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ARCTIC CURVES OF THE TWENTY-VERTEX MODEL WITH DOMAIN WALL BOUNDARIES

BRYAN DEBIN, PHILIPPE DI FRANCESCO, AND EMMANUEL GUITTER

ABSTRACT. We use the tangent method to compute the arctic curve of the Twenty-Vertex (20V)
model with particular domain wall boundary conditions for a wide set of integrable weights.
To this end, we extend to the finite geometry of domain wall boundary conditions the standard
connection between the bulk 20V and 6V models via the Kagome lattice ice model. This al-
lows to express refined partition functions of the 20V model in terms of their 6V counterparts,
leading to explicit parametric expressions for the various portions of its arctic curve. The latter
displays a large variety of shapes depending on the weights and separates a central liquid phase
from up to six different frozen phases. A number of numerical simulations are also presented,
which highlight the arctic curve phenomenon and corroborate perfectly the analytic predic-
tions of the tangent method. We finally compute the arctic curve of the Quarter-turn symmetric
Holey Aztec Domino Tiling (QTHADT) model, a problem closely related to the 20V model and
whose asymptotics may be analyzed via a similar tangent method approach. Again results for
the QTHADT model are found to be in perfect agreement with our numerical simulations.
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FIGURE 1. Top rows: the 20 possible environments satisfying the ice rule at a node of
the triangular lattice. Bottom rows: the 20 equivalent osculating path configurations.
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1. INTRODUCTION

1.1. The 20V model with Domain Wall Boundary Conditions. The present paper deals with
the so called Twenty-Vertex (20V) model [Kel74, Bax89], an alternative denomination for the
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ice model on the regular triangular lattice. Recall that the ice model is defined by assigning
to each edge of the lattice an orientation satisfying the so-called “ice rule” that each node is
incident to as many ingoing as outgoing edges. In the case of the triangular lattice, the ice rule
gives rise to 20 possible environments around a given node, displayed in Figure 1, hence the
alternative denomination of the model. For convenience, we represent the triangular lattice
as a square lattice supplemented with a second diagonal within each face. Instead of using
edge orientations, we may alternatively represent the ice model configurations by “osculating
paths” taking steps along the lattice edges. Paths are obtained by drawing a path step when-
ever the underlying edge orientation runs from North, Northwest or West to East, Southeast or
South. These steps are then uniquely concatenated at each node into properly oriented non-
crossing but possibly kissing or osculating paths, as shown in Figure 1, where the underlying
orientation may be erased without loss of information. In all generality, configurations of the
20V model are enumerated with Boltzmann weights attached to each node of the lattice, ac-
cording to its local environment: the model therefore involves a priori the data of 20 possible
local weights for the 20 possible vertices.

So far, most of the results on the 20V model concern its bulk properties, corresponding to
local properties of the model defined on the infinite triangular lattice [Kel74, Bax89]. For in-
stance, the bulk phase diagram of the model (with restricted values of the vertex weights) was
established in Ref. [Kel74] while the bulk entropy of the model was obtained in [Bax89]. Here,
following [DFG19c], we consider instead the 20V model defined on a finite domain of the tri-
angular lattice, with appropriate boundary conditions for which exact enumeration results
may be obtained. At large size and upon rescaling, a sensible limit can be reached, which de-
scribes the continuous behavior of the model in finite geometry. Our study concerns more
specifically 20V model configurations with Domain Wall Boundary Conditions (DWBC), as
defined in [DFG19c]. The model is defined on an n ×n square portion of the square lattice,
with nodes at integer coordinates (i , j ) for i , j = 1,2, . . . ,n, and edges along all the elemen-
tary horizontal segments (i , j ) → (i +1, j ) (for 0 < i < n), all the elementary vertical segments
(i , j ) → (i , j +1) (for 0 < j < n), and all the elementary second diagonals (i , j +1) → (i +1, j )
(for 0 < i , j < n). The internal edge set is completed by boundary edges with fixed orientations
according to either of the following two DWBC prescriptions (see Figure 2):

• for DWBC1 (see Figure 2-top), all the (horizontal or diagonal) edges of the left and
right boundaries except the (diagonal) lower right one are oriented towards the central
square, while all the (vertical or diagonal) edges of the top and bottom boundaries
except the (diagonal) upper left one are oriented away from the central square;

• for DWBC2 (see Figure 2-bottom), all the (horizontal or diagonal) edges of the left and
right boundaries except the (diagonal) upper left one are oriented towards the central
square, while all the (vertical or diagonal) edges of the top and bottom boundaries
except the (diagonal) lower right one are oriented away from the central square.
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DWBC1:

DWBC2:

FIGURE 2. Two allowed 20V model configurations with DWBC1 (top) or DWBC2 (bot-
tom). In each case the left picture uses the representation in terms of oriented edges
and the right one the osculating path representation. The arrows drawn in blue are
fixed.

Note that DWBC1 and 2 differ only by the orientations of the upper right and lower left diago-
nal edges, which are opposite in the two settings. As a consequence, the configurations of the
20V model with DWBC1 are in one-to-one correspondence with those of the 20V model with
DWBC2 by a simple 180◦ rotation. For instance, the configurations depicted in Figure 2-left
are image of each other under this rotation. As a consequence, in the particular case of vertex
weights invariant under 180◦ rotation, the two models have the same partition function. In
the following, we will always be in such a situation.

In the alternative osculating path language, our boundary conditions correspond to hav-
ing all the edges of the left and bottom boundaries occupied by a path step (with the upper
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left and lower right included for DWBC1, excluded for DWBC2), and all the other boundary
edges unoccupied. Note that performing a 180◦ rotation on the edge orientations amounts in
the path language to performing both a 180◦ rotation and then a complementation in which
occupied and unoccupied edges are interchanged.

1.2. The arctic curve and the tangent method: generalities. The 20V model with DWBC1 or
2 is the analog on the triangular lattice of the celebrated 6V model with DWBC, defined on an
n ×n square portion of the square lattice. For appropriate vertex weights, this latter model is
known to exhibit the so-called arctic curve phenomenon [CEP96, JPS98]: in the limit of large n
(and after rescaling of the coordinates by 1/n), a typical configuration presents a sharp phase
separation between a number of “frozen” phases adjacent to the square boundaries and in
which the node environments are fixed, and a “liquid” disordered phase in the center, with
fluctuating node environments. We expect our 20V model with DWBC1 or 2 to exhibit the
same phenomenon: frozen phases where all nodes have the same environment should exist
in the vicinity of the boundaries, separated by a well-defined arctic curve from a central liquid
region. In the path language, the frozen regions may be empty of all paths or, on the contrary,
maximally filled with all the edges occupied, or also regions with only vertical (resp. horizon-
tal) occupied edges, etc...

The purpose of this paper is to get an explicit expression for the location of the arctic curve
of the 20V model with DWBC1 or 2, with possibly some non-trivial weights attached to the
twenty different vertices, and to identify the nature of the surrounding frozen phases. A num-
ber of methods were developed to locate the arctic curve for non-intersecting or osculating
path problems, usually in the equivalent dimer or tiling language: these methods include
the asymptotic study of bulk expectation values via the technique of the Kasteleyn opera-
tor [KO06, KO07, KOS06], or the machinery of cluster integrable systems of dimers [DFSG14,
KP13]. Here we will instead recourse to so-called tangent method invented by Colomo and
Sportiello [CS16] whose implementation is as follows: one of the portion of the arctic curve
consists in the separation line between the liquid phase and the “empty” region, i.e. a region
not visited by any path. Clearly, at the microscopic level of the paths, this limit corresponds
to the trajectory of the uppermost path. To get the most likely location of this trajectory, the
idea is to force this uppermost path to exit the original n ×n square domain at some “escape”
point A along the right boundary by sliding its original endpoint along the horizontal axis to
some new distant point B lying to the right of the original square domain (see Figure 8 for
an illustration in the case of the 20V model). From A to B , the outermost path follows (in
the continuous limit of large n and after rescaling) a straight line since the visited region is
empty of any other path. For a fixed endpoint B , the most likely position of A is such that
the line (AB) is tangent to the original trajectory, hence to the arctic curve. Indeed the new
trajectory of the uppermost path is expected to first follow its original trajectory (due to its
steric interaction with the other paths), hence to follow the arctic curve until B is in its line of
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sight, and from then on quit the arctic curve tangentially1 in order to attain B via a straight line
(since, from this point, the trajectory takes place in a region empty of any other path) passing
through the escape point A. By changing the position of B and computing the corresponding
most likely escape point A, we get a family of tangent lines whose envelope is a portion of the
arctic curve. Other portions of the curve are then obtained by the same technique upon using
other equivalent path representations of the model. Even though not fully proved at this stage
except in a few cases [Agg18], the tangent method was tested successfully in various models
[CS16, DFL18, DFG18, DR18, DFG19b, DFG19a] and has led to a number of new predictions
as it is quite easy to implement.

In this paper, we will consider exclusively the 20V model with DWBC1 or 2 with attached ver-
tex weights which are invariant under 180◦ rotation (in the oriented edge language) around
any node. Then, since at the global level, this transformation interchanges the DWBC1 and
DWBC2 prescriptions, the arctic curve of the 20V model with DWBC1 is the image under 180◦

rotation of the arctic curve of the 20V model with DWBC2. Moreover, the two models differ
only by the presence of one more path for the DWBC1 prescription, starting at the upper left
and ending at the lower right diagonal edge. Even though this path is then precisely the outer-
most path which probes the location of the arctic curve, we expect its trajectory to be undis-
tinguishable from that of the path just below in the continuous limit, itself undistinguishable
from the trajectory of the outermost path for the DWBC2 prescription. Otherwise stated, the
boundary difference between the two prescriptions is irrelevant in the continuous limit, so
that both lead to the same arctic curve2. From the discussion above and for vertex weights
invariant under 180◦ rotation, we deduce that the arctic curve itself is symmetric under 180◦

rotation.

1.3. Plan of the paper. The paper is organized as follows: Section 2 explains the connection
between the 20V model and the 6V model: first, following [Bax89], we recall some correspon-
dence between the 20V model and a triple of 6V models on sublattices of the Kagome lat-
tice (Section 2.1) for some appropriate choice of the vertex weights. In practice, this holds
for a specific set of integrable vertex weights parametrized by one quantum and three spec-
tral parameters. For the particular case of DWBC2, we then use the unraveling procedure of
[DFG19c] to obtain a direct correspondence between the 20V model and a single, properly
weighted, 6V model with DWBC (Section 2.2, Theorem 2.1).

This correspondence is refined in Section 3 which deals with so-called “one-point func-
tions”, which are generating functions keeping track of the position of the point where the
uppermost path hits the right boundary (this point will become the escape point A in the tan-
gent method geometry). A relation between the one-point function of the 20V model with

1 The tangency property was proved in [DGR19] in the case of non-intersecting path models by a convexity
argument.

2This argument holds strictly speaking only for the portion of arctic curve delimiting the empty frozen region
but can be repeated for the other portions by use of the appropriate alternative path description.
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DWBC2 and that of the 6V model with DWBC, generalizing that of [DFG19c], is given in Sec-
tion 3.1 (Theorem 3.1) and proved in Appendix A. This relation is then used in Section 3.2 to
obtain the large n asymptotics of the 20V model one-point function, a crucial ingredient in
the computation of the arctic curve.

We then discuss in detail in Section 4 the implementation of the tangent method in a sim-
ple case where the vertex weights depend on a single quantum parameter. A first portion of
arctic curve, called the “normal” portion, is obtained in Section 4.1 (Theorem 4.1) by a direct
application of the recipe described in Section 1.2 and illustrated in Figure 8, i.e., after moving
the endpoint of the uppermost path to some distant positions B , (i) finding the most likely
position of A of the escape point, (ii) getting the equation of the tangent lines (AB) and (iii)
deducing the location of their envelope. This involves computing the partition function of a
single path (the escaping part of the uppermost path from A to B) with general 20V weights,
using a general transfer matrix formalism detailed in Appendix B. To get a second portion of
arctic curve (Theorem 4.2), we recourse to an alternative set of paths describing the 20V model
configurations. Remarkably, as explained in Section 4.2, a shear transformations maps these
new path configurations into those of some “inverted” 20V model in a modified geometry
where the tangent method can still be applied and gives rise to a new “shear” portion. The
remaining portions of the arctic curve are deduced by symmetry arguments.

This approach is then extended in Section 5 to the general case where the weights depend
on all parameters, leading the main result of this paper in the form of Theorem 5.1, which
gives a complete description of the arctic curve, made of three portions and their symmetric
counterparts under 180◦ rotation. Sections 5.1 and 5.2 are devoted to the computation of
the analogue of the “normal” and “shear” portions in this more general weighting. Section
5.3 presents the computation of a new “final” portion obtained along the same lines as the
“shear” portion after exchanging the role of vertical and horizontal directions. Section 5.4
discusses the nature of the various frozen phases and illustrates our results on the arctic curve
by a number of explicit plots.

Section 6 presents numerical simulations for large typical 20V model configurations. Those
are obtained by a Markov-chain process described in Section 6.1. The resulting patterns are
represented in Section 6.2 for various values of the parameters and display a perfect agree-
ment with the tangent method results.

In [DFG19c], it was shown that a correspondence exists between the 20V model with DWBC1
or 2 and uniform weights, and a particular domino tiling problem: the Quarter Turn symmet-
ric Holey Aztec Domino Tiling (QTHADT). We analyze the arctic curve of this model in Sec-
tion 7. Its partition function is obtained in Section 7.1 and refined in Section 7.2. The later is
identified with a suitably refined 6V partition function in Section 7.3, leading to an explicit arc-
tic curve via the tangent method (Section 7.4, Theorem 7.1). Again, these results are in perfect
agreement with numerical simulations presented in Section 7.5.

We gather a few concluding remarks in Section 8.
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FIGURE 3. The transformation of a piece of triangular lattice into a piece of Kagome
lattice. The Kagome lattice is naturally divided into three sub-lattices 1, 2 and 3 as
indicated.

3

11 11 11 11 111111

3 3 3 3

2 2 2 2 2 2

111

3

a1 a1 b1 b1

b3b3a3a3

a2 a2 b2 b2 c2

c1

c3

c1

c2

c3

FIGURE 4. The weights of the three 6V models on the three sub-lattices 1, 2 and 3 of
the Kagome lattice.

