, to the (normalized) partition function for configurations where we
let the n-th path stop at a fixed exit point Ẽ(`) and where the weight of this truncated n-th path

is qÃn with Ãn the area to the left of the path as before. Note that the normalization condition
now implies that H̃n,an+n(q) = 1 since Ẽ(an +n) = Ẽn .

By a straightforward generalization of the argument leading to (2.6) based on the mapping
R, we immediately deduce the relation, valid for n ≤ `≤ an +n:

H̃n,`(q ; (ai )0≤i≤n) = Hn, ˜̀(q−1, (ãi )0≤i≤n) , ˜̀= an +n −`
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Ẽ(`) = (`+1/2, n)

`+1

r

Ẽn(r) = (an+1/2+n+r, n+r)

an0

˜̀

FIGURE 6. A modified NILP configuration where the endpoint of the n-th path is
moved to position Ẽn(r ) = (an + 1/2+n + r,n + r ). The partition function H̃n,`(q) for
the lower part of the configuration with exit point Ẽ(`) is obtained via some general
symmetry principle (see text). The partition function Ỹ`,r (q) of the upper part involves
the area of the shaded domain, divided for convenience into three regions. The left-
most shaded region is responsible for a weight qr (r−1)/2 and the central shaded region
for a weight qr (`+1). As for the rightmost part, which involves a summation over path
configurations from (`+3/2,n+1) to (an+1/2+n+r,n+r ) with area equal to the (indi-
cated in blue) rightmost shaded region, it yields, by a simple up-down reflection of the

path, to a weight
[ ˜̀+r−1

r−1

]
q = [ ˜̀+r−1

˜̀
]

q
.

with no q-dependent prefactor since the proportionality factor appearing in (2.6) eventually
drops out in the ratio defining the one-point functions (which are normalized partition func-
tions by definition, in particular H̃n,an+n = Hn,0 = 1 for any value of the parameter q and of
the sequence (ai )0≤i≤n). Here ˜̀ is nothing but the x-coordinate of R(Ẽ(`)). This leads directly
from the expression (3.1) to

H̃n,`(q) = q−n ˜̀+n(n+1)/2
∮
C(q−ãk |ãk≥ ˜̀)

d t

2iπ

n∏
s=0

1

t −q−ãs

n∏
s=1

(t q−s+ ˜̀−1)

= qn`−n(n−1)/2 q−nan

∮
C(q ak−an |ak≤`−n)

d t

2iπ

n∏
s=0

1

t −q an−s−an

n∏
s=1

(t q−s+an+n−`−1)

= qn`−n(n−1)/2
∮
C(q ak |ak≤`−n)

d t ′

2iπ

n∏
s=0

1

t ′−q an−s

n∏
s=1

(t ′ qn−s−`−1)

= qn`−n(n−1)/2
∮
C(q ak |ak≤`−n)

d t

2iπ

n∏
s=0

1

t −q as

n−1∏
s=0

(t q s−`−1) ,
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where we performed the change of variable t ′ = t q an (then called t again in the fourth line).
Note that this expression is very similar to that (3.1) for Hn,`(q). Apart from minor shifts in the
indices, the main difference comes from the contour of integration which now encircles those
q ak with ak ≤ `−n. As before, this contour may be extended5 to the q ak with ak ≤ ` since the
last product in the integral vanishes for t = q`, q`−1, · · · , q`−n+1.

We finally need the partition function of the free trajectory, easily computed as (see figure
6)

Ỹ`,r (q) = qr (`+1)+r (r−1)/2

[
˜̀+ r −1

˜̀

]
q

.

We deduce the asymptotic equivalent

Ỹ`,r (q) ∼ enS̃1(ξ,z) ,

S̃1(ξ, z) = z(ξ+ z/2)Log(q)+
∫ α(1)+1−ξ

0
du Log

(
qu+z −1

qu −1

)
,

while

H̃n,`(q) ∼
∮

d t

2iπ
enS0(t ,ξ) ,

with the same function S0(t ,ξ) as in (3.3) for Hn,`(q). Here however, the contour must encir-
cle only those qα(u) such that α(u) ≤ ξ−1. For q > 1, it must therefore surround the segment
[1,qξ−1], hence cross the real axis in the interval ]−∞,1[ (there are no poles less than q a0 = 1)
and in the interval ]qξ−1, qξ[ (the poles q ak for `−n < ak ≤ ` do not contribute to the inte-
gral). For q< 1, it must surround the segment [qξ−1,1], hence cross the real axis in the interval
]qξ,qξ−1[ and in the interval ]1,+∞[. As before, at large n, the integral is estimated by a saddle-
point method and the optimal value of ξ for fixed z is obtained from the two extremization
conditions:

∂S0(t ,ξ)

∂t
= 0 =

∫ 1

0
du

{
qu−ξ

t qu−ξ−1
− 1

t −qα(u)

}
,

∂(S0(t ,ξ)+ S̃1(ξ, z))

∂ξ
= 0 = Log

(
qz+1 qα(1)+1−ξ−1

qα(1)+1−ξ+z −1

)
− t Log(q)

∫ 1

0
du

qu−ξ

t qu−ξ−1
.

These equations reduce to:

t q−qξ

t −qξ
x(t ) = 1 , qz+1 qα(1)+1−ξ−1

qα(1)+1−ξ+z −1
x(t ) = 1

with x(t ) as in (1.1), hence the parametric solution (ξ(t ), z(t )):

(5.1) qξ(t ) = t
qx(t )−1

x(t )−1
, qz(t ) = t

q(t x(t )+qα(1)(1−x(t )))
.

5Using this extended domain, it is easily verified by a simple contour deformation that Hn,`(q)+H̃n,`−1(q) = 1
for all `. This remarkable identity has in fact a simple combinatorial explanation discussed in [DFG18].
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As before, the range t ∈]qξ−1,qξ[ for q> 1 (respectively t ∈]qξ,qξ−1[ for q< 1) is ruled out since
(qξ(t ) − t )/(t −qξ(t )−1) = −qx(t ) < 0. The parameter t is therefore now restricted to the range
t ∈]−∞,1[ whenever q> 1 (respectively t ∈]1,+∞[ whenever q< 1).

In order to obtain a new family of tangent curves, we must compute the equivalent of
equation (4.1) for the present geometry , i.e. find in the present setting the most likely free
(rescaled) trajectory (X ,Y ) from (ξ,1) (point Ẽ(`)) to (α(1)+z,1+z) (point Ẽn(r )). Fortunately,
a simple symmetry argument allows us to get the new equation for geodesics directly from
(4.1) by (i) applying to this latter equation the (rescaled) transformation R, i.e. the change
(X ,Y ) → (α(1)+Y −X ,Y ) and (ii) changing q→ 1/q. Indeed, in configurations enumerated by
Ỹ`,r (q), the varying part, for fixed `, of the weight of a free trajectory may be written as qA if A
denotes the area on top of the path (the rightmost blue shaded domain in figure 6). After the
mapping R, this area is still on top of the path rather than under it as in the computation lead-
ing to (4.1). This difference simply amounts to changing q → 1/q up to global factor (which
is fixed for fixed ` and r ). To summarize, we deduce, by applying (i) and (ii) to (4.1), the new
equation for geodesics in the present geometry:

1−q−(α(1)+Y −X )

1−q−(α(1)+1−ξ)
+ 1−q−(Y −1)

1−q−z
= 1 .

Picking for ξ and z the values ξ(t ) and z(t ) of (5.1), this yields a parametric equation for a new
family of tangent curves, namely after substitution:

x(t )qY + 1−x(t )

t
qX −1 = 0 .

Remarkably, we obtain for our new family the same expression as that obtained in (4.2) for the
family of tangent curves associated with the first portion (right part) of arctic curve. The result
for the second portion of arctic curve boils down again to equation (1.2) of Theorem 1.1, but
with now a different domain of variation for the parameter t , namely t ∈]−∞,1[ whenever
q> 1 and t ∈]1,+∞[ whenever q< 1.

The complete arctic curve, incorporating both the right and left parts, is displayed in figure
7 in the particular case α(u) = 2u.