2. THE 20V/6V MODEL CORRESPONDENCE: PARTITION FUNCTIONS

2.1. From the 20V model to three 6V models on the Kagome lattice. As noticed in [Bax89],
for appropriate vertex weights, the 20V model may be reformulated as an ice model on the
Kagome lattice obtained by slightly shifting up each horizontal line. Some of the triangles
(Southwest pointing triangles with black surrounding edges in Figure 3-right) of the original
lattice are preserved during this procedure. Their incident edges keep their orientation. New
triangles (Northeast pointing triangles with blue surrounding edges in Figure 3-right) appear,
in correspondence with the nodes of the original triangular lattice. One may then choose
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31
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FIGURE 5. A schematic picture of the Yang-Baxter condition. The equality must hold
for any fixed choice of orientation for the six external edges and upon summation over
the three internal edge orientations, subject to the ice rule at each node.

a1a2a3 b1a2b3 b1a2c3 c1a2a3 b1c2a3 b1b2a3a1b2b3

c1c2c3
+

ω0 ω1 ω2 ω3 ω4 ω5 ω6

FIGURE 6. Weight dictionary for the 20V configurations in the osculating path formu-
lation. The weights are invariant by complementation (exchange of empty and occu-
pied edges) and by 180◦ rotation.

an orientation of their incident edges such that the ice rule is satisfied at each node of the
Kagome lattice. Moreover the maximum number of such orientations is two per newly formed
triangle. When two orientations are possible, the choice is independent for each of the newly
formed triangle. Each 20V model configuration is thus in correspondence with a number of
ice model configurations on the Kagome lattice, with weights which may be related locally
as follows: the Kagome lattice is naturally split into three sub-lattices numbered 1, 2 and 3
(see Figure 3-right). The ice rule at each tetravalent node of the Kagome lattice leads to six
possible vertex environments, hence we are lead to three 6V models to which we assign the
weights of Figure 4, where we imposed for convenience that the vertex weights be invariant
under a global reversing of the orientations. As a consequence, the weights of the equivalent
20V model, obtained by summing over the possible orientations around the newly formed
triangles, are also invariant under a global reversing of the orientations, leading to a list of
ten weights: a1a2a3, b1a2b3, b1a2c3, c1a2a3, b1c2a3, b1b2a3, a1b2c3 + c1c2b3, a1b2b3 + c1c2c3,
c1b2b3 +a1c2c3 and c1b2c3 +a1c2b3.
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As a final and crucial restriction on the weights, we demand that the so-called Yang Baxter
condition be satisfied, namely that the same weights are obtained for the 20V model if, in our
equivalence, we shift the horizontal lines of the triangular lattice down instead of up. This
leads to the identity depicted in Figure 5, and imposes the following extra conditions:

a1b2c3 + c1c2b3 = b1a2c3 , c1b2b3 +a1c2c3 = c1a2a3 , c1b2c3 +a1c2b3 = b1c2a3 .

These conditions are crucial as they will allow us to unravel the 20V model configurations with
DWBC1 or DWBC2 into configurations of a single 6V model with standard DWBC (correspond-
ing to the Kagome sub-lattice labelled by 1, see below). The set of the 20V model weights is
then reduced to a list of seven values, with the dictionary depicted in Figure 6:

ω0 = a1a2a3, ω1 = b1a2b3, ω2 = b1a2c3,

ω3 = a1b2b3 + c1c2c3, ω4 = c1a2a3, ω5 = b1c2a3, ω6 = b1b2a3 .
(2.1)

In this paper, we shall discuss exclusively the 20V model with weights of the form (2.1) above
(or specializations of these expressions). In particular, in the osculating path language, these
weights are manifestly invariant both under 180◦ rotation and under complementation (ex-
change of occupied and un-occupied edge). As a consequence, the 20V models with DWBC1
and 2 share the same partition function.

2.2. From the 20V model with DWBC1 or 2 to one copy of 6V with DWBC. A final restriction
on the 20V model weights corresponds to choosing the weights of the equivalent three Kagome
6V models among a set of integrable weights as done in [DFG19c]. Introducing the notations:

A(z, w) = z −w , B(z, w) = q−2 z −q2 w , C (u, v) = (q2 −q−2)
p

z w ,

we set

(2.2)
a1 = νA(z, w) , b1 = νB(z, w) , c1 = νC (z, w) ,
a2 = νA(q z, q−1 t ) , b2 = νB(q z, q−1 t ) , c2 = νC (q z, q−1 t ) ,
a3 = νA(q t , q−1 w) , b3 = νB(q t , q−1 w) , c3 = νC (q t , q−1 w) ,

with some arbitrary q ∈ C∗, and arbitrary “spectral parameters” z, w and t , respectively at-
tached to the horizontal, vertical and diagonal direction. The global normalization ν does not
affect the statistics of the model and may be chosen arbitrarily: we take ν= 1/(2it 1/3) for future
convenience.

The above homogeneous weights are members of a more general family of inhomogeneous
(i.e. node-dependent) integrable weights:

a1(i , j ) = νA(zi , w j ) , b1(i , j ) = νB(zi , w j ) , c1(i , j ) = νC (zi , w j ) ,
a2(i ,k) = νA(q zi , q−1 tk ) , b2(i ,k) = νB(q zi , q−1 tk ) , c2(i ,k) = νC (q zi , q−1 tk ) ,
a3(k, j ) = νA(q tk , q−1 w j ) , b3(k, j ) = νB(q tk , q−1 w j ) , c3(k, j ) = νC (q tk , q−1 w j ) ,

where a different spectral parameter zi , w j and tk is attached to each horizontal, vertical and
diagonal line respectively (the normalizationν is again arbitrary). Here the horizontal lines are
numbered by i = 1, . . .n from bottom to top, the vertical lines by j = 1,2, . . . ,n from left to right,
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and the diagonal lines by k = 1,2, . . . ,2n−1 from the lower left to the upper right corner. In this
setting, the pair (i , j ), (respectively (i ,k) and ( j ,k)) therefore refers to the node of sub-lattice 1
(respectively 2 and 3) at the crossing of the i -th horizontal and j -th vertical lines (respectively
of the i -th horizontal/k-th diagonal and of the j -th vertical/k-th diagonal lines). A crucial
property of the above integrable weights is that they satisfy the Yang Baxter condition at each
node for arbitrary spectral parameters zi , w j and tk . This property is used in Appendix A.

Returning to the situation with homogeneous spectral parameters z, w and t , we finally
choose3

q = eiη , z = ei (η+λ) , w = e−i (η+λ) , t = eiµ , (η,λ,µ ∈C).

With this parametrization, the 20V model weights of (2.1), with the choice (2.2), are eventually
given by

ω0 = sin(λ+η)sin

(
λ+3η+µ

2

)
sin

(
λ+3η−µ

2

)
ω1 = sin(λ−η)sin

(
λ−η+µ

2

)
sin

(
λ+3η−µ

2

)
ω2 = sin(2η)sin(λ−η)sin

(
λ+3η−µ

2

)
ω3 = sin(2η)3 + sin(λ+η)sin

(
λ−η+µ

2

)
sin

(
λ−η−µ

2

)
ω4 = sin(2η)sin

(
λ+3η+µ

2

)
sin

(
λ+3η−µ

2

)
ω5 = sin(2η)sin(λ−η)sin

(
λ+3η+µ

2

)
ω6 = sin(λ−η)sin

(
λ+3η+µ

2

)
sin

(
λ−η−µ

2

)
,

(2.3)

a parametrization equivalent to that of Kelland in [Kel74]. We will finally restrict our choice
to real values of the angles η, λ and µ, which implies in particular that the three Kagome 6V
models are in the so-called disordered phase [Bax89]. The range of these angles is taken so as
to ensure that all ω’s are positive, namely:

(2.4) 0 < η<λ<π−η, η−λ<µ<λ−η .

Note as a consequence that η< π
2 and λ+3η>µ.

As for the 6V model on the Kagome sub-lattice labelled 1, it has weights (a1,b1,c1) = (a,b,c)/t 1/3,
where we recognize the standard 6V-model weight parametrization in the disordered phase:

(2.5) a = sin(λ+η) , b = sin(λ−η) , c = sin(2η) .

3This choice corresponds to imposing z w = 1, which may be done without loss of generality since only the
ratios of weights matter for the statistics of the model.
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1

32

(a1, b1, c1) (a, b, c)

11 22

3

a2

a3

FIGURE 7. The unraveling of a 20V model configuration with DWBC2 (upper left) into
a 6V model configuration with DWBC on a square grid (lower right). Thanks to the
Yang-Baxter relation, the diagonal lines may be expelled out of the central square grid
(upper right). This has the effect of isolating the vertices according their type. The ver-
tices of sub-lattice 1 stay in the central square region while the vertices of sub-lattice 2
and 3 are expelled, respectively to the left and the right, and to the top and the bottom.
Due to the DWBC2 prescription and to the ice rule at each node, all the orientations
of the expelled edges are fixed (lower left) so that all the nodes of sub-lattice 2 (respec-
tively 3) receive the weight a2 (respectively a3), leading to a global multiplicative factor
(a2a3)n2

. The remaining central configuration is a 6V model configuration with DWBC
and weights (a1,b1,c1) or equivalently (a,b,c) of (2.5) up to a global factor (1/t 1/3)n2

.
This leads to the identity (2.6).
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As explained in [DFG19c] and depicted in Figure 7, the Yang-Baxter condition allows to un-
ravel the configurations of the 20V model with DWBC1 or 2 and with the integrable weights
(2.2) into configurations of a single 6V model on the Kagome sub-lattice 1. As a consequence,
the partition function for either DWBC1 or DWBC2 (denoted Z 20V as the two are equal) with
the weights (2.3) and that for the 6V model with weights (a,b,c) of (2.5) above (denoted Z 6V

n [a,b,c])
are then directly proportional, namely:

Theorem 2.1. see Ref. [DFG19c]

(2.6) Z 20V
n =

(a2a3

t 1/3

)n2

Z 6V
n [a,b,c] =

(
sin

(
λ+3η−µ

2

)
sin

(
λ+3η+µ

2

))n2

Z 6V
n [a,b,c] .

3. THE 20V/6V MODEL CORRESPONDENCE: ONE POINT FUNCTIONS

3.1. Refined enumeration. The use of the tangent method requires a refined enumeration of
the 20V model configurations where we keep track of the position where the uppermost path
hits the right boundary, i.e. the vertical line j = n. As explained in Appendix A, this enumer-
ation may be obtained by changing w → w θ for the spectral parameter of the last column
( j = n). Here, we will concentrate on the DWBC2 prescription, which turns out to lead to sim-
pler enumeration formulas. Note that the uppermost path corresponds in this case to the path
starting at the horizontal edge (0,n) → (1,n) and ending at the vertical edge (n,1) → (n,0). The
net result is best expressed upon introducing the following refined partition function:

Z 20VBC 2
n (τ) =

n∑
L=1

Z 20VBC 2
n;L τL−1

where Z 20VBC 2
n;L denotes the partition function of the 20V model configurations with DWBC2

for which the uppermost path hits the vertical line j = n at position (n,L). Note that the step
just before the hitting point is either a horizontal or a diagonal step and we call Z 20VBC 2 –

n;L and

Z 20VBC 2 �
n;L the corresponding restricted refined partition functions, as well as:

Z 20VBC 2 –
n (τ) =

n∑
L=1

Z 20VBC 2 –
n;L τL−1 , Z 20VBC 2 �

n (τ) =
n∑

L=1
Z 20VBC 2 �

n;L τL−1

with the obvious sum rule:

Z 20VBC 2
n (τ) = Z 20VBC 2 –

n (τ)+Z 20VBC 2 �
n (τ) .

As for the 6V model with DWBC configurations, we consider a similar refinement as follows: as
is well-known, configurations of the 6V model with DWBC are in bijection with configurations
of osculating paths. Those are obtained as for the 20V model by drawing path steps along the
edges oriented East or South and by connecting them uniquely into non-crossing but possi-
bly kissing well-oriented paths (going from the West boundary to the South boundary of the
square grid). We then denote by Z 6V

n;L the partition function for those configurations where the
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uppermost path (starting at the horizontal edge (0,n) → (1,n) and ending at the vertical edge
(n,1) → (n,0)) hits the line j = n at position (n,L). Note that this hitting point is necessarily
preceded by a horizontal step. We finally set

Z 6V
n (σ) =

n∑
L=1

Z 6V
n;Lσ

L−1 .

From now on, it will be implicitly assumed that all the 6V model partition functions are eval-
uated with the weights (a,b,c) of Eq. (2.5). With these notations, we may prove the following
identity, which generalizes (2.6) (see Appendix A for a detailed proof):

Theorem 3.1. The refined partition functions Z 20VBC 2 –
n (τ) and Z 20VBC 2�

n (τ) of the 20V model
with DWBC2 are related to the refined partition function Z 6V

n (σ) of the 6V model with DWBC
via

(3.1) Z 20VBC 2 –
n (τ)+ g (σ)Z 20VBC 2�

n (τ) =
(a2a3

t 1/3

)n2

Z 6V
n (σ) ,

where

τ=σ
σ sin(λ−η)sin

(
λ+3η−µ

2

)
− sin(λ+η)sin

(
λ−η−µ

2

)
σ sin(λ−η)sin

(
λ−η−µ

2

)
− sin(λ+η)sin

(
λ−5η−µ

2

) × sin
(
λ+3η+µ

2

)
sin

(
λ−η+µ

2

) ,

g (σ) =
σsin(2η)sin

(
λ+3η+µ

2

)
σ sin(λ−η)sin

(
λ−η−µ

2

)
− sin(λ+η)sin

(
λ−5η−µ

2

) .
(3.2)

Note that, for σ= 1, we have τ= 1 and g (σ) = 1 as expected so as to recover (2.6).

Remark 3.2. If we insist on having a strict proportionality relation between Z 20VBC 2
n (τ) and

Z 6V
n (σ), we have to demand that g (σ) = 1 for all σ, with the easily checked property:

g (σ) = 1 for all σ⇔µ=λ−5η.

From the general expressions (2.3), this latter relation implies ω4 = ω2, ω5 = ω6 = ω3, hence
reduces in practice the number of weights to four values ω0, ω1,ω2, ω3. We then have a strict
proportionality relation:

Z 20VBC 2
n (τ) =

µ=λ−5η

(
sin(4η)sin(λ−η)

)n2

Z 6V
n (σ)

with τ and σ related via

(3.3) τ= 2cos(2η)sin(λ−η)σ− sin(λ+η)

sin(λ−3η)
.
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Another useful refined enumeration of the 20V model configurations corresponds to keep-
ing track of the position where the uppermost path leaves the upper boundary, i.e. the hori-
zontal line i = n. This enumeration may be obtained by now changing z → z θ̃ for the spectral
parameter of the top line (i = n). We now introduce the refined partition function:

Z̃ 20VBC 2
n (τ̃) =

n∑
L=1

Z̃ 20VBC 2
n;L τ̃L−1

where Z̃ 20VBC 2
n;L denotes the partition function of the 20V model configurations with DWBC2

for which the uppermost path leaves the horizontal line i = n at position (L,n). The step just
after the leaving point is either vertical or a diagonal step and we call Z̃ 20VBC 2 |

n;L and Z̃ 20VBC 2 �
n;L the

corresponding restricted partition functions. With obvious notations, we now have the sum
rule:

Z̃ 20VBC 2
n (τ̃) = Z̃ 20VBC 2 |

n (τ̃)+ Z̃ 20VBC 2 �
n (τ̃) .

Without any further calculation, we note that, as clearly seen in the osculating path formu-
lation, the present refined enumeration is identical to the previous one up to a symmetry
x ↔ y . As apparent in Figure 6, this symmetry amounts to exchanging the weights ω2 ↔ ω5

and ω1 ↔ω6, leaving the other weights unchanged. From their explicit expressions (2.3), this
amounts precisely to performing the transformation µ↔−µ, leaving η and λ unchanged. We
immediately deduce:

Theorem 3.3. The refined partition functions Z̃ 20VBC 2 |
n (τ̃) and Z̃ 20VBC 2�

n (τ̃) of the 20V model
with DWBC2 are related to the refined partition function Z 6V

n (σ) of the 6V model with DWBC
via

(3.4) Z̃ 20VBC 2 |
n (τ̃)+ g̃ (σ)Z̃ 20VBC 2�

n (τ̃) =
(a2a3

t 1/3

)n2

Z 6V
n (σ)

with

τ̃=σ
σ sin(λ−η)sin

(
λ+3η+µ

2

)
− sin(λ+η)sin

(
λ−η+µ

2

)
σ sin(λ−η)sin

(
λ−η+µ

2

)
− sin(λ+η)sin

(
λ−5η+µ

2

) × sin
(
λ+3η−µ

2

)
sin

(
λ−η−µ

2

) ,

g̃ (σ) =
σsin(2η)sin

(
λ+3η−µ

2

)
σ sin(λ−η)sin

(
λ−η+µ

2

)
− sin(λ+η)sin

(
λ−5η+µ

2

) .

(3.5)

Remark 3.4. Again a strict proportionality relation between Z̃ 20VBC 2
n (τ̃) and Z 6V

n (σ) is obtained
whenever g̃ (σ) = 1 for all σ, with

g̃ (σ) = 1 for all σ⇒µ=−λ+5η

in which case
Z̃ 20VBC 2

n (τ̃) =
µ=−λ+5η

(
sin(4η)sin(λ−η)

)n2

Z 6V
n (σ)
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with τ̃ and σ related via

τ̃= 2cos(2η)sin(λ−η)σ− sin(λ+η)

sin(λ−3η)
as in (3.3).

In the particular case µ = 0, we have ω2 =ω5 and ω1 =ω6 and the 20V model with DWBC1
or 2 is symmetric under x ↔ y . If moreover λ= 5η, we have the proportionality relations

Z 20VBC 2
n (τ) =

µ=0, λ=5η
Z̃ 20VBC 2

n (τ) =
µ=0, λ=5η

(sin(4η))2n2
Z 6V

n (σ) , τ= 1+4cos2(2η) (σ−1).

This case corresponds to a situation in which ω1 = ω2 = ω3 = ω4 = ω5 = ω6 = sin(2η)sin2(4η)
while ω0 = sin(6η)sin2(4η) and will be studied in detail in Section 4.

3.2. Asymptotics of one-point functions. The refined one-point functions H 20VBC 2
n (τ) and H 6V

n (σ)
are simply defined as normalized refined partition functions via:

H 20VBC 2
n (τ) = Z 20VBC 2

n (τ)

Z 20V
n

, H 6V
n (σ) = Z 6V

n (σ)

Z 6V
n

(recall that all the 6V model partition functions are implicitly evaluated with the weights (a,b,c)
of Eq. (2.5)). We also introduce the restricted refined one point functions

H 20VBC 2 –
n (τ) = Z 20VBC 2 –

n (τ)

Z 20V
n

, H 20VBC 2�
n (τ) = Z 20VBC 2�

n (τ)

Z 20V
n

which satisfy

H 20VBC 2 –
n (τ)+H 20VBC 2�

n (τ) = H 20VBC 2
n (τ)

H 20VBC 2 –
n (τ)+ g (σ)H 20VBC 2�

n (τ) = H 6V
n (σ)

(3.6)

with τ and g (σ) as in (3.2), as well as their tilde counterparts obtained via the change µ→−µ.
In the limit of large n, the asymptotics for the one-point function H 6V

n (σ) of the 6V model
with DWBC and the weights (a,b,c) of (2.5) above is characterized by the function

f (σ) = lim
n→∞

1

n
Log

(
H 6V

n (σ)
)

whose expression is known [CP10a] and may be given in parametric form as:

f (σ(ξ)) = Log

(
sin(α(λ−η))sin(ξ+λ−η)sin(αξ)

αsin(λ−η)sin(α(ξ+λ−η))sin(ξ)

)
σ(ξ) = sin(λ+η)sin(ξ+λ−η)

sin(λ−η)sin(ξ+λ+η)

(3.7)

where

(3.8) α= π

π−2η
.
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Using the correspondence (3.2), the parametrization σ(ξ) of σ translates into the following
parametrization τ(ξ) of τ:

(3.9) τ(ξ) =
sin(λ+η)sin

(
λ+3η+µ

2

)
sin(ξ+λ−η)sin

(
ξ+ λ−η+µ

2

)
sin(λ−η)sin

(
λ−η+µ

2

)
sin(ξ+λ+η)sin

(
ξ+ λ+3η+µ

2

) .

Since g (σ) is bounded independently of n, the relations (3.6) imply that

lim
n→∞

1

n
Log

(
H 20VBC 2

n (τ(ξ))
)
= f (σ(ξ)) .

Let us now introduce for future use the function

(3.10) r (τ) = τ d

dτ

(
lim

n→∞
1

n
Log

(
H 20VBC 2

n (τ)
))

.

The function r (τ) is given in parametric form by the above parametrization (3.9) of τ and the
following parametrization for r (τ):

r (τ(ξ)) = τ(ξ)

∂ξτ(ξ)
∂ξ f (σ(ξ))

= (
cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))

)
×

sin(ξ+λ+η)sin(ξ+λ−η)sin
(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

)
sin(2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
(3.11)

with α as in (3.8).

Remark 3.5. In the particular case µ=λ−5η, using the correspondence (3.3), the parametriza-
tion τ(ξ) of τ simplifies into:

(3.12) τ(ξ) =
µ=λ−5η

sin(λ+η)sin(ξ+λ−3η)

sin(λ−3η)sin(ξ+λ+η)

and that of r (τ) into:
(3.13)

r (τ(ξ)) =
µ=λ−5η

(
cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))

) sin(ξ+λ+η)sin(ξ+λ−3η)

sin(4η)
.

4. THE CASE µ=λ−5η= 0

We now turn to the explicit computation of the arctic curve of the 20V model with DWBC1
or 2. As a warmup, we start with the simple case

µ= 0, λ= 5η
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}}
M=nm

L=n `

escape point

A

B

FIGURE 8. A sample configuration of the 20V model with DWBC2 in which the upper-
most path, starting at the horizontal edge (0,n) → (1,n), exits the domain 1 < X ,Y < n
(in light blue) at the escape point A with position (n,L) = (n,n`) and reaches a shifted
endpoint B at position (n +M ,0) = (n(1+m),0) via a final vertical edge.

where the weights thus depend on a single “angle” η. From their general expression (2.3), it
is easily checked that, up to a global normalization factor sin(2η)sin2(4η), the weights for the
various vertex environments are all equal to 1 except for the empty/full vertex with weight4

$0 =
sin(6η)

sin(2η)
= 1+2cos(4η) .

In particular, the weights are invariant under the transformation x ↔ y , which implies that
the arctic curve is symmetric under this transformation. In the particular case η=π/8, all the
weights are equal to 1.

4.1. The tangent method in its simplest flavor. We again consider the slightly simpler DWBC2
prescription. The main result of this section is the identification of a first portion of the arctic
curve:

Theorem 4.1. The portion of arctic curve for the 20V model with DWBC2 at µ = 0 and λ =
5η, as predicted by the direct application of the tangent method, has the following parametric

4 We use the notation $0 to recall that a global normalization factor sin(2η)sin2(4η) has been factored out in
all the weights, i.e. ω0 = sin(2η)sin2(4η)×$0 while ωi = sin(2η)sin2(4η)×1 for i = 1 to 6.
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equation:

x(ξ) = 1+ ∂ξR0(ξ)

∂ξS0(ξ)
, y(ξ) = R0(ξ)−S0(ξ)

∂ξR0(ξ)

∂ξS0(ξ)
, ξ ∈ [0,π−6η] .

where

R0(ξ) = (
cot(ξ+4η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+4η))

) sin(ξ+6η)sin(ξ+2η)

sin(4η)
,

S0(ξ) = sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
,

and α=π/(π−2η).

To get the above result, we use the direct tangent method setting, with a geometry where
the uppermost path, starting at the horizontal edge (0,n) → (1,n) and originally ending at
the vertical edge (n,1) → (n,0), now exits the square domain 1 < X ,Y < n (in the original
coordinate system (X ,Y ) of the square lattice) and reaches a shifted endpoint at position (n+
M ,0) = (n(1+m),0) (i.e. ends with a vertical edge (n +M ,1) → (n +M ,0)) for some positive M
(see Figure 8 for an illustration). We define by convention the escape point as the point, with
position (n,L) = (n,n`), where the uppermost path hits the right vertical boundary for the first
time, even if the path makes a number of vertical step before it eventually leaves the originally
accessible domain 1 ≤ X ,Y ≤ n. Note that our choice of escape point rather than the slightly
more natural choice of the point where the path eventually leaves this originally accessible
domain, i.e. has X > n for the first time, makes in practice no difference in the scaling limit of
large n and turns out to be simpler for explicit computations. In rescaled coordinates (x, y) =
(X /n,Y /n), the escape point and endpoint have respective positions (1,`) and (1+m,0).

The most likely escape point position ` for a given m is obtained by maximizing with re-
spect to ` the partition function of those configurations having a fixed value of `, namely the
quantity5

H 20VBC 2
n (τ)|τn`Y 20V

(n,n`)→(n(1+m),0)$
n`−1
0 ,

where Y 20V
(n,n`)→(n(1+m),0) denotes the partition function for a single path from (n,n`) to (n(1+

m),0) (starting possibly with a number of vertical steps as just discussed) with, at each node
along the path, the same weight as that of the corresponding 20V configuration. More precisely,
as discussed in Appendix B, each node in the empty space around the escaping path also re-
ceives a weight $0 per empty vertex. Factoring those weights, the remaining effective weight
for the nodes visited by the path is 1/$0. Paths in Y 20V

(n,n`)→(n(1+m),0) are therefore enumerated

with a weight 1/$0 per visited node. To be fully consistent, the contribution 1 to H 20VBC 2
n (τ)|τn`

of the part of the uppermost path going from (n,n`) to (n,0) must first be replaced by that of
a background segment of empty vertices, since this portion of path is no longer present and

5Here and throughout the paper, the notation F (x)|xp refers to the coefficient of xp in the series expansion of
F (x) in the variable x.
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replaced by a portion of path enumerated by Y 20V
(n,n`)→(n(1+m),0). This background segment is

made of n`−1 empty vertices, hence the final factor $n`−1
0 in the above quantity to be maxi-

mized.
Introducing the large n asymptotics

Y 20V
(n,n`)→(n(1+m),0) ∼

n→∞ en S(`,m)

and writing H 20VBC 2
n (τ)|τn` = 1

2iπ

∮
dτH 20VBC 2

n (τ)/τn`+1 so as to evaluate this latter quantity by
a saddle point method, the extremization conditions over τ (saddle point condition) and `

(most likely escape point condition) read respectively:

d

dτ

(−`Logτ+ f (σ(τ))
)= 0

d

d`

(−`Logτ+S(`,m)+`Log$0
)= 0

or equivalently, using the function r (τ) introduced in (3.10):

`= r (τ), τ=$0 e
d

d`S(`,m) .

The corresponding tangent line passing trough (1,`) and (1+m,0) has equation y + `
m (x−1)−

`= 0, hence for the most likely escape point:

(4.1) y + s(τ)(x −1)− r (τ) = 0

where the “slope” s(τ) is given by

(4.2) s(τ) = r (τ)

m
with m := m(τ) solution of τ=$0 e

d
d`S(`,m) at `= r (τ) .

Note that, from (4.1), the actual slope of the tangent line in the (x, y) plane is −s(τ), which,
from the underlying geometry, must run from 0 (horizontal line y = 1) to −∞ (vertical line
x = 1). The quantity s(τ) must therefore span the interval [0,+∞]. In the simple case at hand
with µ=λ−5η= 0, we have from (3.9) (or from the simpler expression (3.12)):

τ(ξ) = sin(6η)sin(ξ+2η)

sin(2η)sin(ξ+6η)

r (τ(ξ)) = (
cot(ξ+4η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+4η))

) sin(ξ+6η)sin(ξ+2η)

sin(4η)
.

As for S(`,m), it may be obtained via a transfer matrix approach6 upon following the step by
step evolution of the escape path, as described in Appendix B. For our simple case where all

6Here the use of transfer matrix approach is not fully necessary but we use it as it will cover all the more
involved cases encountered in this paper.
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vertex weights are equal to 1 except for$0, the values of β in this Appendix are to be chosen as
β1 =β2 =β3 = 1, while the values of α are α1 =α2 =α3 = 1

$0
, α4 =α5 =α6 = 0. This leads to7

S(`,m) = S(`,m, p3) := (`+m −p3)Log(`+m −p3)− (`−p3)Log(`−p3)

− (m −p3)Log(m −p3)−p3 Log p3 + (`+m −p3)Log

(
1

$0

)
taken at the value of p3 which maximizes S(`,m, p3) at fixed ` and m. Writing the new extrem-
ization condition ∂p3 S(`,m, p3) = 0 and solving (4.2) yields

s(τ) = τ(1+$0)

(τ−1)(τ+$0)
= 4τcos2(2η)

(τ−1)(τ+1+2cos(4η))
.

Using the parametrization (3.12) for τ, we get immediately

s(τ(ξ)) = sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)

so that we end up with a family of tangent lines parametrized by ξ with equations:

0 = F (x, y ;ξ) := y + s(τ(ξ))(x −1)− r (τ(ξ))

= y + sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
(x −1)

− (
cot(ξ+4η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+4η))

) sin(ξ+6η)sin(ξ+2η)

sin(4η)
.

Here ξ runs over the range [0,π− 6η] to guarantee that s(τ(ξ)) spans the interval [0,+∞], as
dictated by the tangent method in the present geometry.