5.2. Portions induced by freezing boundaries. Recall that, by construction, the scaling func-
tion α(u) is an increasing piecewise differentiable function for u ∈ [0,1], such that α′(u) ≥ 1
when α′(u) is defined. For a generic such function, the quantity x(t ) given by (1.1) is well-
defined and real only for t in the already encountered allowed domains, namely t ∈]−∞,1[∪
]qα(1),+∞[ for q > 1 and t ∈]−∞,qα(1)[∪]1,+∞[ for q < 1. This is due heuristically to the fact
that

∫ 1
0 du 1/(t −qα(u)) is generically not defined for t in the interval [qα(0),qα(1)] = [1,qα(1)] for

q> 1 (respectively [qα(1),qα(0)] = [qα(1),1] for q< 1) since qα(u) spans this interval when u varies
between 0 and 1. As a consequence, the arctic curve for a genericα(u) consists only of the two
portions computed so far, namely its left and right part above.
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FIGURE 7. The complete arctic curve including its right part (thick solid blue) and its
left part (thick red line) as given by (1.2) for the appropriate respective domains of t ,
here for q= 3 (top) and q= 1/3 (bottom) and in the particular case α(u) = 2u. We also
indicated members of the family of tangent curves (thin lines) whose envelope defines
the left part of the arctic curve.

As explained in [DFG18], there exists however some particular realizations of α(u) giving
rise to extra domains of t for which x(t ), as given by (1.1) (possibly through some analytic
continuation), remains well defined and real. This in turns leads through (1.2) to extra por-
tions of arctic curve by letting t span these new domains. This phenomenon appears in the
particular case of so-called “freezing boundaries", corresponding to a situation where the se-
quence (ai )0≤i≤n contains either macroscopic “gaps", i.e. has no element in one or several
intervals of the form �Am , Am +∆m� with ∆m ∝ n for large n, or, on the contrary, to a situation
where the sequence has “fully filled intervals", i.e. includes all the successive integer values of
one or several intervals �A′

m , A′
m +∆′

m�. Both situations correspond to freezing boundaries in
the sense that they induce domains just above the x-axis where the paths configurations are
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fully frozen, which serve as germs for larger frozen domains in the limit of large n, hence to
new portions of arctic curve (see [DFG18] for details).

In terms of the function α(u), the first situation corresponds to a discontinuity δm =∆m/n
at the value um = Am/n, namely:

α(u+
m)−α(u−

m) = δm .

In this case, the quantity
∫ 1

0 du 1/(t −qα(u)) is now well-defined for t ∈ [qα(u−
m ),qα(u+

m )] for q> 1

(respectively t ∈ [qα(u+
m ),qα(u−

m )] for q< 1) since this interval is no longer spanned by qα(u) when
u varies between 0 and 1. This in turns creates an extra domain of t on which x(t ) remains
well-defined and real positive.

The second situation corresponds instead to a function α(u) with derivative equal to 1 on
some segment (recall that, by definition, α′(u) ≥ 1 when defined), namely:

α′(u) = 1 for u ∈]u′
m ,u′

m +δ′m[ .

In this case, the quantity
∫ 1

0 du1/(1−qα(u)) has a logarithmic cut for t along [qα(u′
m ),qα(u′

m )+δ′m ]

for q > 1 (respectively [qα(u′
m )+δ′m ,qα(u′

m )] for q < 1) but, since α(u) = α(u′
m)+u −u′

m for u ∈
[u′

m ,u′
m +δ′m], we have along this interval a discontinuity∫ u′

m+δ′m

u′
m

du
1

t ± iε−qα(u)
= δ′m

t
− 1

t Log(q)

(
Log

(
qα(u′

m )+δ′m − t

t −qα(u′
m )

)
± iπ

)
which, when exponentiated in (1.1), contributes to x(t ) via a (multiplicative) factor

−q−δ′m qα(u′
m )+δ′m − t

t −qα(u′
m )

,

with a global sign e±iπ =−1, but with no cut in x(t ) along [qα(u′
m ),qα(u′

m )+δ′m ]. The quantity x(t )
remains thus well-defined and real for t in this interval, but it now takes a negative value.

In both cases of gaps or fully filled intervals, the extra domains of t leading to real values
for x(t ), once inserted in (1.2), create new pieces of curve and it was conjectured6 in [DFG18]
that these pieces are indeed actual additional portions of the arctic curve, separating the liq-
uid phase from new frozen domains directly induced by the boundary conditions (hence the
denomination “freezing boundaries"). Quite recently, this conjecture was proved in all gener-
ality by Debin and Ruelle in [DR18] for the q = 1 version of the model. There it was shown how
to extend the tangent method to arbitrary freezing boundaries and get these new portions of
arctic curve by performing some clever shift below the x-axis of the starting points for those
paths originally originating from one of the extremities of the freezing boundary. This nice
proof clearly extends to the case of arbitrary q . Many examples of freezing boundaries are

6A particular instance of this conjecture was actually proved in [DFG18] in the case of a fully filled interval
placed at the end of the sequence of starting points.
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α(1)

(α(1), 1)

0

1

(α(u), u)

FIGURE 8. The NILP configuration with highest weight when q →∞ for an arbitrary
strictly increasing sequence (ai )0≤i≤n whose large n limit is characterized by the func-
tion α(u). Each path is made of a single vertical north-oriented segment followed by a
single horizontal west-oriented segment. In rescaled coordinates, the change from ver-
tical to horizontal occurs at position (α(u),u) with u ∈ [0,1]. The corresponding curve
connects the point (0,0) to the point (α(1),1). The thick red curve and the thick blue
vertical segment are natural candidates for the q→∞ limit of the left and right parts of
the arctic curve respectively.

discussed in [DFG18] when q = 1 and we will now revisit some of them in the present design
incorporating a q-dependent weight.

6. THE q → 0 AND q →∞ LIMITS

6.1. Heuristic argument. It is interesting to look at the limit of the arctic curve when q → 0
(i.e. q→ 0) or q →∞ (i.e. q→∞). To address this question, a first heuristic approach consists
in identifying, in each case, the most probable limiting path configuration, i.e. that with the
highest weight. Indeed, let us recall the precise meaning of the left and right parts of the arctic
curve for finite q in terms of the original NILP configurations. The right part of the arctic curve
is the frontier between a liquid phase (below the curve) and a frozen region which is not visited
by any of the paths7. As for the left part, it separates the liquid phase from a frozen region in
which the paths all follow horizontal segments towards their respective endpoints8. Finding
the arctic curve when q → 0 or q → ∞ therefore boils down identifying the location where
these separations take place in the most probable limiting path configuration.

7For the second set of paths, this region corresponds instead to paths frozen along horizontal segments.
8For the second set of paths, this corresponds indeed to a region not visited by any of the paths.
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Let us start with the simplest q →∞ limit. Letting q tend to infinity selects, in the original
NILP setting, a configuration such that each path has the largest possible area compatible with
the sequence of origins Oi and endpoints Ei , i.e. is pushed as much as possible towards the
upper-right corner (an ,n). Clearly, as displayed in figure 8, this configuration is such that the
path Pi is made of a vertical segment of length i from Oi , followed by a horizontal segment of
length ai to Ei . The transition from vertical to horizontal takes place at position (ai , i ) and the
curve joining these transition points for increasing i is the limit of the region in which path are
frozen horizontally, hence a natural candidate for the q →∞ limit of the left part of the arctic
curve. In rescaled coordinates, this curve is parametrized by (α(u),u) for u ∈ [0,1] and goes
from (0,0) to (α(1),1) with slope 1/α′(u) (between 0 and 1) at x-coordinate α(u).

On the other hand, the vertical segment joining (α(1),1) to (α(1),0) defines the limit of the
region visited by the paths and is therefore a natural candidate for the q →∞ limit of the right
part of the arctic curve.

To summarize, we expect that the left and right parts of the arctic curve tend for q → ∞
to the above described limiting curve and segment, see figure 8. From this analysis, we also
expect that the liquid phase, which remains liquid as long as q remains finite, eventually crys-
tallizes right at q =∞ into a sequence of frozen vertical paths whose relative spacing is directly
measured by the function α(u).