The corresponding portion of arctic curve (hereafter called the “normal” portion) is ob-
tained by solving the system of equations F (x, y ;ξ) = ∂ξF (x, y ;ξ) = 0, which is linear in the
variables x and y , hence straightforwardly yields a parametric expression (x(ξ), y(ξ)):

x(ξ) = 1+ ∂ξr (τ(ξ))

∂ξs(τ(ξ))
, y(ξ) = r (τ(ξ))− s(τ(ξ))

∂ξr (τ(ξ))

∂ξs(τ(ξ))
, ξ ∈ [0,π−6η] .

This completes the proof of Theorem 4.1 with the identification R0(ξ) = r (τ(ξ)) and S0(ξ) =
s(τ(ξ)). We do not give more explicit expressions here as the formulas are quite involved and
not particularly illuminating. A plot of this portion of arctic curve is depicted in Figure 9.

Strictly speaking, the above expressions hold for the 20V model with DWBC2 only. As ex-
plained in Section 1.2, we expect however that the very same portion is found for DWBC1
since the two boundary conditions differ only by the presence of one extra path, a difference
which is irrelevant in the continuous limit. From the DWBC1/2 symmetry under rotation by
180◦, this implies that the portion (x(ξ), y(ξ))ξ∈[0,π−6η] has a symmetric portion (1− x(ξ),1−
y(ξ))ξ∈[0,π−6η].

7Here the quantity np3 may be simply interpreted as the number of diagonal steps in the path.
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FIGURE 9. The arctic curve for µ = λ−5η = 0, here at η = π/8. It is formed of a “nor-
mal” portion (solid curve tangent to the x = 1 line) and its symmetric portion under
180◦ rotation, and by a “shear” portion (dashed curve tangent to the x = 1 line) and its
symmetric portions under 180◦ rotation and x ↔ y symmetry.

Note that each portion of curve is invariant under x ↔ y , in agreement with the fact that,
for µ = λ− 5η = 0, the model has this symmetry. In the above parametric formulation, this
symmetry is a consequence of the easily checked property:

F (x, y ;ξ) = sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
F (y, x;π−6η−ξ) .

4.2. The tangent method with the shear trick. The main result of this section is the identifi-
cation of a second portion of the arctic curve via what we shall call the “shear trick”:

Theorem 4.2. The portion of arctic curve for the 20V model with DWBC2 at µ= 0 and λ= 5η, as
predicted by applying the tangent method to a different set of paths and using the “shear trick”
has the following parametric equation:

x(ξ) = 1+ ∂ξR̄0(ξ)

∂ξS̄0(ξ)
, y(ξ) = R̄0(ξ)− S̄0(ξ)

∂ξR̄0(ξ)

∂ξS̄0(ξ)
, ξ ∈ [−2η,0] .
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(a)

(b)

(c)

FIGURE 10. Starting from a configuration of the 20V model with DWBC2 (a), we first
interchange the occupied and non-occupied vertical edges (b) and then perform a
global shear of the lattice (c) so as to transform the original square domain into a rhom-
bus. The re-connection of the occupied steps into osculating paths performed in (b) is
such that in (c), all the paths are oriented from lower left to upper right at each node.

where

R̄0(ξ) = (
cot(ξ+4η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+4η))

) sin(ξ+6η)sin(ξ+2η)

sin(4η)
,

S̄0(ξ) =
(

sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
− sin(ξ+6η)sin(ξ+2η)

sin(ξ−2η)sin(ξ+2η)

)
,

and α=π/(π−2η).
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FIGURE 11. At the level of a node, the transformation of Figure 10 maps the vertices
of the 20V model (top set) to vertices of some inverted 20V model (bottom set) where
the paths are now oriented from South, Southwest or West to East, Northeast or North.
We have also indicated the intermediate set of vertices (middle set) before shear.

To compute the missing portions of the arctic curve, we recourse to a different family of
osculating paths, obtained as follows: starting from a given configuration of osculating paths
as in Figure 2 for DWBC2, the new osculating path configuration is obtained by (i) exchanging
the occupied and non-occupied vertical edges and (ii) performing a global shear of the lattice
so as to recover the same vertices as those of the original 20V model but with diagonals now in
the other direction (see Figure 10). For a given set of occupied edges after transformations (i)
and (ii), the elementary steps are re-connected at each node in the unique way which creates
osculating paths all oriented from South, Southwest or West to East, Northeast or North. As
depicted in Figure 11, the transformations (i) and (ii), together with the above connection
prescription, creates node environments which form some “inverted” 20V model, with a set of
vertices identical to those of the original 20V model, up to a left-right symmetry. Note that this
symmetry of vertex configurations holds globally but that a given vertex is not transformed
into its left-right symmetric vertex: for instance, the empty vertex is mapped onto the vertex
with exactly two occupied vertical edges and conversely.

Note the following important changes for our new inverted 20V model with respect to the
original DWBC2 setting:



ARCTIC CURVES OF THE TWENTY-VERTEX MODEL WITH DOMAIN WALL BOUNDARIES 25

• The inverted 20V model has modified weights inherited from its pre-image: the non
trivial$0 = 1+2cos(4η) weight is now attached to the vertex with two occupied vertical
edges or its complementary vertex (left column of Figure 11).

• The domain spanned by the paths is no longer a square but a rhombus (see Figure 10-
(c)).

• The DWBC2 prescription is replaced by the following boundary conditions: ordering
the paths from bottom to top according to their starting (diagonal or horizontal) edge
on the left boundary, the (n−1) first paths (i.e. the lower “half” of the paths) now have
their final step at the first n −1 successive horizontal edges along the lower (diagonal)
boundary of the rhombus while the n last paths (i.e. the upper half of the paths) have
their final step at the successive vertical edges along on the upper (diagonal) boundary
of the rhombus (see Figure 10-(c)).

The transformation (i) above was designed to create, in the new geometry, a region empty
of paths in the vicinity of the lower-right corner of the rhombus. The desired new portion of
arctic curve is obtained in the scaling limit as the frontier between this empty region and that
occupied by the paths reaching the upper boundary of the rhombus. To obtain this frontier
by the tangent method, we again use a geometry where the outermost of these paths, namely
the path ending at the rightmost vertical edge of the upper boundary of the rhombus (i.e.
the n-th path, whose endpoint is originally at position (n,2n)) exits the originally accessible
domain (with a rhombus shape) on the vertical right boundary at some position8 (n,n+L−1) =
(n,n(1+ `)− 1) in the original coordinate system (X ,Y ) and reaches its shifted endpoint at
position (n+M ,2n) = (n(1+m),2n) (see Figure 12). In rescaled coordinates (x, y) = (X /n,Y /n),
this corresponds respectively to position (1,1+`)) for the escape point and (1+m,2) for the
endpoint.

As before, the most likely escape point position ` for a given m is obtained by maximizing
the appropriate quantity, namely:

H 20VBC 2
n (τ)|τn`

Ȳ 20V
(n,n+n`−1)→(n(1+m),2n)

$n−n`
0

with respect to `. The first term H 20VBC 2
n (τ)|τn` corresponds to the contribution of the new

osculating paths inside the rhombus. Here we implicitly use the one-to-one correspondence
between our two families of osculating paths, which clearly has the following property: the
position of the hitting point of the outermost path of the second family is (n,n + L − 1) =
(n,n(1+ `)− 1) if and only if the position of the hitting point of the uppermost path of the
first family for the corresponding DWBC2 path configuration is (n,n`). The second term
Ȳ 20V

(n,n+n`−1)→(n(1+m),2n) denotes the partition function for a single path from (n,n +n`−1) to
(n(1+m),2n) (starting possibly with a number of vertical steps) in the inverted 20V model

8The escape point is defined with the same convention as before as the position where the escape path hits
the right boundary of the original rhombic domain for the first time.
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L=n `}
}M=nm

FIGURE 12. A sample configuration of the inverted 20V model in which the n-th path
(counted from the bottom) exits the domain 1 < X , (1+Y − X ) < n (in light blue) at
position (n,n +L −1) = (n,n(1+`)−1) and reaches a shifted endpoint at position (n +
M ,2n) = (n(1+m),2n) via a final vertical edge.

setting with, at each node along the path, the same weight as that of the corresponding in-
verted 20V configuration. As before, we view this path as embedded in a background of empty
vertices, which now receive the weight 1 in the inverted 20V model setting. To be be fully con-
sistent, we must finally replace in H 20VBC 2

n (τ)|τn` the part of path going (in the inverted setting)
from (n,n +n`−1) to (n,2n) by a set of n −n` empty vertices since this portion of path is no
longer present and replaced by a portion of path enumerated by Ȳ 20V

(n,n+n`−1)→(n(1+m),2n). This
replacement of n − ` vertices originally with two adjacent vertical edges (each enumerated
with an inverted 20V weight $0 in H 20VBC 2

n (τ)|τn`) by n −n` empty vertices (new inverted 20V
weight 1) leads to the denominator $n−n`

0 .
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To compute the large n asymptotics of Ȳ 20V
(n,n+n`−1)→(n(1+m),2n), namely

Ȳ 20V
(n,n+n`−1)→(n(1+m),2n) ∼

n→∞ en S̄(`,m) ,

we recourse as before to the transfer matrix approach of Appendix B in a version adapted to the
present “shear” geometry: this corresponds to setting α1 =$0, α2 = 1, α3 = 2−$0, α4 = 1−$0

andα5 =α6 = 0 and, as explained in Appendix B, performing the change `→ 1−` as the height
difference for the path beyond the escape point is now measured from the top, hence equal to
1−` instead of `. We therefore have

S̄(`,m) = S̄(`,m, p3, p4)

:= ((1−`)+m −p3 −2p4)Log((1−`)+m −p3 −2p4)−p3 Log p3 −p4 Log p4

− ((1−`)−p3 −2p4)Log((1−`)−p3 −2p4)− (m −p3 −p4)Log(m −p3 −p4)

+ ((1−`)−p3 −2p4)Log$0 +p3Log(2−$0)+p4Log(1−$0)

taken at the values of p3 and p4 which maximize S̄(`,m, p3, p4) at fixed ` and m.
The extremization conditions over τ and ` now read

d

dτ

(−`Logτ+ f (σ(τ))
)= 0

d

d`

(−`Logτ+ S̄(`,m)− (1−`)Log$0
)= 0

or equivalently

`= r (τ), τ=$0 e
d

d` S̄(`,m) .

In the new geometry of Figure 12, the corresponding tangent line passing trough (1,1+`) and
(1+m,2) has equation y + `−1

m (x −1)−`−1 = 0. Therefore, after performing the inverse shear
transformation y → y − x to bring back the path in the original geometry of a square domain,

the equation of the tangent line reads: y +
(
1− 1−`

m

)
(x −1)−` = 0. For the most likely escape

point, this yields the tangent line equation:

(4.3) y + s̄(τ)(x −1)− r (τ) = 0

where the slope s̄(τ) is now given by

(4.4) s̄(τ) = 1− 1− r (τ)

m
with m := m(τ) solution of τ=$0 e

d
d` S̄(`,m) at `= r (τ) .

Writing the extremization conditions ∂p3 S̄(`,m, p3, p4) = ∂p4 S̄(`,m, p3, p4) = 0 and solving
(4.4) yields now

s̄(τ) = τ(1+$0)

(τ−1)(τ+$0)
+ $0

τ(1−$0)+$0
⇒ s̄(τ(ξ)) = sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
−sin(ξ+6η)sin(ξ+2η)

sin(ξ−2η)sin(ξ+2η)
.
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We end up with a new family of tangent lines parametrized by ξ via

0 = F̄ (x, y ;ξ) := y + s̄(τ(ξ))(x −1)− r (τ(ξ))

= y +
(

sin(ξ+6η)sin(ξ+2η)

sin(ξ)sin(ξ+4η)
− sin(ξ+6η)sin(ξ+2η)

sin(ξ−2η)sin(ξ+2η)

)
(x −1)

− (
cot(ξ+4η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+4η))

) sin(ξ+6η)sin(ξ+2η)

sin(4η)
.

The parameter ξ now spans the range [−2η,0]. The range [−2η,−η] corresponds to s̄(τ(ξ))
decreasing from 1 to 0, while the range [−η,0] corresponds to s̄(τ(ξ)) decreasing from 0 to −∞,
as dictated by the tangent method in the present geometry.

The corresponding new portion of arctic curve, hereafter referred to as the “shear” portion,
is obtained by solving the linear system F̄ (x, y,ξ) = ∂ξF̄ (x, y,ξ) = 0 which yields again a para-
metric expression (x(ξ), y(ξ))

x(ξ) = 1+ ∂ξr (τ(ξ))

∂ξ s̄(τ(ξ))
, y(ξ) = r (τ(ξ))− s̄(τ(ξ))

∂ξr (τ(ξ))

∂ξ s̄(τ(ξ))
, ξ ∈ [−2η,0] .

This completes the proof of Theorem 4.2 with the identifications R̄0(ξ) = r (τ(ξ)) and S̄0(ξ) =
s̄(τ(ξ)). This branch of the arctic curve is the same for DWBC2 and DWBC1 and the symmetry
DWBC1/2 under rotation by 180◦ implies that the portion (x(ξ), y(ξ))ξ∈[−2η,0] has a symmetric
portion (1− x(ξ),1− y(ξ))ξ∈[−2η,0]. Finally, the x ↔ y symmetry of the problem (since the 20V
weights have this symmetry) implies the existence of two symmetric portions (y(ξ), x(ξ))ξ∈[−2η,0]

and (1−y(ξ),1−x(ξ))ξ∈[−2η,0]. This leads to a total of four portions which, together with the two
previously computed portions, span the entire arctic curve (see Figure 9 for an illustration).

To conclude this section, let us discuss the “uniform” case where all the weights are equal
to 1, as easily obtained by setting η = π/8 in the above expressions. In this case the relation
between τ and σ is simply

τ= 2σ−1 .

The solution for the “normal” portion of the arctic curve in given explicitly by (x(ξ), y(ξ)) =
(xπ/8(ξ), yπ/8(ξ)) with

xπ/8(ξ) = 1

18

(
3

(
5cos

(
2ξ

3

)
+cos

(
10ξ

3

))
−
p

3

(
5sin

(
2ξ

3

)
− sin

(
10ξ

3

)))
yπ/8(ξ) = 1

18

(p
3

(
5cos

(
2ξ

3

)
−cos

(
10ξ

3

))
+3

(
5sin

(
2ξ

3

)
+ sin

(
10ξ

3

)))
with ξ ∈ [0,π/4] (see Figure 9). This describes a portion of some algebraic curve with equation

311(x2 + y2)5 +39 10(x2 + y2)4−36 5(x2 + y2)3 +62 20(73(x2 + y2)2 −54x2 y2)

−28 15(x2 + y2)−212 = 0 .
(4.5)
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As for the “shear” portion, it is given by

(x(ξ), y(ξ)) = (xπ/8(ξ), yπ/8(ξ)−xπ/8(ξ)+1)

with ξ ∈ [−π/4,0]. Otherwise stated, in the uniform case, the “shear” portion is obtained from
the analytic continuation of the “normal” portion by a simple shear transformation sending
the y = 0 line onto the line x + y = 1. We will comment further on this in Section 8.2. Note
finally that, as explained in [DFG19c], configuration of the 20V model with DWBC1 or 2 are in
bijection with so-called Alternating Phase Matrices (APM). The above arctic curve is therefore
also the limit shape of large APM’s.