Let us now come to the q → 0 limit. This now selects a configuration such that each path
has the smallest possible area compatible with the non-intersection constraint, i.e. is pushed
as much as possible towards the lower-left corner. As displayed in figure 9, this configuration
is best described if we now use the second set of paths made of east- and northeast-oriented
steps, as these paths must now be pushed as much as possible towards the upper left corner to
reduce the area on their left. Clearly, the path P̃i is then made a northeast-oriented segment
from Õi = (an−i+1/2,0) to the point (an−i+1/2+i , i ), followed by a horizontal segment towards
Ẽi . The curve joining the transition points (an−i +1/2+i , i ) for increasing i delimits the region
where the paths become horizontal, a criterion which, for the original NILP configuration,
corresponds instead to a region not visited by any of the paths. In other words, this curve is a
natural candidate for q → 0 limit of the right part of the arctic curve. In rescaled coordinates,
it is parametrized by (α(1−u)+u,u) for u ∈ [0,1] and connects (1,1) (for u = 1) to (α(1),0)
(for u = 0). In particular, it has a slope −1/(α′(1−u)−1) (between 0 and −∞) at x-coordinate
α(1−u)+u.

On the other hand, the outermost path P̃n starts, in the most probable configuration, by a
northeast-oriented segment from (1/2,0) to (n +1/2,n) which defines the limit of the region
where the original paths are frozen into horizontal lines and this segment is a natural candi-
date for the q → 0 limit of the left part of the arctic curve. In rescaled coordinates, it is nothing
but the segment joining (0,0) to (1,1).

To summarize, we expect that the right and left parts of the arctic curve tend for q → 0 to
the above described curve and segment, see figure 9. We also expect that, below the arctic
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α(1)

(1, 1)

0

1

(α(1−u) + u, u)

FIGURE 9. The NILP configuration with highest weight when q → 0 for an arbitrary
strictly increasing sequence (ai )0≤i≤n whose large n limit is characterized by the func-
tion α(u). The path configuration (solid thin blue) is the pre-image by the bijection of
Section 2.2 of a configuration of paths (dashed red) made of a single northeast-oriented
segment followed by a single horizontal east-oriented segment (we did not represent
here the rightmost parts of these horizontal segments as they carry no relevent infor-
mation). In rescaled coordinates, the location of the limit of the region not visited by
paths is given by (α(1−u)+u,u) with u ∈ [0,1]. This connects the point (1,1) to the
point (α(1),0). The thick red segment and the thick blue curve are natural candidates
for the q→ 0 limit of the left and right parts of the arctic curve respectively.

curve, the liquid phase which remains liquid as long as q > 0, crystallizes right at q = 0 into a
sequence of frozen paths whose shape is the same9 as that of the right part of the arctic curve
travelled downwards from the point (1,1), but are shifted southwest so as to start instead from
any point (1− v,1− v) (v ∈ [0,1]) along the left part of the arctic curve, until they eventually
reach the x-axis at (α(1− v),0). In particular, the (negative) slope of the paths is the same
along 45◦ oriented lines (see figure 9). Let us now validate the above heuristic arguments by a
more precise study of the limiting shape of the arctic curve, as given by (1.2), when q→∞ or
q→ 0.

6.2. Analytic treatment for q →∞. For q > 1, the left part of the arctic curve is obtained by
letting t vary in ]−∞,1[. Let us for convenience decompose this interval into

(6.1) ]−∞,1[ = ]−∞,−qα(1)]∪]−qα(1),−1[∪[−1,1[

and study the respective portions of arctic curve coming from each of the three subintervals
when q→∞. We start with the middle subinterval, which is best studied by setting t =−qα(τ)

9In other words, the paths are parametrized by (α(1−u)+u − v,u − v) for u ∈ [v,1], with v ∈ [0,1].
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with τ ∈]0,1[. From (1.1), we may then write

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1+qα(u)−α(τ)

=−Log(q)

(∫ τ

0
du

1

1+qα(u)−α(τ)
+

∫ 1

τ
du

1

1+qα(u)−α(τ)

)
∼

q→∞−Log(q) τ

since, for u ∈]0,τ[, we have α(u)−α(τ) < 0 hence the integrand in the first integral tends to
1, while for u ∈]τ,1[, α(u)−α(τ) > 0 and the integrand in the second integral tends to 0. This
yields

x(t ) ∼ q−τ , t x ′(t ) ∼−q−τ 1

α′(τ)

qX (t ) ∼ t 2x ′(t )

t x ′(t )+x(t )
∼ qα(τ) 1

α′(τ)−1
, qY (t ) ∼ 1

t x ′(t )+x(t )
∼ qτ

α′(τ)

α′(τ)−1
,

which implies at leading order

X (τ) =α(τ) , Y (τ) = τ .

When τ varies between 0 and 1, this gives precisely the curve announced in Section 6.1 (with
the identification τ = u). Here we assumed implicitly that α′(τ) > 1 but having α′(τ) = 1 at
isolated points would not cause any problem. On the other hand, havingα′(τ) = 1 along some
interval, which corresponds to a freezing boundary with a fully filled interval, would require
a more involved analysis. We will discuss such a case in Section 7.2 below. A interesting out-
come of our analysis is that, when q→∞, the left part of the arctic curve seems to be entirely
produced by the middle subinterval in the decomposition (6.1) above. This is indeed the case
since, as we will now show, the contribution of the subinterval ]−∞,−qα(1)[ reduces to a sin-
gle point (α(1),1) at the right extremity of the left part of the arctic curve while that of the
subinterval ]−1,1[ reduces to the point (0,0) at its left extremity. For t ∈]−∞,−qα(1)[, we set
t =−qα(1)+τ with τ> 0 and get

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1+qα(u)−α(1)−τ ∼
q→∞−Log(q)

since for u ∈ [0,1], we have α(u)−α(1) ≤ 0 hence the integrand tends to 1. We deduce x(t ) ∼
q−1. By differentiation, we also have

t x ′(t )

x(t )
=−Log(q)

∫ 1

0
du

qα(u)−α(1)−τ(
1+qα(u)−α(1)−τ)2 ∼

q→∞−Log(q) q−τ
∫ 1

0
duqα(u)−α(1) ∼

q→∞− 1

α′(1)
q−τ
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since the last integral vanishes10 as 1/(α′(1)Log(q)). This now yields

qX (t ) ∼ t 2x ′(t )

x(t )
∼ qα(1) 1

α′(1)
, qY (t ) ∼ 1

x(t )
∼ q ,

hence (X (t ),Y (t )) tends to (α(1),1) for all t ∈]−∞,−qα(1)[. For the last subinterval t ∈]−1,1[,
we set t =±qτ with τ< 0 and obtain

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1∓qα(u)−τ ∼
q→∞±Log(q)qτ

∫ 1

0
duq−α(u) ∼

q→∞± 1

α′(0)
qτ

hence x(t ) ∼ 1± 1
α′(0)q

τ and

t x ′(t )

x(t )
=−Log(q)

∫ 1

0
du

∓qα(u)−τ(
1∓qα(u)−τ)2

= Log(x(t ))+Log(q)
∫ 1

0
du

1(
1∓qα(u)−τ)2

so that
t x ′(t )

x(t )
−Log(x(t )) ∼

q→∞ Log(q)q2τ
∫ 1

0
duq−2α(u) ∼

q→∞
1

2α′(0)
q2τ .

Using Log(x(t )) = (x(t )−1)+O
(
(x(t )−1)2

)
with x(t ) = 1+O(qτ), we now get t x ′(t )+ x(t )(1−

x(t )) = O
(
q2τ

)
, t x ′(t )+ (1− x(t )) = O

(
q2τ

)
and t 2 x ′(t ) = O

(
q2τ

)
, which implies that qX (t ) and

qY (t ) tend to finite constants, hence (X (t ),Y (t )) tends to (0,0) for all t ∈]−1,1[. To summarize,
the two extremal subintervals in (6.1) contribute only to the two points at the extremities of
the left part of the arctic curve.

Let us now discuss the limiting shape of the right part of the arctic curve, coming from
values of t in the range ]qα(1),+∞[. Writing t = qα(1)w with w > 1, we may write

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1−w−1qα(u)−α(1)

so the calculation seems at first very similar to that for the interval ]−∞,−qα(1)[ and we could
be tempted to conclude that this again leads to a unique limiting point (α(1),1). This rea-
soning however ignores the fact that the denominator in the integrand may remain small for
values of w close enough to 1. As we shall now see, there exists indeed an appropriate domain
of w close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if w−1 does
not scale properly with q) is modified and depends on w . More precisely, writing

Log(x(t )) =−Log(q)

(
1+

∫ 1

0
du

qα(u)−α(1)

w − qα(u)−α(1)

)
,

10This may be shown by a saddle point method upon setting u = 1−η/Log(q) so that the integral has asymp-
totic value (1/Log(q))

∫ ∞
0 dηe−α

′(1)η = 1/(α′(1)Log(q)).
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the last integral may be evaluated by a saddle point method upon setting u = 1−η/Log(q). The
asymptotic value of this additional correction reads

1

Log(q)

∫ ∞

0
dη

e−α′(1)η

w − e−α′(1)η
=− 1

α′(1)

Log
(
1− 1

w

)
Log(q)

,

which is finite when w is chosen so that (1−1/w) = q−ρ, i.e. w = 1/(1−q−ρ) for some positive
ρ. Otherwise stated, we have asymptotically

x(t ) ∼
q→∞ q−1

(
1− 1

t q−α(1)

) 1
α′(1)

.

with a non trivial limiting value when we take t = qα(1)/(1−q−ρ). In this case, we obtain di-
rectly11 from (1.2):

qX (t ) ∼ qα(1) , qY (t ) ∼ q
max

(
1−ρ

(
1− 1

α′(1)

)
,0

)
which leads to

X (t ) =α(1) , Y (t ) = 1−ρ
(
1− 1

α′(1)

)
, 0 < ρ ≤ α′(1)

α′(1)−1
.

This parametric curve is nothing but the vertical segment from (α(1),1) to (α(1),0), which
confirms our heuristic result for the q → ∞ limit of the right part of the arctic curve. Note
that the above result requires α′(1) > 1. For α′(1) = 1, the right part of the arctic curve reduces
instead to the single point (α(1),1). We will see such an example in Section 7.4 below.

6.3. Analytic treatment for q → 0. For q< 1, the right part of the arctic curve is now obtained
by letting t vary in ]−∞,qα(1)[ and we decompose this interval into

(6.2) ]−∞,qα(1)[ = ]−∞,−1]∪]−1,−qα(1)[∪[−qα(1),qα(1)[

to better study the respective portions coming from each of the three subintervals when q→ 0.
Again the non-trivial contribution is that of the middle subinterval, best expressed by setting
t =−qα(τ) with τ ∈]0,1[. We have indeed

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1+qα(u)−α(τ)

=−Log(q)

(∫ τ

0
du

1

1+qα(u)−α(τ)
+

∫ 1

τ
du

1

1+qα(u)−α(τ)

)
∼

q→0
−Log(q) (1−τ)

11It is indeed easily verified that t 2x ′(t ) ∼ q
α(1)−1+ρ

(
1− 1

α′(1)

)
, t x ′(t )+(1−x(t )) ∼ q

max
(
0,−1+ρ

(
1− 1

α′(1)

))
and t x ′(t )+

x(t )(1−x(t )) ∼ q
−1+ρ

(
1− 1

α′(1)

)
.
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since, for u ∈]0,τ[, we have α(u)−α(τ) < 0 hence the integrand in the first integral tends to
0, while for u ∈]τ,1[, α(u)−α(τ) > 0 and the integrand in the second integral tends to 1. This
yields

x(t ) ∼ qτ−1 , t x ′(t ) ∼ qτ−1 1

α′(τ)

qX (t ) ∼ t 2x ′(t )

−(x(t ))2
∼ qα(τ)+1−τ 1

α′(τ)
, qY (t ) ∼ t x ′(t )−x(t )

−(x(t ))2
∼ q1−τα

′(τ)−1

α′(τ)
,

which implies at leading order

X (τ) =α(τ)+1−τ , Y (τ) = 1−τ .

When τ varies between 0 and 1, this gives precisely the curve announced in Section 6.1 (with
the identification τ= 1−u). Let us now discuss the contribution of the subintervals ]−∞,−1[
and ]−qα(1),qα(1)[. For t ∈]−∞,−1[, we set t =−qτ with τ< 0 and get

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1+qα(u)−τ ∼
q→0

−Log(q)

since for u ∈ [0,1], we have α(u) ≥ 0 hence the integrand tends to 1. We deduce x(t ) ∼ q−1. By
differentiation, we also have

t x ′(t )

x(t )
=−Log(q)

∫ 1

0
du

qα(u)−τ(
1+qα(u)−τ)2 ∼

q→0
−Log(q) q−τ

∫ 1

0
duqα(u) ∼

q→0

1

α′(0)
q−τ

since the last integral vanishes12 as −1/(α′(0)Log(q)). This now yields

qX (t ) ∼ t 2x ′(t )

−(x(t ))2
∼ q

1

α′(0)
, qY (t ) ∼ 1

x(t )
∼ q ,

hence (X (t ),Y (t )) tends to (1,1) for all t ∈] −∞,−1[. For the other subinterval, i.e. for t ∈
]−qα(1),qα(1)[, we set t =±qα(1)+τ with τ> 0 and obtain

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1∓qα(u)−α(1)−τ ∼
q→0

±Log(q)qτ
∫ 1

0
duqα(1)−α(u) ∼

q→0
∓ 1

α′(1)
qτ

hence x(t ) ∼ 1∓ 1
α′(1)q

τ and

t x ′(t )

x(t )
=−Log(q)

∫ 1

0
du

∓qα(u)−α(1)−τ(
1∓qα(u)−α(1)−τ)2

= Log(x(t ))+Log(q)
∫ 1

0
du

1(
1∓qα(u)−α(1)−τ)2

12This again is shown by a saddle point method upon setting u =−η/Log(q) so that the integral has asymptotic
value −(1/Log(q))

∫ ∞
0 dηe−α

′(0)η =−1/(α′(0)Log(q)).
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so that
t x ′(t )

x(t )
−Log(x(t )) ∼

q→0
Log(q)q2τ

∫ 1

0
du q2(α(1)−α(u)) ∼

q→0
− 1

2α′(1)
q2τ .

Using Log(x(t )) = (x(t )−1)+O
(
(x(t )−1)2

)
with x(t ) = 1+O(qτ), we now get t x ′(t )+ x(t )(1−

x(t )) =O
(
q2τ

)
, t x ′(t )+ (1−x(t )) =O

(
q2τ

)
and t 2 x ′(t ) =O

(
qα(1)+2τ

)
, which implies that qX (t ) ∼

qα(1) while qY (t ) tends to a finite constant, hence (X (t ),Y (t )) tends to (α(1),0) for all t ∈]−1,1[.
We end up with the expected result that the two extremal subintervals in (6.2) contribute only
to the two extremities of the right part of the arctic curve.

Let us conclude our discussion with the limiting shape of the left part of the arctic curve,
corresponding to values of t in the range ]1+∞[. Writing directly

Log(x(t )) =−Log(q)
∫ 1

0
du

1

1− t−1qα(u)

with t > 1, we again have to deal with values of t close enough to 1 so that the denominator in
the integral remains small. As in the previous section, there exists an appropriate domain of t
close to 1 for which the asymptotic value of the integral (otherwise equal to 1 if t −1 does not
scale properly with q) is modified. Writing

Log(x(t )) =−Log(q)

(
1+

∫ 1

0
du

qα(u)

t − qα(u)

)
,

the last integral may be evaluated by a saddle point method upon setting u = −η/Log(q) and
its asymptotic value reads

− 1

Log(q)

∫ ∞

0
dη

e−α′(0)η

t − e−α′(0)η
= 1

α′(0)

Log
(
1− 1

t

)
Log(q)

,

which leads eventually to

x(t ) ∼
q→0

q−1
(
1− 1

t

)− 1
α′(0)

.