5. THE GENERAL CASE

Let us now extend the previous study and derive the arctic curve for the general case of
weights given by (2.3). The results of this section are summarized in the following:

Theorem 5.1. The arctic curve for the 20V model with DWBC2 at arbitrary admissible values of
the parameters η, λ and µ is made generically of three portions, denoted “normal”, “shear” and
“final” together with their images under 180◦ rotation. The three branches have respectively
parametric equations:

Normal: xn(ξ) = 1+ ∂ξRn(ξ)

∂ξSn(ξ)
, yn(ξ) = Rn(ξ)−Sn(ξ)

∂ξRn(ξ)

∂ξSn(ξ)
, ξ ∈ [0,π−λ−η]

Shear: xs(ξ) = 1+ ∂ξRs(ξ)

∂ξSs(ξ)
, ys(ξ) = Rs(ξ)−Ss(ξ)

∂ξRs(ξ)

∂ξSs(ξ)
, ξ ∈

[
−λ−η+µ

2
,0

]
Final: x f (ξ) = R f (ξ)−S f (ξ)

∂ξR f (ξ)

∂ξS f (ξ)
, y f (ξ) = 1+ ∂ξR f (ξ)

∂ξS f (ξ)
, ξ ∈

[
−λ−η−µ

2
,0

]
where

Rn(ξ) = Rs(ξ) = (
cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))

)
×

sin(ξ+λ+η)sin(ξ+λ−η)sin
(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

)
sin(2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

)) ,

R f (ξ) = (
cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))

)
×

sin(ξ+λ+η)sin(ξ+λ−η)sin
(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)
sin(2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)) ,
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Sn(ξ) =
sin(ξ+λ+η)sin(ξ+λ−η)

(
sin(ξ)sin(ξ+2η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
sin(ξ)sin(ξ+2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

)) ,

Ss(ξ) =
sin(ξ+λ+η)sin(ξ+λ−η)sin

(
2ξ+ λ−η+µ

2

)
sin

(
λ+3η+µ

2

)
sin(2η−ξ)sin(ξ)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

)) ,

S f (ξ) =
sin(ξ+λ+η)sin(ξ+λ−η)sin

(
2ξ+ λ−η−µ

2

)
sin

(
λ+3η−µ

2

)
sin(2η−ξ)sin(ξ)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)) ,

and α=π/(π−2η).

The three following sub-sections are devoted to the derivation of these three sets of para-
metric expressions.

5.1. The “normal” portion of the arctic curve and its symmetric portion. The first branch of
the arctic curve is obtained exactly as before as the envelope of the tangent lines with equation
(4.1) with r (τ) as is (3.10) and s(τ) now given by

(5.1) s(τ) = r (τ)

m
with m := m(τ) solution of τ= ω0

ω1
e

d
d`S(`,m) at `= r (τ)

since the quantity to maximize with respect to ` is now

H 20VBC 2
n (τ)|τn`Y 20V

(n,n`)→(n(1+m),0)

(
ω0

ω1

)n`−1

with the last factor corresponding, as before, to the replacement of n`−1 vertices traversed by
a vertical line (weight ω1) by n`−1 empty vertices (weight ω0).

In the presence of the seven weights ω0, . . . ,ω6, the more involved value of S(`,m) is again
obtained by the transfer matrix approach of Appendix B. Its expression may be written as

S(`,m) = S(`,m, p3, p4, p5, p6)

:= (`+m −p3 −2p4 −2p5 −3p6)Log(`+m −p3 −2p4 −2p5 −3p6)

−p3 Log p3 −p4 Log p4 −p5 Log p5 −p6 Log p6

− (`−p3 −2p4 −p5 −2p6)Log(`−p3 −2p4 −p5 −2p6)

− (m −p3 −p4 −2p5 −2p6)Log(m −p3 −p4 −2p5 −2p6)

+ (`−p3 −2p4 −p5 −2p6)Log

(
ω1

ω0

)
+ (m −p3 −p4 −2p5 −2p6)Log

(
ω6

ω0

)
+p3Log

(
ω0ω3 +ω2

4 −ω1ω6

ω2
0

)
+p4Log

(
ω2

2 −ω1ω3

ω2
0

)
+p5Log

(
ω2

5 −ω6ω3

ω2
0

)
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+p6Log

(
2ω2ω4ω5 +ω1ω6ω3 −ω3ω

2
4 −ω1ω

2
5 −ω6ω

2
2

ω3
0

)

taken at the values of p3, . . . , p6 which maximize S(`,m, p3, p4, p5, p6) at fixed ` and m. Writing
∂pi S(`,m, p3, p4, p5, p6) = 0 for i = 3, . . . ,6 and solving (5.1) yields now the parametric expres-
sion for s(τ):

s(τ(ξ)) =
sin(ξ+λ+η)sin(ξ+λ−η)

(
sin(ξ)sin(ξ+2η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
sin(ξ)sin(ξ+2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
with τ= τ(ξ) as in (3.9). We end up with the parametric equation for the tangent lines

0 = F (x, y ;ξ) := y + s(τ(ξ))(x −1)− r (τ(ξ))

with s(τ(ξ)) as above and with the general expression r (τ(ξ)) of (3.11), while ξ now runs over
[0,π−λ−η]. As before, the corresponding portion of arctic curve has the parametric expression
(x(ξ), y(ξ)) with

x(ξ) = 1+ ∂ξr (τ(ξ))

∂ξs(τ(ξ))
, y(ξ) = r (τ(ξ))− s(τ(ξ))

∂ξr (τ(ξ))

∂ξs(τ(ξ))
, ξ ∈ [0,π−λ−η] .

This completes the proof of the first branch of arctic curve in Theorem 5.1 with the identi-
fications (xn(ξ), yn(ξ)) = (x(ξ), y(ξ)), Rn(ξ) = r (τ(ξ)) and Sn(ξ) = s(τ(ξ)). From the symmetry
DWBC1/2 under rotation by 180◦, this “normal” portion of arctic curve (x(ξ), y(ξ))ξ∈[0,π−λ−η]

has a symmetric portion (1−x(ξ),1− y(ξ))ξ∈[0,π−λ−η].

5.2. The “shear” portion of the arctic curve and its symmetric portion. The second branch
of the arctic curve is obtained as in Section 4.2 thanks to the shear trick. The equation of
tangent lines is again given by (4.3) with r (τ) as is (3.10) and s̄(τ) now given by

s̄(τ) = 1− 1− r (τ)

m
with m := m(τ) solution of τ= ω0

ω1
e

d
d` S̄(`,m) at `= r (τ)

since the quantity to maximize is now

H 20VBC 2
n (τ)|τn` Ȳ 20V

(n,n+n`−1)→(n(1+m),2n)

(
ω1

ω0

)n−n`

.

The value of S̄(`,m) is obtained by the transfer matrix approach of Appendix B in the “shear”
geometry. For the escape path, this geometry is simply obtained from the “normal” geometry
by a simple up-down symmetry (since the path now goes up), together with a change of the
original 20V model weights ωi into inverted 20V weights ω̄i . As apparent in Figure 13, using
for the weights ω̄i the appropriate labelling consistent with the up-down symmetry, we have
ω̄0 = ω1, ω̄1 = ω0, ω̄2 = ω4, ω̄3 = ω3, ω̄4 = ω2, ω̄5 = ω5 and ω̄6 = ω6. In practice, we must
therefore simply perform in the expressions for the “normal” geometry the changes ω0 ↔ ω1
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ω0 ω1 ω2 ω3 ω4 ω5 ω6

ω̄0ω̄1 ω̄4 ω̄3 ω̄2 ω̄5 ω̄6

FIGURE 13. The weights of the twenty vertex configurations of the inverted 20V model
as inherited from their counterparts in the original 20V model ωi , i = 1, . . . ,6. For con-
venience, we may denote the new weights by ω̄i , i = 1, . . . ,6 where the indexing is cho-
sen so as to mimic the original model after an up-down reversal.

and ω2 ↔ω4, together with the substitution `→ 1−`. To summarize, S̄(`,m) may be written
as

S̄(`,m) = S̄(`,m, p3, p4, p5, p6)

:= ((1−`)+m −p3 −2p4 −2p5 −3p6)Log((1−`)+m −p3 −2p4 −2p5 −3p6)

−p3 Log p3 −p4 Log p4 −p5 Log p5 −p6 Log p6

− ((1−`)−p3 −2p4 −p5 −2p6)Log((1−`)−p3 −2p4 −p5 −2p6)

− (m −p3 −p4 −2p5 −2p6)Log(m −p3 −p4 −2p5 −2p6)

+ ((1−`)−p3 −2p4 −p5 −2p6)Log

(
ω0

ω1

)
+ (m −p3 −p4 −2p5 −2p6)Log

(
ω6

ω1

)
+p3Log

(
ω1ω3 +ω2

2 −ω0ω6

ω2
1

)
+p4Log

(
ω2

4 −ω0ω3

ω2
1

)
+p5Log

(
ω2

5 −ω6ω3

ω2
1

)

+p6Log

(
2ω4ω2ω5 +ω0ω6ω3 −ω3ω

2
2 −ω0ω

2
5 −ω6ω

2
4

ω3
1

)
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taken at the values of p3, . . . , p6 which maximize S̄(`,m, p3, p4, p5, p6) at fixed ` and m. The
extremization conditions now lead to

s̄(τ(ξ)) =
sin(ξ+λ+η)sin(ξ+λ−η)sin

(
2ξ+ λ−η+µ

2

)
sin

(
λ+3η+µ

2

)
sin(2η−ξ)sin(ξ)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
with τ(ξ) as in (3.9). We end up with the parametric equation for the tangent lines

0 = F̄ (x, y ;ξ) := y + s̄(τ(ξ))(x −1)− r (τ(ξ))

with s̄(τ(ξ)) as above and with the same general expression (3.11) for r (τ(ξ)) as for the “normal”

portion, while ξ now runs over
[
−λ−η+µ

2 ,0
]

. The corresponding portion of arctic curve has the

parametric expression (x̄(ξ), ȳ(ξ)) with

x(ξ) = 1+ ∂ξr (τ(ξ))

∂ξ s̄(τ(ξ))
, y(ξ) = r (τ(ξ))− s̄(τ(ξ))

∂ξr (τ(ξ))

∂ξ s̄(τ(ξ))
, ξ ∈

[
−λ−η+µ

2
,0

]
.

This completes the proof of the second branch of arctic curve in Theorem 5.1 with the iden-
tifications (xs(ξ), ys(ξ)) = (x(ξ), y(ξ)), Rs(ξ) = r (τ(ξ)) and Ss(ξ) = s̄(τ(ξ)). From the symmetry
DWBC1/2 under rotation by 180◦, this “shear” portion of arctic curve (x(ξ), y(ξ))

ξ∈
[
−λ−η+µ

2 ,0
]

has a symmetric portion (1−x(ξ),1−y(ξ))
ξ∈

[
−λ−η+µ

2 ,0
]. As opposed to Section 4, the arctic curve

does not have the symmetry x ↔ y since the weights explicitly break this symmetry in general.
Still, as discussed just below, the last portions of arctic curve may easily be obtained via some
symmetry arguments.

5.3. The “final” portion of the arctic curve and its symmetric portion. To complete the arctic
curve, we resort to geometries similar to that of previous sub-sections for the “normal” and
“shear” portions, but where the role of the x and y directions have been exchanged. As already
discussed, the vertex weights are not invariant under this symmetry but their modified values
are simply obtained by changing µ into −µ in (2.3). As a consequence, new portions of arctic
curve are immediately obtained from the known ones upon the simultaneous changes x ↔ y
and µ↔−µ. If we start from the “normal” portion, we get tangent line parametric equations

0 = F̃ (x, y ;ξ) := x + s̃(τ̃(ξ))(y −1)− r̃ (τ̃(ξ))
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with τ̃(ξ), r̃ (τ̃(ξ) and s̃(τ̃(ξ)) given by

τ̃(ξ) =
sin(λ+η)sin

(
λ+3η−µ

2

)
sin(ξ+λ−η)sin

(
ξ+ λ−η−µ

2

)
sin(λ−η)sin

(
λ−η−µ

2

)
sin(ξ+λ+η)sin

(
ξ+ λ+3η−µ

2

)
r̃ (τ̃(ξ)) = (

cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))
)

×
sin(ξ+λ+η)sin(ξ+λ−η)sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)
sin(2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

))
(5.2)

and

s̃(τ̃(ξ) =
sin(ξ+λ+η)sin(ξ+λ−η)

(
sin(ξ)sin(ξ+2η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

))
sin(ξ)sin(ξ+2η)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)) .

Here ξ runs again over
[
0,π−λ−η]

. These tangent lines form the same family as those leading
to the “normal” portion, due to the identity

F̃ (x, y ;π−λ−η−ξ) =
sin(ξ)sin(ξ+2η)

(
sin(ξ+λ−η)sin(ξ+λ+η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))
sin(ξ+λ−η)sin(ξ+λ+η)

(
sin(ξ)sin(ξ+2η)+ sin

(
ξ+ λ−η+µ

2

)
sin

(
ξ+ λ+3η+µ

2

))F (x, y ;ξ) .

We therefore recover the same “normal” portion of the arctic curve. This could be expected
since this portion has tangents intersecting the positive x and y axes, and therefore may be
attained by the tangent method using escape paths with displaced endpoints on the positive
x axis or displaced starting points on the positive y axis.

More interestingly, if we start instead from the “shear” portion, we get a new portion of arctic
curve, hereafter called the “final” portion. The corresponding tangent lines have parametric
equation

0 = ˜̄F (x, y ;ξ) := x + ˜̄s(τ̃(ξ))(y −1)− r̃ (τ̃(ξ))

with τ̃(ξ) and r̃ (τ̃(ξ)) given by (5.2) and

˜̄s(τ̃(ξ)) =
sin(ξ+λ+η)sin(ξ+λ−η)sin

(
2ξ+ λ−η−µ

2

)
sin

(
λ+3η−µ

2

)
sin(2η−ξ)sin(ξ)

(
sin(ξ+λ+η)sin(ξ+λ−η)+ sin

(
ξ+ λ−η−µ

2

)
sin

(
ξ+ λ+3η−µ

2

)) .

Here ξ now runs over
[
−λ−η−µ

2 ,0
]

. The corresponding portion of arctic curve has the paramet-

ric expression (x(ξ), y(ξ)) with

x(ξ) = r̃ (τ̃(ξ))− ˜̄s(τ̃(ξ))
∂ξr̃ (τ̃(ξ))

∂ξ ˜̄s(τ̃(ξ))
, y(ξ) = 1+ ∂ξr̃ (τ̃(ξ))

∂ξ ˜̄s(τ̃(ξ))
, ξ ∈

[
−λ−η−µ

2
,0

]
.
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FIGURE 14. The arctic curve for η = π/12, λ = 10π/12 and µ = 5π/12. It is formed of
a “normal” portion (solid curve tangent to the x = 1 and y = 1 lines) , a “shear” portion
(dotted curve tangent to the x = 1 line) and a final” portion (dashed curve tangent to
the y = 1 line) and their three symmetric portions under 180◦ rotation.

This completes the proof of the third branch of arctic curve in Theorem 5.1 with the identi-
fications (x f (ξ), y f (ξ)) = (x(ξ), y(ξ)), R f (ξ) = r̃ (τ̃(ξ)) and Ss(ξ) = ˜̄s(τ̃(ξ)). From the symmetry
DWBC1/2 under rotation by 180◦, we deduce again that this “final” portion of arctic curve
(x(ξ), y(ξ))

ξ∈
[
−λ−η−µ

2 ,0
] has a symmetric portion (1− x(ξ),1− y(ξ))

ξ∈
[
−λ−η−µ

2 ,0
]. The six portions

of arctic curve computed so far, namely the “normal”, the “shear” and the “final” portions to-
gether with their symmetric portions by 180◦ rotation, constitute the entire arctic curve. An
example of such arctic curve is displayed in Figure 14.

A last remark is in order: the junction between the “shear” and “final” portions takes place
at a point where the common tangent coincides with the second diagonal x+y = 1. It is indeed

easily checked that s̄
(
τ
(
−λ−η+µ

2

))
= ˜̄s

(
τ̃
(
−λ−η−µ

2

))
= 1, while r

(
τ
(
−λ−η+µ

2

))
= r̃

(
τ̃
(
−λ−η−µ

2

))
=

0.

5.4. Phases and plots. The arctic curve is the limit between a liquid phase (inside the curve)
and a number of frozen phases (outside of the curve). Let us describe these frozen phases in
the case of generic values of η, λ and µ. As displayed in Figure 15, there are six different frozen
regions around the arctic curve, each made of a single type of vertex. The phase denoted by E



36 BRYAN DEBIN, PHILIPPE DI FRANCESCO, AND EMMANUEL GUITTER

HDV

V

HD

DV

H

E

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

liquid

x

y

FIGURE 15. Generic phases of the integrable 20V model with DWBC1 or 2. The six
frozen phases are labelled by their occupied edges, with H , D and V standing for hori-
zontal, diagonal and vertical, while E stands for “empty”. The two dashed segments are
portions of the second diagonal separating different types of frozen phases while the
red curve is the arctic curve encompassing the liquid phase.

is made of empty vertices only (top row of Figure 6 with weightω0) while the symmetric region
under 180◦ rotation, denoted by HDV corresponds to a phase with fully occupied vertices
(bottom row of Figure 6 with weight ω0). Similarly, the phase denoted by H (resp. V ) is made
of vertices crossed by a single horizontal (resp. vertical) path (top row of Figure 6 with weight
ω6, resp. ω1) while the symmetric region under 180◦ rotation, denoted by DV (resp. HD)
corresponds to a phase with the complementary vertex (bottom row of Figure 6 with weight
ω6, resp. ω1).
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λ= 5π/16
λ= 7π/16
λ= 9π/16
λ= 11π/16
λ= 13π/16

η=π/8, µ= 0

FIGURE 16. The arctic curve for η=π/8, µ= 0 and λ= (5,7,9,11,13)×π/16.

Let us now present a number of plots to illustrate the evolution of the arctic curve with
varying η, λ and µ. The arctic curves are all invariant under rotation by 180◦. As we already
saw, the parameter µ (which varies in the range ]−λ+η,λ−η[ controls the asymmetry of the
arctic curve under the x ↔ y transformation. Figures 16 and 17 display arctic curves for µ= 0,
hence symmetric under x ↔ y . The first figure is for η = π/8 with a varying λ in the range
]π/8,7π/8[, while the second figure is for a value of η→ 0 (in practice η= 0.01) with a varying
λ in the range ]0,π[. In both cases, the limiting curve λ → η degenerates into the second
diagonal x + y = 1, as easily understood from the values ω2,3,5,6 = 0 which imply that only one
configuration survives, with all edges occupied below the second diagonal and none above.
Similarly, in the limit λ→ π−η, the arctic curve degenerates into the first diagonal y = x, as
easily understood from the value ω0 = 0 which forces a unique configuration in which the
occupied edges are: all horizontal edges above the first diagonal, all vertical edges below the
first diagonal, and all diagonal edges below the second diagonal.

Figure 18 shows the increasing asymmetry of the arctic curve under x ↔ y for increasing µ
in the range ]0,π/2[ for fixed values η= π/8 and λ= 5π/8. When the parameter µ tends to its
maximal value λ−η (here equal to π/2), the arctic curve displays two outgrowths which be-
come narrower and narrower and eventually degenerate into two segments so that the arctic
curve is formed of a single convex curve (see Figure 19 left). The two limiting segments are
tangent to this curve and have a slope −1/2 independently of λ and η. This phenomenon has
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η= 0.01, µ= 0

FIGURE 17. The arctic curve for η→ 0 (here η= 0.01), µ= 0 and λ= (1,4,7,10,13)×π/14.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

µ= 0π/64
µ= 15π/64
µ= 25π/64
µ= 31π/64
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FIGURE 18. The arctic curve for η=π/8, λ= 5π/8 and µ= (0,15,25,31)×π/64.
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FIGURE 19. The arctic curve for η = π/16, µ = λ−η and λ = (10,16,22,26,29)×π/32
(right). At µ = λ−η, a direct transition takes place between HD and E (resp. between
HDV and V ) along a segment of slope −1/2 dictated by the local path geometry, as
shown (left), here for λ= 22π/32.
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FIGURE 20. The arctic curve for η→ 0 (here η= 0.01), λ+η→π (here λ=π−0.03) and
µ= (0,25,28,30)×π/32 (right) and µ= 31π/32 (left).
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a simple explanation: for µ=λ−η, we haveω6 = 0 so that the H and DV frozen phases cannot
exist anymore. A direct transition then takes place between the frozen phases HD and E (resp.
between HDV and V ) and the slope −1/2 of the transition line is directly dictated by the path
geometry, as illustrated in Figure 19 left). The evolution of the µ = λ−η convex arctic curve
with fixed η = π/16 and varying λ is represented in Figure 19 right (with λ ∈]π/16,15π/16[).
A similar phenomenon occurs when µ = η−λ (ω1 = 0), creating arctic curve configurations
which are symmetric to those just described under the exchange x ↔ y .

Figure 20 displays the evolution with µ of the arctic curve for a very small η and a value of
λ close to π (recall the λ < π−η, here we took η = 0.01 and λ = π−0.03). For large value of µ
(recall that µ<λ−η, hence µ<π−0.04), for instance µ= 31π/32, the arctic curve is formed of
two symmetric convex pieces connected by a narrow isthmus.

More precisely, a well-defined limit can be reached by setting

(5.3) η= εΛ1 , λ=π−ε(Λ1 +Λ2) , µ=π−ε(2Λ1 +Λ2 +Λ3)

and sending ε→ 0, with fixedΛ1,2,3 > 0 so that the parameters remain in the admissible range
(2.4). Up to an overall ε3, all the weights ωi remain finite and are positive homogeneous poly-
nomials of degree 3 in the Λi ’s. In this limit, the arctic curve of Theorem 5.1 tends to an alge-
braic curve made of two symmetric pieces: the first piece lies in the upper half of the rescaled
square domain and is tangent to the lines y = 1, x = 1 and y = 1/2. The second piece is its
image under 180◦ and lies in the lower half of the square. As for the isthmus observed in Fig-
ure 20, it degenerates into a horizontal segment joining the two tangency points along the
y = 1/2 line. This segment corresponds to a new, direct transition between the HD and V
frozen regions and its horizontality is dictated by the path geometry.

It is interesting to follow more precisely the limit (5.3) of each of the six portions of arctic
curve. To get the limit of the “normal” portion, we must simultaneously set ξ = εΥ so that Υ
varies in the range [0,Λ2]. Similarly, the limit of the “final” portion is obtained by setting ξ= εΥ
withΥ varying in the range

[
−Λ3

2 ,0
]

. These two portions then lead to two adjacent connected

portions of the first piece of the algebraic curve (see Figure 21 for an illustration) while their
symmetric portions contribute to the second piece. The case of the “shear” portion is more

subtle as the original range
[
−λ−η+µ

2 ,0
]

gives rise by rescaling to two limiting intervals for the

variable ξ: the vicinity of ξ= 0 is probed by setting ξ= εΥwithΥ in the range ]−∞,0] while the

vicinity of −λ−η+µ
2 is probed by setting ξ = −π+ εΥ with Υ in the range

[
2Λ1 +Λ2 + Λ3

2 ,+∞
[

.

This eventually gives rise to two separate portions of arctic curve, one contributing to the up-
per piece and the other of the lower one (see Figure 21). Since the “shear” portion was orig-
inally connected, the two separate limiting portions are in fact connected by the horizontal
segment encountered above, at the transition between the HD and V regions. This segment
however is no longer part of the arctic curve as it is not incident to the liquid phase. The sym-
metric of the “shear” portion finally builds the missing parts of the upper and lower pieces.
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λ=π−η−εΛ2, µ=π−2η−ε(Λ2 +Λ3)

FIGURE 21. The arctic curve for λ= π−η− εΛ2 and µ= π−η− ε(Λ2 +Λ3) with ε→ 0
and some arbitrarily fixedη (here forΛ3/Λ2 = 2). The limiting shape is independent ofη
and formed of two symmetric ellipses tangent to the y = 1/2 line. Note that the “shear”
portion in Theorem 5.1 gives rise to two portions in this limit, one in each ellipse. The
black dashed segment is the locus of the transition between the HD and V frozen re-
gions.

The same phenomenon of splitting of the arctic curve is in fact observed by keeping a finite
value of η whenever λ and µ tend to their maximal admissible values, namely λ= π−η−εΛ2

and µ = π−2η− ε(Λ2 +Λ3) with ε→ 0, Λ2,3 finite and positive. This leads to a limiting arctic
curve depending onΛ2,3 but independent of η (assuming that η itself is kept fixed and does not
scale with ε) corresponding to limiting weightsω0,4,5,6 → 0 and (projectively)ω1,2,3 → 1. This η-
independent limit may be reached in the above setting (5.3) by sendingΛ1 →∞. Remarkably,
the corresponding limiting arctic curve is made of two ellipses (exchanged by 180◦ rotation)
with respective equations(

Λ3(x − y)+2Λ2(x +2y −2)
)2 +8Λ2Λ3(1− y)(1−2y) = 0 ,(

Λ3(x − y)+2Λ2(x +2y −1)
)2 −8Λ2Λ3 y(1−2y) = 0 .

In particular, these curves depend on the ratio Λ3/Λ2, hence on the precise way in which the
weights ωi reach their limiting values 0 or 1. The corresponding arctic curve for Λ3/Λ2 = 2 is
displayed in Figure 21.
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6. SIMULATIONS

6.1. Method. Numerical studies of the arctic curve phenomenon in the 6V model with DWBC
(or “domain-wall-like” boundary conditions) are numerous [SZ04, AR05, CGP14, LKV17, KL17,
LKRV18]. In this section we will adapt a Markov-chain Monte Carlo method due to Allison
and Reshetikhin discussed in [AR05, LKV17, LKRV18]. This algorithm exploits the bijection
with osculating paths to design a local-move Markov-chain whose stationary distribution is
that associated with the weights (2.3). For the sake of definiteness we will consider the 20V
model with DWBC1, but the discussion is easily extended to other fixed boundary conditions,
including DWBC2.

Let us first consider the model with uniform distribution, i.e. with all theωi ’s equal (η=π/8,
λ = 5η and µ = 0). The Markov-chain starts from an allowed configuration (for example, the
“diagonal” configuration displayed in Figure 22-(b)) and preserves the non-crossing property
at each step. At any given iteration, either the configuration remains unchanged or some ele-
mentary move is performed on a plaquette. The algorihm goes as follows: start by selecting a
plaquette at random, and, if the plaquette has at least a section of path connecting its North-
west to its Southeast corner, randomly choose which section of path to update ( , or
). The four possible moves are → , → , → and → , if allowed by the local
environment. If no move is possible for this selected section of path, remain in the same con-
figuration for this iteration of the chain. Otherwise, perform a move according to the rules Ri ,
i = 1,2, · · · ,7 presented in Figure 22-(a). Repeat the process until the number of iterations is
“sufficient” (see the discussion below).

Since every configuration of the model can be obtained from any other configuration by
finitely many elementary moves, the Markov-chain is ergodic. One can also verify that the
transition probability p(C → C′) from a configuration C to a configuration C′ is symmetric:
p(C′ → C) = p(C → C′). In particular, the two possibilities for the output in rules R5 and R7
are precisely designed so as to ensure this property. Hence the detailed balance condition
is satisfied for the uniform distribution, which implies that the stationary distribution of this
Markov-chain is uniform, as required.

The uniform version of the algorithm is therefore such that, at every iteration, we either
stay in the same configuration C (the move is rejected) or we perform a move and obtain a
new configurationC′. Generalizing the algorithm to the non-uniform case of arbitrary weights
(2.3) can then be achieved by further rejecting some of the moves in a way that depends on the
weight of the putative new configurationC′. Assume that the move is attempted on a plaquette
whose center is located at (i , j ) and call Wi , j (C′) the product of the weights of the four nodes
around this plaquette in the configuration C′. The move is then accepted (in a similar manner
as in [AR05, LKV17, LKRV18]) with a probability equal to:

(6.1) P = Wi , j (C′)
W0

,
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(a) (b)

R1 −→
R2 −→
R3 −→ or

R4 −→
R5 −→ or

R6 −→
R7 −→ or

FIGURE 22. (a) The rules R1−7 used to perform the elementary moves of our
Markov-chain. Plain lines indicate occupied edges, dashed lines empty edges
while at least one of the dotted line is occupied. When two outputs are drawn,
one is chosen with probability 1/2. (b) The “diagonal” configuration used as
initial state of our Markov-chain. It is made of a triangular HDV region and a
triangular E region.

where the normalisation W0 =
(

max
k=0,...,6

ωk

)4

ensures that P ≤ 1. This Markov-chain is ergodic

and satisfies the detailed balance condition for the probability distribution induced by the
relative weights ωi . The ability of this algorithm to generate configurations with the correct
frequency was tested for a small size (n = 3, hence 23 configurations) and for several choices
of η, λ and µ (see Figure 23 for an example).