Setting t = 1/(1−qρ) with ρ > 0, we obtain directly13 from (1.2):

qX (t ) ∼ q
max

(
1−ρ

(
1− 1

α′(0)

)
,0

)
, qY (t ) ∼ q

max
(
1−ρ

(
1− 1

α′(0)

)
,0

)
which leads to

X (t ) = 1−ρ
(
1− 1

α′(0)

)
, Y (t ) = 1−ρ

(
1− 1

α′(0)

)
, 0 < ρ ≤ α′(0)

α′(0)−1
.

This parametric curve is nothing but the segment joining (0,0) to (1,1), which confirms our
heuristic result for the q → 0 limit of the left part of the arctic curve. Note that the above result

13It is easily verified that t 2x ′(t ) ∼ q
−1−ρ

(
1+ 1

α′(0)

)
, t x ′(t )+ (1− x(t )) ∼ q

−1−ρ
(
1+ 1

α′(0)

)
and t x ′(t )+ x(t )(1− x(t )) ∼

q
min

(
−1−ρ

(
1+ 1

α′(0)

)
,−2−ρ 2

α′(0)

)
.
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FIGURE 10. The left (red) and right (blue) portions of the arctic curve for a piecewise
linear α(u) with k = 3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 4, here for q = 5 and
q= .2.

requires α′(0) > 1. For α′(0) = 1, the left part of the arctic curve reduces instead to the single
point (1,1). We will see such an example in Section 7.4 below.

7. EXAMPLES

A quite general situation, which displays most of the interesting phenomena for the arctic
curve, corresponds to the case when α(u) is piecewise linear. More precisely, we demand that
α(u) is made of k linear pieces, i.e. satisfies α(0) = 0, has slope p1 on [0,γ1], p2 on [γ1,γ1+γ2],
. . . , pi on [γ1 + ·· · +γi−1,γ1 + ·· · +γi ] for i up to k. Here the slopes pi of the various pieces
satisfy pi ≥ 1, i = 1, · · · ,k (to ensure α′(u) ≥ 1 when defined), and the widths γi of these pieces
add up to

∑k
i=1γi = 1. In short, we take:

α(u) = pi u +
i−1∑
j=1

(p j −pi )γ j , for u ∈ [γ1 +·· ·+γi−1,γ1 +·· ·+γi ]

for i = 1, · · · ,k.
Note that the case of frozen boundaries of Section 5.2 may be realized in the present setting:

the case of a gap δm inα(u) for u = um = γ1+·· ·+γm−1 is obtained by sending simultaneously
pm →∞ and γm → 0, keeping the product pmγm = δm finite. As for the case of a fully filled
interval between u′

m = γ1+·· ·+γm−1 and u′
m+δ′m = γ1+·· ·+γm , it is obtained by simply taking

pm = 1 and γm = δ′m . Such cases will be discussed in Sections 7.2 and 7.3 below.

Returning to the case of arbitrary pi ’s, we introduce for convenience the notation

θi :=α
(

i∑
j=1

γ j

)
=

i∑
j=1

p j γ j , , i = 1, · · · ,k
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θi−1 θi

(pi − 1)γi

γi

piγi

(1, 1)

θkθi−1 θi
piγi

FIGURE 11. The configuration with highest weight when q → 0 for a sequence
(ai )0≤i≤n whose large n limit is a piecewise linear function α(u) as defined in the text.
In rescaled coordinates, the outermost path follows a piecewise linear curve from (1,1)
to (θk ,0) made of a succession of segments of slope −1/(pi −1). Each segment is the
top side of a 45◦ strip in which all the paths have the same slope as the segment. The
thick red segment and the thick blue curve are the q→ 0 limit of the left and right parts
of the arctic curve respectively.

together with θ0 := 0 by convention. We immediately obtain from (1.1) the expression

x(t ) = q−1
k∏

i=1

(
t −qθi

t −qθi−1

) 1
pi

=


q−1

k∏
i=0

(
1− t−1qθi

) 1
pi

− 1
pi+1 for t < 0 or

{
t > 1 (q< 1)

t > qθk (q> 1)

q−1
k∏

i=0

(
t−1qθi −1

) 1
pi

− 1
pi+1 for

{
0 < t < qθk (q< 1)
0 < t < 1 (q> 1)

(7.1)

with the convention that p0 = pk+1 =∞. The alternative expressions of the second line em-
phasize that x(t ) is well defined and real positive for the indicated domain of t . Knowing x(t ),
the two generic, left and right, portions of arctic curve are obtained from the general paramet-
ric expression (1.2) with t ∈]−∞,1[∪]qθk ,+∞[ for q > 1 and t ∈]−∞,qθk [∪]1,+∞[ for q < 1
since α(1) = θk . Figure 10 gives an example of such arctic curves in some particular case with
k = 3 linear pieces, for two different values of q (one larger and one smaller than 1).

7.1. A look at the q → 0 and q →∞ limits. Here again, it is interesting to have a look at the de-
generate limit of the arctic curve when q → 0 or q →∞. Figure 11 displays the configuration
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θi−1 θi

piγi

γi

θk

(θk, 1)

FIGURE 12. The configuration with highest weight when q → ∞ for a sequence
(ai )0≤i≤n whose large n limit is a piecewise linear function α(u) as defined in the text.
Each path is made of a single vertical north-oriented segment followed by a single hori-
zontal west-oriented segment. In rescaled coordinates, the location of the change from
vertical to horizontal follows a piecewise linear curve from (0,0) to (θk ,1) made of a
succession of segments of slope 1/pi . Each segment is the top side of a vertical strip
in which all the paths are separated by the same spacing. The thick red curve and the
thick blue vertical segment are the q→∞ limit of the left and right parts of the arctic
curve respectively.

selected for q → 0, where each path has the smallest possible area to its left. This configu-
ration is clearly made of paths which remain “parallel" with slope −1/(pi − 1) (i.e. are made
of a sequence of blocks consisting in pi −1 west-oriented steps followed by a north-oriented
step) within 45◦ strips whose base are, after rescaling, the segments [θi−1,θi ] for i = 1, · · · ,k.
In particular, in rescaled coordinates, the outermost path, travelled backwards, is horizontal
from (0,1) to (1,1) and then follows a piecewise linear curve from (1,1) to (θk ,0) made of a
succession of segments of slope −1/(pi −1) for i = 1, · · · ,k. From the discussion of Section 6,
this latter curve corresponds to the q → 0 limit of the right part of the arctic curve while the
segment joining (0,0) to (1,1), constitutes its left part. Below the arctic curve, the liquid phase
which remains liquid as long as q > 0, crystallizes right at q = 0 into a sequence of 45◦ macro-
scopic strips with a prescribed frozen path orientation within each strip, as displayed in figure
11 .

The q →∞ limit now selects a configuration displayed in 12, such that each path has the
largest possible area to its left. This configuration is made of a vertical segments of length i
from Oi , followed by a horizontal segments of length ai to Ei . In rescaled coordinates, the pas-
sage from vertical to horizontal follows a piecewise linear curve from (0,0) to (θk ,1) made of a



34 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER
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k∑
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piγiθi−1 θi
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FIGURE 13. Top: a schematic picture of the q→ 0 limiting shape of the left (red) and
right (blue) parts of the arctic curve for a piecewise linear α(u). The liquid phase below
the curve eventually crystallizes at q = 0 in a configuration as in figure 11. Bottom:
an example of approach of this limit by letting q take smaller and smaller values (here
q = 10−2, 10−3 and 10−4) for k = 3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 4. The
different colors of the right part correspond to the contribution of the various intervals
of the parameter t in the decomposition (7.2).

succession of segments of slope 1/pi . This path defines the q →∞ limit of the left part of the
arctic curve while the segment joining (θk ,1) to (θk ,0) now defines its right part. Here again,
the liquid phase, which remains liquid as long as q remains finite, is expected to crystallize
right at q =∞ into a sequence of macroscopic vertical strips filled with frozen vertical paths,
with a prescribed path spacing within each strip (see figure 12).