The Markov-chain converges to the desired distribution in the limit of an infinite number
of iterations. In practice, we need a criterion to decide when to stop the simulation: the main
criterion we used, also invoked in [LKV17, LKRV18], is the stabilization of the arctic curve,
namely that no qualitative change in this curve is observed. In the cases where the conver-
gence is slow, our estimation is checked against that obtained by running another Markov-
chain starting from a completely different configuration, as is done in [AR05], and we make
sure that the results are comparable.

Notice that instead of (6.1) one can alternatively use the metropolis probability

(6.2) P = min

(
1,

Wi , j (C′)
Wi , j (C)

)
.

For genericω′
i s, this choice lowers the rejection of moves and hence increases the thermaliza-

tion speed. Unless stated otherwise we used (6.1).
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FIGURE 23. The observed frequencies of the 23 possible configurations of the
20V model with DWBC1 at n = 3, compared with the corresponding theoretical
probabilities, here for η = π/12, λ = 10π/12 and µ = λ− 5η. The frequencies
were measured from 23000 generated configurations.
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FIGURE 24. A typical configuration of the 20V model with DWB1 for n = 100
and with uniform distribution in the osculating path representation (left) and
in a colored vertex coding (right). Here vertices are colored according to their
label running from 1 to 20 in the order of Figure 1.
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FIGURE 25. Local density of diagonal steps for the 20V model with DWBC1 with
n = 200. The dashed curve is plotted from the analytical expression of the arctic
curve (with a scale factor of n).
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FIGURE 26. The local density of diagonal steps of the 20V model with DWBC1
for λ= 5η, µ= 0 and n = 100, for several values of η ∈]π/6,π/12]. The order pa-
rameter is averaged over 1000 configurations. The dashed curve is the analytic
prediction for the arctic curve.

6.2. Results. Figure 24 displays a configuration with a stabilized arctic curve generated by our
algorithm for the uniform distribution, both in the path formulation (left) and vertex formula-
tion (right). Rather than displaying the precise 20V environments of each node, we choose to
use as order parameter the local density of diagonal steps. Indeed this average density is 1 in
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FIGURE 27. The local density of diagonal steps of the 20V model with DWBC1
for η = π

12 , µ = λ− 5η and n = 100, for several values of λ ∈ [4η,10η]. The or-
der parameter is averaged over 1000 configurations. The dashed curve is the
analytic prediction for the arctic curve.
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FIGURE 28. The local density of diagonal steps of the 20V model with DWBC1
for n = 100 in the case µ 6= λ−5η. On the left η= π/6, λ= 9π/12 and µ=−π/2.
On the right η= 1/200, λ=π−3η and µ=λ−5η. The metropolis version of the
algorithm was used.

the frozen phases HD , DV and HDV of Figure 15, and 0 in H , E and V , while it varies contin-
uously in the liquid region. Figure 25 displays the value of this order parameter in the uniform
case η= π/8, λ= 5π/8 and µ= 0 and shows that it is indeed a good indicator for the position



ARCTIC CURVES OF THE TWENTY-VERTEX MODEL WITH DOMAIN WALL BOUNDARIES 47

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

n = 25
n = 50
n = 75
n = 100
theory

interpolation

FIGURE 29. Outermost path position averaged over 500 configurations of the
twenty-vertex model with DWBC1 for n = 25,50,75,100, drawn in the rescaled
domain. We estimate the curve reached asymptotically when n → ∞, in the
coordinates u = (y + x)/2 and v = (y − x)/2. For a fixed v let us call un(v)
the corresponding u on the average path n. We assume the scaling un(v) =
u(v)−n−2/3corr(v), and extract an estimation of the arctic curve u(v). As a con-
sistency check one can alternatively estimate the scaling exponentα defined by
u(v)−un(v) = nαcorr(v) by using for u(v) the theoretical prediction. It is found
that on average α=−0.627 with a standard deviation of σ= 0.103.

of the arctic curve. The evolution of the arctic curve with varying parameters is shown in Fig-
ures 26, 27 and 28. In all cases we also indicate the theoretical prediction (dashed curve): the
agreement is quite good, despite what looks like an “attraction” of the finite-size arctic curve
towards the liquid region. These finite size effects are estimated in Figure 29 by evaluating
the average outermost path for different sizes, here in the uniform case. Similar finite size
effects were analyzed [Joh03] in the case of the uniform domino tiling of the Aztec diamond,
and found to be governed by a scaling exponent α = −2/3. Our results are compatible with a
scaling exponent α=−2/3 as well.
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FIGURE 30. A sample configuration of the QTHADT model together with the associ-
ated non-intersecting Schöder path configuration. The path configuration of the fun-
damental domain (upper right quadrant) is repeated by symmetry in the whole do-
main.

7. THE ARCTIC CURVE FOR THE QUARTER TURN SYMMETRIC HOLEY AZTEC DOMINO TILING

MODEL

In [DFG19c], it was shown that the set of configurations of the 20V model with DWBC1 or
2 on an n ×n square is equinumerous to that of domino tilings of a quasi-square domain of
Aztec-like shape of size 2n×2n with a cross- shaped hole in the middle that are invariant under
a quarter-turn rotation (i.e. a rotation by 90◦) around the center of the cross (see [DFG19c] for
a detailed definition). We shall refer to this model as the Quarter Turn symmetric Holey Aztec
Domino Tiling (QTHADT) model, see Figure 30. A natural question is then that of the shape
of the arctic curve of this domino tiling problem. Here we give the answer to this question
based again on the tangent method. For simplicity, we limit ourselves to the derivation of
a single portion of arctic curve (analogous to the “normal” portion in the 20V problem). The
remainder of the arctic curve is then obtained by analytic continuation (see discussion below).
As it turns out, our results are validated by numerical simulations, with a perfect agreement.
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By symmetry, any configuration of the QTHADT model is entirely determined by its inter-
section with the fundamental domain, say the upper right quadrant. As shown in [DFG19c],
configurations in the fundamental domain may be reformulated in terms of non-intersecting
Schröder paths, with horizontal, diagonal and vertical steps, with symmetic starting and end-
ing points along the boundary and subject to particular restrictions (see Figure 30 for an il-
lustration). The number of paths is not fixed and may vary between 0 and n, and all path
steps receive the same weight 1. Here we slightly generalize the model by introducing an ex-
tra weight γ per diagonal step. This amounts in the tiling language to assign a weight γ to a
particular type of tile.

7.1. Partition function. As discussed in [DFG19c] for γ= 1, and straightforwardly generalized
to an arbitrary γ, the partition function of the QTHADT problem is given by det(A), where

Ai , j = FA(u, v)|ui v j (i , j = 0,1, ...,n −1) ,

FA(u, v) = 1

1−uv
+ (1+γ)u

(1−u)(1−u − v −γuv)
.

The latter function corresponds to a matrix A = I+M , where Mi , j enumerates Schröder path
configurations from to (0, j + 1) to (i ,0) which are “restricted” so that their first step cannot
be a down step. The generating function FM (u, v) =∑

i , j≥0 Mi , j ui v j is obtained as follows: by
combining at least one first horizontal step (an arbitrary k ≥ 1 number of them, generated by

u
1−u ) followed by a vertical step (generated by v), or an arbitrary number k ≥ 0 of horizontal
steps (generated by 1

1−u ) followed by a diagonal step (generated by γuv), both followed by a
Schröder path with γ weight on diagonal steps (generated by 1/(1−u − v −γuv)), we build all
the desired restricted paths. The result is

FM (u, v) = 1

v

(
u

1−u
v + 1

1−u
γuv

)
1

1−u − v −γuv
,

hence the second term in the equation above (as in [DFG19c], the prefactor 1/v accounts for
the fact that the height of the starting point is j +1, not j ).

7.2. Refined partition function. The path enumeration may be refined as follows: we intro-
duce an extra multiplicative weight τ per horizontal step along the row of maximal height n.
For paths that start at position (0,n) this changes the weight as follows: paths are obtained ei-
ther by combining at least one first horizontal step (an arbitrary k ≥ 1 number of them, gener-
ated by τu

1−τu ) followed by a vertical step (generated by v), or by combining an arbitrary number
k ≥ 0 of horizontal steps (generated by 1

1−τu ) followed by a diagonal step (generated by γuv),
both followed by a Schröder path starting at height n − 1 (generated by 1/(1−u − v −γuv)).
The net result is a change A → A(τ) = I+M(τ) where M(τ) differs from M in its n-th column
only, now generated by
∞∑

i=0
Mi ,n−1(τ)ui = 1

v

(
τu

1−τu
v + 1

1−τu
γuv

)
1

1−u − v −γuv

∣∣∣∣
vn−1

= (τ+γ)u

(1−τu)(1−u − v −γuv)

∣∣∣∣
vn−1
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so that the complete generating function for A(τ) is therefore

FA(τ)(u, v) = 1

1−uv
+ (1+γ)u

(1−u)(1−u − v −γuv)
+

{
τ+γ

1−τu
− 1+γ

1−u

}
(1+γu)n−1

(1−u)n
u vn−1

= 1

1−uv
+ (1+γ)u

(1−u)(1−u − v −γuv)
+ (τ−1)u

(1−u)(1−τu)

(
1+γu

1−u

)n

vn−1 .

7.3. Comparision with the 6V model refined partition function. The refined partition func-
tion for the 6V model with DWBC, with weights a,b,c and an extra weight σ per horizon-
tal step in the top row (in the osculating path formulation) is det(B(σ)), where the matrix
B(σ) = (Bi , j (σ))0≤i , j≤n−1 is generated by [BDFZJ12]

FB(σ)(u, v) = 1

1−uv
+ xu

(1−u)(1−yu−v−(x−y)uv)
+ (σ−1)xu

(1−u)(1− (y +x(σ−1))u)

(
1+ (x − y)u

1− yu

)n

vn−1

with

x =
(

b

a

)2

, y =
( c

a

)2
.

Comparing with the expression found in the previous section, we are led to identify y = 1
and x = 1+γ. In the usual parametrization a = sin(λ+η), b = sin(λ−η) and c = sin(2η), this
corresponds to taking λ=π−3η, so that a = c and b/a = 2cos(2η), leading to

γ= 1+2cos(4η) .

The generating functions FA(τ)(u, v) and FB(σ)(u, v) are therefore identified upon taking

τ= y +x(σ−1) = 1+ (1+γ)(σ−1) = 1+4cos2(2η)(σ−1).

7.4. Tangent method for the QTHADT with weight γ. The use of the tangent method to de-
termine the arctic curve of the QTHADT is similar to that for the 20V-model in the geometry
of Section 5.3 used for the alternative derivation of the “normal” portion. A subtle difference
arises in the definition of the position L of the escape point: if there exists a path with original
starting point (0,n), this starting point is moved to (0,n +M) as usual, leading to a non-trivial
value of L, while if it does not exist, we set L = 0 by convention independently of M (we add
in this case a trivial vertical segment with weight 1 from (0,n) to (0,n +M)). The subsequent
extremization with respect to L shows that the most likely value of L is non-zero, hence the
configurations with no path starting at (0,n) are negligible and the arctic curve is therefore
well probed in our approach. Using (3.7) for the present value λ=π−3η, we get

σ = σ(ξ) = 2cos(2η)
sin(4η−ξ)

sin(2η−ξ)

f (ξ) = Log

(
sin(2αη)sin(αξ)sin(4η−ξ)

αsin(4η)sin(ξ)sin(α(2η−ξ)

)
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with α=π/(π−2η), leading to

τ(ξ) = sin(2η+ξ)

sin(2η−ξ)
.

This defines implicitly f as a function of τ.
Setting M = nm and L = n` and using renormalized coordinates (divided by n), the equa-

tion of the line through the endpoint (0,1+m) and the escape point (`,1) is `
m (y−1)+x−`= 0.

As for the 20V-model, we may get the most likely value of ` for fixed m by extremizing the
appropriate action S0(`,τ)+S(`,m,φ), over `,τ,φ, where

S0(`,τ) = f (ξ(τ))−`Log(τ)

S1(`,m,φ) = (`+m −φ)Log(`+m −φ)− (`−φ)Log(`−φ)

−(m −φ)Log(m −φ)−φLog(φ)+φLog(γ) .

Here, the interpretation of φ is that nφ is the total number of diagonal steps. This gives

`= τd f

dτ
= τ(ξ)

τ′(ξ)
f ′(ξ) =: ρ(ξ), γ

(`−φ)(m −φ)

φ (`+m −φ)
= 1,

`+m −φ
`−φ = τ

and finally
`

m
= 1+ (1+γ)τ(ξ)

(τ(ξ)−1)(τ(ξ)+γ)
=:β(ξ)

so that the equation for the family of tangent lines reads β(ξ)(y −1)+ x −ρ(x) = 0. We end up
with the following parametrization of the arctic curve:

Theorem 7.1. The arctic curve of the QTHADT model in its fundamental domain, as predicted
by the tangent method, is given by

(7.1) x(ξ) = ρ(ξ)−β(ξ)
ρ′(ξ)

β′(ξ)
, y(ξ) = 1+ ρ′(ξ)

β′(ξ)
, ξ ∈ [0,2η] ,

where

ρ(ξ) =
(
α

(
cot(αξ)+cot(α(2η−ξ)

)−cot(ξ)−cot(4η−ξ)
)sin(ξ+2η)sin(2η−ξ)

sin(4η)
,

β(ξ) = sin(2η+ξ)sin(2η−ξ)

sin(ξ)sin(4η−ξ)
.