We may also obtain the limiting shape of the arctic curve from its analytic expression, as
given by (1.2) for the particular x(t ) of equation (7.1), taken in the limit q→ 0 or q→∞. We
will not present the details of this analysis since we already performed it in all generality in
Section 6 but we will still describe its outcome for illustration.
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For q→ 0, the right part of the arctic curve is obtained by letting t vary in ]−∞,qθk [, naturally
decomposed into

(7.2) ]−∞,qθk [= ]−∞,−1]∪
(

k∏
i=1

[−qθi−1 ,−qθi ]

)
∪ [−qθk ,qθk [ .

As we know, the two extremal subintervals ]−∞,−1] and [−qθk ,qθk [ contribute only to the ex-
tremal points (1,1) and (θk ,0) of the right part of the arctic curve, whose core is entirely created
by the k intermediate subintervals [−qθi−1 ,−qθi ], i = 1, · · · ,k. From the result of Section 6, we
also know that each such subinterval [−qθi−1 ,−qθi ] is responsible for a portion of arctic curve
parametrized by (α(τ)+1−τ,1−τ) for τ such that in α(τ) ∈ [θi−1,θi ], i.e. τ ∈ [

∑i−1
j=1γ j ,

∑i
j=1γ j ].

This now corresponds to a linear portion of arctic curve which is a segment of slope −1/(pi −1)
joining the points Mi−1 and Mi with coordinates

Mi :=
(

1+
i∑

j=1
(p j −1)γ j ,1−

i∑
j=1

γ j

)
=

(
θk −

k∑
j=i+1

(p j −1)γ j ,
k∑

j=i+1
γ j

)
.

The concatenation of these segments for i = 1, · · · ,k produces the desired piecewise linear
curve from (1,1) to (θk ,0) displayed in figure 13. As for the left part of the arctic curve, it tends
as we know to the segment joining (0,0) to (1,1).

The way the arctic curve approaches its limit is illustrated in figure 13 which displays in
some particular case the actual arctic curves for decreasing values of q. A particular empha-
sis was put on the contribution of the various subintervals so as to follow their deformation
toward the associated limiting portion of arctic curve.

For q→∞, the left part of the arctic curve is now obtained by letting t vary in ]−∞,1[ which
we may decompose into

(7.3) ]−∞,1[= ]−∞,−qθk ]∪
(

k∏
i=1

[−qθi ,−qθi−1 ]

)
∪ [−1,1[ .

Apart from the external subintervals ]−∞,−qθk ] and [−1,1[ responsible for the extremities
(θk ,1) and (0,0) of the left part if the arctic curve, the respective portions of arctic curve created
by the k intermediate subintervals [−qθi ,−qθi−1 ], i = 1, · · · ,k are now parametrized by (α(τ),τ)
for τ ∈ [

∑i−1
j=1γ j ,

∑i
j=1γ j ]. These are now segments of slope 1/pi joining the points Ni−1 and

Ni with coordinates

Ni :=
(
θk −

k∑
j=i+1

p jγ j ,1−
k∑

j=i+1
γ j

)
=

(
i∑

j=1
p jγ j ,

i∑
j=1

γ j

)
.

The concatenation of these segments for i = 1, · · · ,k produces the desired piecewise linear
curve from (0,0) to (θk ,1) displayed in figure 14, while the segment joining the point (θk ,1) to
the point (θk ,0) forms the right part of the arctic curve. Here again, we illustrate in figure 14
how the arctic curve approaches its limit for increasing values of q. As we shall now discuss,
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FIGURE 14. Top: a schematic picture of the q→∞ limiting shape of the left (red) and
right (blue) parts of the arctic curve for a piecewise linear α(u). The liquid phase below
the curve eventually crystallizes at q=∞ in a configuration as in figure 12. Bottom: an
example of approach of this limit by letting q take larger and larger values (here q= 20,
100 and 1000) for k = 3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 4. The different colors
of the left part correspond to the contribution of the various intervals of the parameter
t in the decomposition (7.3).

the above results still hold in the presence of frozen boundaries with pm = 1 or ∞ for some m,
with moreover interesting new phenomena.

7.2. Example of freezing boundary resulting from a fully filled interval. The case of a freez-
ing boundary resulting from a fully filled interval is encountered within the framework of a
piecewise liner α(u) in the particular case where pm = 1 for some m in �1,k�. Here we assume
for simplicity that m 6= 1 and m 6= k. The case p1 = 1 (respectively pk = 1), referred to as "freez-
ing the left (respectively the right) edge" in [DFG18], is indeed special and would deserve a
more subtle treatment. For pm = 1, the expression (7.1) is now well defined for t ∈]qθm−1 ,qθm [
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FIGURE 15. Top: a schematic picture of the q→ 0 limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a
fully filled interval. The condition pm = 1 gives rise to a vertical segment within the
right part of the curve. Bottom left: the arctic curve for finite q (here q= 10−2) also has
a new (orange) portion below which the paths are frozen (represented here for k = 3,
m = 2 with γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 1). Bottom right: for decreasing
q (here q = 10−2, 10−3 and 10−5), the frozen phase fills the 45◦ strip whose edge is the
above vertical segment (dashed region in the top figure).

whenever q> 1 (respectively t ∈]qθm ,qθm−1 [ whenever q< 1), with expression

(7.4) x(t ) =


−q−1

m−1∏
i=1

(
t−qθi

t−qθi−1

) 1
pi ×

(
qθm−t

t−qθm−1

)
×

k∏
i=m+1

(
qθi −t
qθi−1−t

) 1
pi q> 1

−q−1
m−1∏
i=1

(
qθi −t
qθi−1−t

) 1
pi ×

(
t−qθm

qθm−1−t

)
×

k∏
i=m+1

(
t−qθi

t−qθi−1

) 1
pi q< 1

displaying its negative real value. This in turn creates for finite q a new portion of arctic curve
emerging above the segment [θm−1,θm] (see for instance the bottom left part of figure 15 or
16) below which the path configuration is frozen.
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FIGURE 16. Top: a schematic picture of the q→∞ limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a
fully filled interval. The condition pm = 1 gives rise to a 45◦ segment within the left
part of the curve. Bottom left: the arctic curve for finite q (here q = 5) also has a new
(orange) portion below which the paths are frozen (represented here for k = 3, m = 2
with γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 1). Bottom right: for increasing q (here
q = 5, 50 and 10000), the frozen phase fills the vertical strip whose upper edge is the
above 45◦ segment (dashed region in the top figure).

Looking at the q→ 0 limit, the discussion of the previous section still holds14 and now leads
for the right part of the arctic curve to a portion with slope −1/(pm −1) = −∞, i.e. a vertical
segment joining Mm−1 to Mm (which now have the same X -coordinate 1+∑m−1

j=0 (p j −1)γ j ).
More interestingly, the new frozen region below the new portion of arctic curve is deformed

14The actual calculation when pm = 1 is slightly more subtle than for for pm 6= 1 since, when estimating qY (t )

via (1.2), the dominant part t x ′(t )− x(t ) of its numerator cancels exactly at leading order and the calculation
must be pushed to the next order (see a similar discussion just below). The corresponding portion of arctic curve
is nevertheless not affected by this subtlety.



TANGENT METHOD FOR q-WEIGHTED PATHS 39

so as to fill entirely the 45◦ strip whose edge is the above vertical segment (dashed domain in
figure 15). To understand this property, we start by parametrizing t ∈]+qθm ,+qθm−1 [ as t = qτ

with τ ∈]θm−1,θm[ and plug this value in (7.4). This yields

x(t ) ∼
q→0

−q−1+∑m−1
i=1

θi −θi−1
pi

+τ−θm−1
(
1+O

(
qmin(τ−θm−1,θm−τ)

))
=−q

∑m−1
i=1 γi−1+τ−θm−1

(
1+O

(
qmin(τ−θm−1,θm−τ)

))
→∞ .

This also implies t x ′(t ) ∼ −q
∑m−1

i=1 γi−1+τ−θm−1
(
1+O

(
qmin(τ−θm−1,θm−τ)

))
so that t x ′(t )− x(t ) ∼

O
(
q

∑m−1
i=1 γi−1+τ−θm−1+min(τ−θm−1,θm−τ)

)
which tends to infinity since the exponent varies between∑m−1

i=1 γi −1 and
∑m

i=1γi −1 which are both negative. We deduce

qX (t ) ∼ t 2x ′(t )

−(x(t ))2
∼ q1−∑m−1

i=1 γi+θm−1

qY (t ) ∼ t x ′(t )−x(t )

−(x(t ))2
∼ q1−∑m−1

i=1 γi−τ+θm−1+min(τ−θm−1,θm−τ) ,

hence

X (t ) = 1−
m−1∑
i=1

γi +θm−1 = 1−
m−1∑
i−1

(pi −1)γi

Y (t ) = 1−
m−1∑
i=1

γi +θm−1 −τ+min(τ−θm−1,θm −τ)

= 1−
m−1∑
i=1

γi +min(0,θm−1 +θm −2τ)

with min(0,θm−1 + θm − 2τ) varying from 0 to θm−1 − θm = −γm . This curve is precisely the
vertical segment [Mm−1, Mm] on the right of the dashed domain in figure 15. The new portion
of arctic curve therefore sticks to this segment when q→ 0 but this should still be reconciled
with the fact that for t exactly equal to qθm (respectively to qθm−1 ), we have (X (t ),Y (t )) = (θm ,0)
(respectively (θm−1,0)), as easily verified from (7.4) and (1.2). As we shall now see, the connec-
tion from these points to the segment [Mm−1, Mm] is done by the two segments at 45◦ which
delimit the dashed domain of figure 15. These new segments arise from values of t in the
immediate vicinity of qθm (respectively of qθm−1 ) which are not treated properly by the above
estimate. For t → qθm , a more precise estimate of x(t ) is

x(t ) ∼
q→0

−q−1+∑m−1
i=1

θi −θi−1
pi

(
t −qθm

qθm−1

)(
qθm

t −qθm

) 1
pm+1

=−q
∑m

i=1γi−1
(

t −qθm

qθm

)1− 1
pm+1
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which allows to view the contribution of the immediate vicinity of qθm by setting t = qθm (1+qρ)
for some positive ρ. After some straightforward manipulations, this yields

X (t ) = θm +max

(
1−

m∑
i=1

γi −ρ2pm+1 −1

pm+1
,0

)
, Y (t ) = max

(
1−

m∑
i=1

γi −ρ2pm+1 −1

pm+1
,0

)
which is the segment from (θm ,0) (for ρ = (1−∑m

i=1γi )pm+1/(2pm+1 − 1) or larger) to Mm =
(θm +1−∑m

i=1γi ,1−∑m
i=1γi ) (for ρ = 0). In other words, the immediate vicinity t = qθm pro-

duces the 45◦ lower segment bordering the frozen dashed region in figure 15. A similar analysis
for the immediate vicinity of qθm−1 would now produce the 45◦ upper segment bordering the
frozen region and connecting (θm−1,0) to Mm−1.

The fact that the new portion of arctic curve and the right part merge along the vertical seg-
ment [Mm−1, Mm] when q→ 0 means that the liquid phase narrows and forms a strait around
the segment for very small q (see figure 15, bottom right) before it eventually crystallizes right
at q= 0.

The discussion of the q → ∞ limit is quite similar and now leads for the left part of the
arctic curve to a portion with slope 1/pm = 1, i.e. a 45◦ segment joining Nm−1 to Nm . More
interestingly, the new frozen region below the new portion of arctic curve is now deformed so
as to fill entirely the vertical strip below [Nm−1, Nm] (dashed domain in figure 16). The new
portion of arctic curve and the left part therefore merge along the segment [Nm−1, Nm] when
q → ∞. In other words, the liquid phase narrows around the segment for very large q (see
figure 16, bottom right) before it eventually crystallizes right at q=∞.

7.3. Example of freezing boundary resulting from a gap. The case of a freezing boundary
resulting from a gap is also encountered within the framework of a piecewise linear α(u), now
in the case where pm →∞, γm → 0 with δm = pmγm finite, for some m in �2,k −1� (again we
avoid the cases m 6= 1 and m 6= k which are more subtle). For pm = ∞, the expression (7.1)
is well defined also for t ∈]qθm−1 ,qθm [ whenever q > 1 (respectively t ∈]qθm ,qθm−1 [ whenever
q< 1), with expression

x(t ) =


q−1

m−1∏
i=1

(
t−qθi

t−qθi−1

) 1
pi ×

k∏
i=m+1

(
qθi −t
qθi−1−t

) 1
pi q> 1

q−1
m−1∏
i=1

(
qθi −t
qθi−1−t

) 1
pi ×

k∏
i=m+1

(
t−qθi

t−qθi−1

) 1
pi q< 1

displaying its positive real value. As before, this creates for finite q a new portion of arctic
curve emerging above the segment [θm−1,θm] (see for instance the middle part of figure 17 or
18) below which the path configuration is frozen.

When q→ 0, our general discussion now leads for the right part of the arctic curve to a por-
tion with slope −1/(pm − 1) = 0, i.e. a horizontal segment joining Mm−1 to Mm (which now
have the same Y -coordinate 1−∑m−1

j=0 γ j but X -coordinates which differ by δm). As for the
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FIGURE 17. Top: a schematic picture of the q→ 0 limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a
gap. The condition pm =∞= δm/γm (with δm finite) gives rise to a horizontal segment
within the right part of the curve. Middle: the arctic curve for finite q (here q = .3)
also has a new (orange) portion below which the paths are frozen (represented here for
k = 3, m = 2 with γ1 = γ3 = 1/2, γ2 → 0, p1 = p3 = 2 and p2 →∞ with p2γ2 → δ2 = 1).
Bottom: for decreasing q (here q = .3, .05 and .005), the frozen phase fills the 45◦ strip
whose edge is the above horizontal segment (dashed region in the top figure).

new frozen region below the new portion of arctic curve, it is now deformed so as to fill en-
tirely the 45◦ strip whose edge is the above horizontal segment (dashed domain in figure 17).
In particular, the new portion of arctic curve and the right part merge along the horizontal
segment [Mm−1, Mm] when q→ 0, and the liquid phase narrows around the segment for very
small q (see figure 17, bottom) before it eventually crystallizes right at q= 0.
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FIGURE 18. Top: a schematic picture of the q→∞ limiting shape of the left (red) and
right (blue) parts of the arctic curve in the presence of a freezing boundary due to a
gap. The condition pm =∞= δm/γm (with δm finite) gives rise to a horizontal segment
within the left part of the curve. Middle: the arctic curve for finite q (here q= 3) also has
a new (orange) portion below which the paths are frozen (represented here for k = 3,
m = 2 with γ1 = γ3 = 1/2, γ2 → 0, p1 = p3 = 2 and p2 →∞ with p2γ2 → δ2 = 1). Bottom:
for increasing q (here q = 3, 30 and 300), the frozen phase fills the vertical strip whose
upper edge is the above horizontal segment (dashed region in the top figure).

The q → ∞ limit is similar: the left part of the arctic curve now has a portion with slope
1/pm = 0, i.e. a horizontal segment joining Nm−1 to Nm . The new frozen region below the
new portion of arctic curve is deformed so as to fill entirely the vertical strip below [Nm−1, Nm]
(dashed domain in figure 18). In particular, the new portion of arctic curve and the left part
merge along the horizontal segment [Nm−1, Nm] when q→ ∞, meaning once again that the
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FIGURE 19. The phase diagram of NILP configurations for a piecewise linear func-
tion α(u) with k = 3, p1 = p3 = 1, p2 →∞, γ2 → 0 with p2γ2 → δ2. The paths are frozen
by construction outside the indicated hexagon with vertical and horizontal sides of re-
spective lengths γ1 and δ2. At q= 1, the frozen domain extends inside the hexagon and
is separated from a central liquid phase by an arctic curve whose shape is an ellipse
tangent to the six sides of the hexagon. The six regions in-between the hexagon and
the ellipse are either empty of all paths (regions E1 and E2), filled with horizontal paths
(H1 and H2) or filled with vertical paths (V1 and V2).

liquid phase narrows around the segment for very large q (see figure 18, bottom) before it
eventually crystallizes right at q=∞.

7.4. q-deformation of the ellipse. Another interesting and quite studied geometry corres-
onds to paths connecting the opposite sides of a hexagon, which is nothing but the path for-
mulation of the classical rhombus tiling problem of a hexagonal domain [CLP98]. This geome-
try is obtained in our setting by taking an entirely freezing boundary with a sequence (ai )1≤i≤n

made of two fully filled intervals of width ∆′
1 and ∆′

3 = n −∆′
1 −1 (so that the total number of

paths is (∆′
1+1)+(∆′

3+1) = n+1)separated by a gap of width∆2. Using the original path formu-
lation, it is easily seen that the paths are in practice frozen outside a hexagon (of total height n)
with pairwise parallel sides oriented respectively vertically (with height∆′

1), horizontally (with
width ∆2) and at 45◦. In other words, the domain D where fluctuations may arise is reduced
in practice from its original rectangular shape to a smaller effective domain D ′ with the above
hexagonal geometry. The non-frozen part of the NILP corresponds moreover to a set of ∆′

3 +1
paths whose origins span all the vertices of the rightmost 45◦ side of the hexagon and whose
endpoints span all the vertices of the opposite (leftmost 45◦) side.
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This situation corresponds after scaling to a piecewise linear function α(u) as above with
k = 3, p1 = p3 = 1, p2 →∞ and γ2 → 0 with p2γ2 = δ2 finite15. The resulting model therefore
depends on two geometrical degrees of freedom γ1 = 1−γ3 and δ2, which correspond respec-
tively to the length of the vertical and horizontal sides of the hexagon after rescaling (see figure
19). At q = 1 (i.e. q= 1), the frozen domain extends inside the hexagon and surrounds a central
liquid phase. The shape of the separating arctic curve is then an ellipse tangent to the six sides
of the hexagon (see for instance [Eyn09] for a matrix model derivation or [DFG18] for a tangent
method derivation). The domain lying in-between the hexagon and the ellipse is split into six
parts: two opposite parts E1 and E2 correspond to regions empty of all paths, two opposite
parts H1 and H2 correspond to regions filled with horizontal paths and two opposite parts V1

and V2 correspond to regions filled with vertical paths (see figure 19). Let us now discuss how
these regions evolve whenever q decreases to 0 or increases to ∞.

The function x(t ) describing the situation at hand reads:

x(t ) = q−1

(
t −qγ1

)(
t −q1+δ2

)
(t −1)

(
t −qγ1+δ2

)
and we may easily plot the corresponding arctic curve obtained via (1.2).

For decreasing q, the tangency points of the ellipse with the hexagon are found to merge
by pairs at three (pairwise non-consecutive) corners of the hexagon as indicated in figure 20,
so that the three domains E2, H2 and V2 get smaller and eventually disappear when q → 0.
On the contrary the three domains E1, H1 and V1 inflate so as to invade the liquid phase
which reduces when q→ 0 to the union of three segments [(γ1,0), (1,1−γ1)], [(1,1−γ1), (1,1)]
and [(1,1−γ1), (1+δ2,1−γ1)]. This splitting of the hexagon in three frozen domains is fully
consistent with the path configuration selected right at q = 0 in which paths are pushed as
much as possible towards the lower left corner (see figure 20).

For increasing q, the tangency points of the ellipse with the hexagon merge by pairs at the
three complementary corners of the hexagon as indicated in figure 21, so that these are now
the three domains E1, H1 and V1 which get smaller and eventually disappear when q→ ∞.
On the contrary the three domains E2, H2 and V2 inflate, letting the liquid phase reduce when
q → ∞ to the union of three segments [(γ1,γ1), (γ1 + δ2,γ1)], [(γ1 + δ2,0), (γ1 + δ2,γ1))] and
[(γ1+δ2,γ1), (1+δ2,1)]. This is now fully consistent with the path configuration selected right
at q =∞ in which paths are pushed as much as possible towards the upper right corner (see
figure 21).

8. CONCLUSION AND DISCUSSION

To conclude this paper, let us make a few comments both on the tangent method itself and
on its specific results in the present model.

15Note that this is a situation with a slope 1 for both the first and the last linear piece. As already mentioned,
this case steps outside the generic treatment of Sections 7.1, 7.2 and 7.3.
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FIGURE 20. Deformation of the arctic curve of figure 19 (here for γ1 = 1/3 and δ2 =
1) when q → 0. Starting from an ellipse at q = 1 (top left) the boundary of the three
domains E2, H2 and V2 are pushed towards the associated hexagon corners while that
of the three domains E1, H1 and V1 are pushed to a central point with coordinates
(1,1−γ1) (top right with q= .8, 10−1, 10−3 and 10−7) so that the liquid phase shrinks and
reduces to the three indicated segments (bottom left). This splitting of the hexagon into
three domains E1, H1 and V1 is consistent with the q→ 0 most probable configuration
(bottom right) where the paths are pushed as much as possible towards the lower left
corner. Note that the path configuration outside the hexagon (light blue) is frozen by
construction for any value of q. The colors of the arctic curve refer to the domain of
variation of the parameter t , namely ]−∞,q1+δ2 [ (blue), ]q1+δ2 ,1[ (orange) and ]1,+∞[
(red).

First, we wish to stress the flexibility of the method, whose implementation for an arbitrary
q is not different from what it was at q = 1. In particular, the various technical tricks, such as
the use of LGV matrices or that of the LU decomposition of [DFL18] work perfectly. As a result,
the various discrete formulas for the partition function or the one-point function are natural
q-analogs of their q = 1 counterparts computed in [DFG18] and could have been predicted
by some educated guess. Note also that, after scaling, the fact that the geodesic trajectories
(whose envelope gives the arctic curve) are not straight lines is actually not a problem, since



46 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

1

10

H2

E2

V2

V2V1

E2

E1H2

E2
H1

FIGURE 21. Deformation of the arctic curve of figure 19 (here for γ1 = 1/3 and δ2 =
1) when q → ∞. Starting from an ellipse at q = 1 (top left) the boundary of the three
domains E1, H1 and V1 are pushed towards the associated hexagon corners while that
of the three domains E2, H2 and V2 are pushed to a central point with coordinates
(γ1+δ2,γ1) (top right with q= 1.1, 10 , 50 and 1000) so that the liquid phase shrinks and
reduces to the three indicated segments (bottom left). This splitting of the hexagon into
three domainsE2, H2 andV2 is consistent with the q→∞ most probable configuration
(bottom right) where the paths are pushed as much as possible towards the upper right
corner. The colors of the arctic curve refer to the domain of variation of the parameter
t , namely ]q1+δ2 ,+∞[ (blue), ]1,q1+δ2 [ (orange) and ]−∞,1[ (red).

the tangency principle underlying the method concerns only the splitting point where the
perturbed outermost path changes its trajectory.

In our solution, the way the arctic curve evolves upon varying q is quite interesting, in
particular when q becomes either very small or very large. In a generic case without freez-
ing boundary, the arctic curve is made of only two portions, its right and left parts, which
are smoothly deformed until they reach their limiting curve of figure 8 or 9, whose shape di-
rectly reflects the distribution α(u) of starting points. In particular, the liquid phase remains
of macroscopic size for any finite q and occupies a fairly constant proportion of the allowed
domain D for the paths. In rescaled coordinates, the area of the liquid phase tends indeed to
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0 α(u)du for q → 0 and to the complementary valueα(1)−∫ 1

0 α(u)du for q →∞. Both values
are typically of the order of half of the total area α(1) of the domain D . The situation is more
interesting in the presence of freezing boundaries with some “global freezing" phenomenon:
the frozen regions induced by freezing boundaries start to grow and invade the liquid phase,
both for small or for large q , therefore creating straits separating macroscopic bodies of this
liquid phase. The “global freezing" becomes even more dramatic when the starting point se-
quence consists of freezing boundaries only (i.e. is made of a succession of fully filled intervals
separated by gaps). This occurs for instance in the classical case of Section 7.4 where the liquid
phase of originally (i.e. at q = 1) elliptic shape gets so squeezed that it eventually disappears at
q = 0 or infinity.

As a final question one may wonder if any generalization of the model (e.g. with position-
dependent inhomogenous weights) could still be solved using the techniques developed in
the present paper, and we keep this as a direction of future research.
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