It is easily checked that x(ξ) = y(2η−ξ) hence the arctic curve is symmetric under x ↔ y , as
expected. The range ξ ∈ [0,2η] for the current geometry leads only to a portion of the arctic
curve from (z,1) to (1, z) with z = x(0) = y(2η). We expect that the above expression extends
to the range ξ ∈ [max(−2η,2η−π/2),min(4η,π/2)], leading to two additional portions from
(0, z ′) to (z,1) and from (1, z) to (z ′,0), with z ′ = x(min(4η,π/2)) = y(max(−2η,2η−π/2)). This
completes the description of the arctic curve in the fundamental domain. The full arctic curve
is obtained by iterated 90◦ rotation copies of the latter. Note that, for γ 6= 1, these new copies
differ in general from the analytic continuation of the fundamental domain copy. This analytic
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FIGURE 31. The “cross-move” performed on the unique configuration of the
`= 0 sector (left) for n = 3. Dominoes are shifted along the central cycle around
the cross, thus creating a path and sending us to the ` = 1 sector (right). The
created path is drawn in the fundamental domain.
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·10−2
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FIGURE 32. The observed frequencies of the 23 possible configurations of the
QTHADT model for n = 3 and γ = 1/2, compared with the corresponding the-
oretical probabilities. The frequencies are measured from the data of 230000
configurations.

continuation corresponds in principle to a different tiling problem where the weighting of tiles
does not depend on the underlying quadrant.

7.5. Simulations. Like in Section 6, typical random tilings are generated by a Markov pro-
cess starting from a specific configuration and applying ergodic moves. The algorithm used to
generate configurations of the QTHADT model with the desired distribution consists of three
kinds of elementary moves involving pairs of connected dominoes in the fundamental domain
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FIGURE 33. Typical configurations of the QTHADT for n = 100 for several val-
ues of γ= 1+2cos(4η). We show only the fundamental domain.

(say the first quadrant). Let us first describe the algorithm that generates tilings with the uni-
form distribution (γ= 1). In the bulk, as well as on the periodic boundaries of the fundamental

domain, the elementary moves come in two flavors: → and → . An additional move
is required to ensure ergodicity. Indeed, the two moves above can only deform the paths or
change the position of the starting and ending points, but they cannot create or annihilate
a path. Hence, by performing these moves only, we conserve the number ` of paths so that
we stay in a given “sector” of the possible tilings with fixed `. For example, the ` = 0 sector
consists of a single configuration with all dominoes in the fundamental domain oriented from
Northwest to Southeast (see Figure 31-left). The third move, referred to as the “cross-move”,
which enables ergodicity, is best described in the complete domain as it involves the cross-
shaped hole in its middle. If a tiling contains a cycle of eight dominoes around the hole, the
cross-move consists in shifting all dominoes around the cycle by one square (see Figure 31-
right). This has the effect of creating or annihilating a pair of starting and ending points. Note
that, in the QTHADT geometry, the eight dominoes reduce, modulo the quarter turn rotation,
to a pair of connected dominoes in the fundamental domain, hence the cross-move is also
a flip analogous to the two others. Every step of the Markov-chain goes as follows: select at
random a position (i , j ) in the fundamental domain9. If the diamond whose upper vertex (•)

is at (i , j ) is entirely in the bulk, or on the periodic boundary, then perform a regular move
•

↔
•

if possible. If (i , j ) is adjacent to the cross, perform a cross move if possible. Repeat until
the arctic curve has stabilized.

Again the probability p(C→C′) to go from a configurationC to a configurationC′ is symmet-
ric. Hence detailed balance condition and ergodicity ensure that the stationary distribution is
uniform.

9We choose the (i , j )′ s on the square lattice on which the corners of the dominoes are.
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Domino tiling of the
fundamental domain

Whole domain
Rhombus tiling of

the Holey Hexagon

FIGURE 34. Typical configurations of the QTHADT for n = 100 in the limit
γ→ 0. In this limit, some elementary moves become extremely unlikely, and
the convergence may be prohibitively long. To prevent this, one can gradually
decrease γ during the simulation until a small enough γ is reached. The fun-
damental domain is represented on the left together with the predicted arctic
curve. The corresponding symmetric configuration on the whole quasi-square
shape domain is displayed in the center. For γ= 0, the domino configurations
are in bijection with another tiling problem, namely the cyclically symmetric
tiling with rhombic tiles of a Holey hexagon of size n. The 3-fold symmetric im-
age of the 4-fold symmetric domino tiling in the center under this bijection is
represented on the right. We note that, with the appropriate color scheme, the
two pictures look in practice very similar and quite indistinguishable in their
fundamental domains (upper right square).

As in Section 6, generalizing this Markov-chain to reach a non-uniform probability distri-
bution π(C) associated with a weight γ 6= 1 can be done via a Metropolis algorithm: we accept

a move from C to C′ with probability p(C→ C′) = min
(
1, π(C′)

π(C)

)
. Ergodicity and detailed bal-

ance are again satisfied and the stationary distribution is π(C). We checked the validity of our
implementation for n = 3 and γ = 1/2, see Figure 32. Figures 33 and 34 display some tilings
obtained by this algorithm for various values of η as well as the corresponding arctic curve as
given by (7.1) .

8. DISCUSSION/CONCLUSION

8.1. The arctic curve of the 6V model from that of the 20V model. The 6V model with DWBC
may be realized as a particular instance of the 20V model with DWBC1 (resp. DWBC2) by set-
tingω2 =ω5 = 0. Indeed, the conditionω2 =ω5 = 0 forces the diagonal steps to be transmitted
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through each node so as to arrange into n (resp. n−1) complete diagonal lines below the sec-
ond diagonal. These lines may be removed and the remaining paths, made of horizontal and
vertical steps only, form configurations of a 6V model with DWBC. The condition ω2 =ω5 = 0
may be reached from the general parametrization (2.3) by renormalizing the weights ωi by an
overall factor into projectively equivalent weights ω′

i = 4eiµωi and taking the limit µ→+i∞10.
This limit corresponds to sending the spectral parameter t → 0. This results in renormalized
20V weights satisfying ω′

2 =ω′
5 = 0, as desired, and

ω′
0 =ω3 = sin(λ+η) , ω′

1 = sin(λ−η)e2iη , ω′
6 = sin(λ−η)e−2iη , ω′

4 = sin(2η) .

Here we recognize the parametrization a = sin(λ+ η), b = sin(λ− η) and c = sin(2η) of the
usual 6V model, apart from a phase factor in ω′

1 and ω′
6. After removing the diagonals of the

20V configurations, which are all fixed by the boundary condition, all the nodes originally
weighted by ω0 or ω3 lead to a-type vertices of the 6V model and receive the correct weight
a. Similarly, all the nodes originally weighted by ω4 lead to c-type vertices of the 6V model
and receive the correct weight c. The situation for nodes weighted by ω1 or ω6 is slightly more
subtle: those under the second diagonal (included for DWBC1, excluded for DWBC2) receiving
a weight ω1 (resp. ω6) lead to 6V nodes of type b with two adjacent horizontal (resp. vertical)
edges, while those above the second diagonal receiving a weightω1 (resp. ω6) lead to 6V nodes
of type b with two adjacent vertical (resp. horizontal) edges. These nodes receive a weightω′

1 =
e2iηb (resp. ω′

6 = e−2iηb). Fortunately, in all 6V DWBC configurations, we have the conservation
law that the number of b-type nodes with horizontal, resp. vertical edges above any diagonal
line parallel to the second diagonal are identical11. This allows to replace ω′

1 and ω′
6 by κω′

1
and κ−1ω′

6 for any non-zero κ, hence, by choosing κ= e−2iη, to assign the correct weight b to
all these nodes.

As for the arctic curve of the 6V model with DWBC, it is obtained directly from that of the
20V by applying the same µ→+i∞ limit in the explicit expression of Theorem 5.1. In practice,
only the “normal” and “shear” portions (and their 180◦ rotation images) are necessary, while
the “final” portion becomes redundant. More precisely, we get

Theorem 8.1. The arctic curve for the 6V model with DWBC at arbitrary admissible values of
the parameters η and λ (0 < η < λ < π−η) is made generically of two portions, denoted “nor-
mal” and “shear” with their images under 180◦ rotation. The two branches have respectively

10Strictly speaking, this value of µ exits the allowed domain (2.4) for positive weights but this is corrected by
the renormalization ωi →ω′

i .
11This can be seen for instance in the dual language of integer height variables [BL15] at the center of the

plaquettes: the height along diagonals varies only at the crossing of a b-type vertex and increases/decreases by
2 according to its vertical/horizontal nature. For DWBC, the difference of height between the two ends of each
diagonal line is zero, hence the two types of b-type vertices are equinumerous along each diagonal, hence also
above each diagonal.
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parametric equations:

Normal: xn(ξ) = 1+ ∂ξRn(ξ)

∂ξSn(ξ)
, yn(ξ) = Rn(ξ)−Sn(ξ)

∂ξRn(ξ)

∂ξSn(ξ)
, ξ ∈ [0,π−λ−η]

Shear: xs(ξ) = 1+ ∂ξRs(ξ)

∂ξSs(ξ)
, ys(ξ) = Rs(ξ)−Ss(ξ)

∂ξRs(ξ)

∂ξSs(ξ)
, ξ ∈ [−(λ−η),0]

where

Rn(ξ) = Rs(ξ) = (
cot(ξ+λ−η)−cot(ξ)+αcot(αξ)−αcot(α(ξ+λ−η))

) sin(ξ+λ+η)sin(ξ+λ−η)

sin(2η)
,

Sn(ξ) = sin(ξ+λ+η)sin(ξ+λ−η)

sin(ξ)sin(ξ+2η)
, Ss(ξ) = sin(ξ+λ+η)sin(ξ+λ−η)

sin(2η−ξ)sin(ξ))
,

and α=π/(π−2η).

This matches the known expressions of [CP10a] for the 6V model with DWBC in its disor-
dered phase.

8.2. Uniform 20V vs QTHADT and the ASM-DPP correspondence. Let us discuss a few re-
marks and open questions. The first remark concerns the relation between the arctic curve
of the 20V model with uniform weights (i.e. η = π/8, λ = 5π/8 and µ = 0 so that all the ωi for
i = 0, . . . ,6 are equal) and that of the QTHADT model withγ= 1 (i.e. η=π/8). Figure 35 displays
the two corresponding arctic curves, as obtained from our expressions above. First, we note
that the two curves share a common portion, corresponding to what we called the “normal”
portion in the 20V model. This property is a direct consequence of the refined bijection proved
in [DFG19c] (see Theorem 5.2) between the uniform 20V model configurations having, in the
path language, their uppermost path hitting the right boundary at height ` (or equivalently,
via the x ↔ y symmetry, the configurations whose uppermost path leaves the upper boundary
after ` steps) and the QTHADT configurations having, in the Schröder path language, a path
starting at position (0,n) and leaving the upper boundary of the fundamental domain after `
steps. We then note that, for the QTHADT problem at γ = 1, the entire arctic curve is the an-
alytic continuation of the “normal” portion, i.e. it is obtained by extending the original range
of the parameter ξ in (7.1) from [0,π/4] (”normal” portion) to [−π/4,π/2] (arctic curve in the
fundamental domain), then to [−11π/8,13π/8], leading to the desired full fourfold symmetric
algebraic curve (4.5) with its four cusps. Finally, as already discussed in Section 4.2, the “shear”
portion of the arctic curve of the 20V model is related to this analytic continuation by a simple
shear transformation sending the y = 0 line onto the line x + y = 1. More precisely, the ‘shear”
portion of the arctic curve of the 20V model is itself the image under the shear transformation
y → 1−x+y of the portion of arctic curve of the QTHADT problem between the tangency point
on the right boundary x = 1 and the cusp at y = 0 in the fundamental domain (ξ ∈ [π/4,π/2]).
All the other portions of the 20V model arctic curve are obtained by symmetry arguments.
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FIGURE 35. The arctic curve of the uniform 20V model with DWBC (in purple) and
that of the QTHADT (Holey Aztec) model withγ= 1 (in red) share a common portion (in
violet). For the QTHADT model, the remaining part is the analytic continuation of this
shared portion, namely the algebraic curve (4.5). When applied to the correct portion
(that joining the tangency point on the right boundary to the cusp), the image (dashed)
of this analytic continuation by the shear transformation y → 1− x + y reproduces the
“shear” portion of the arctic curve of the 20V model.

Remarkably, we find exactly the same pattern of correspondences if we compare the arctic
curve for cyclically symmetric rhombus tilings of a Holey Hexagon, in bijection with descend-
ing plane partitions (DPP) [Kra06] to that of the uniform 6V model (with weights a = b = c)
with DWBC, in bijection with Alternating Sign Matrices (ASM). The ASM-DPP correspondence
was proved with its highest level of refinement in [BDFZJ12, BDFZJ13]. In the Holey Hexagon
model, the tiled domain is now formed of a fundamental domain with a rhombic shape drawn
on the triangular lattice, and two extra copies of this domain obtained by two 120◦ rotations
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FIGURE 36. The arctic curve of the uniform 6V model with DWBC (in purple) and
that of the Holey Hexagon rhombus tiling (in red) share a common portion (in violet).
For the Holey Hexagon rhombus tiling, the remaining part is the analytic continuation
of this shared portion, forming an ellipse. When applied to the correct portion (that
joining the tangency point (1,1/2) on the right vertical boundary to the tangency point
(1/2,−1/2) on the lower diagonal boundary), the image (dashed) of this analytic con-
tinuation by the shear transformation y → 1− x + y reproduces a portion of the arctic
curve of the 6V model. This pattern of correspondences is in all ways identical to that
of Figure 35.

around a central triangular hole of size 2×2×2 so as to form a quasi-regular hexagon of shape
n × (n + 2)×n × (n + 2)×n × (n + 2). The tiles are elementary rhombi covering two adjacent
triangles and we demand that the tiling configurations be symmetric under 120◦ rotation. If
we redress the fundamental domain into a square, the tiling problem has a Schröder path for-
mulation which corresponds precisely to our setting but with paths without diagonal steps, i.e.
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to the case γ = 0 (η = π/6). In this redressed geometry, the arctic curve of the cyclically sym-
metric Holey Hexagon rhombus tiling is thus obtained via (7.1) with η=π/6, upon taking ξ in
the range ξ ∈ [0,π/3] (“normal” portion), extended to ξ ∈ [−π/6,π/2] (arctic curve in the fun-
damental domain), then to ξ ∈ [−5π/6,7π/6], leading to the complete ellipse x2+y2−x y = 3/4
[CP10b] (see Figure 36). As for the arctic curve of the uniform 6V model, it is made of the very
same “normal” portion12, together with three symmetric portions obtained by successive 90◦

rotations around the center of the fundamental domain. Again, as displayed in Figure 36, the
first of these extra portions (that following the “normal” portion clockwise) is the image by the
shear transformation y → 1− x + y of the proper portion of arctic curve of the Holey Hexagon
problem, that between the tangency point (1,1/2) on the right boundary and the tangency
point (1/2,−1/2) on the lower diagonal boundary (ξ ∈ [π/3,2π/3]). All these correspondences
follow the same global scheme as that of Figure 35 for the 20V/QTHADT relation. These may
be occurrences of a more general phenomenon for correspondences between osculating vs
non-intersecting path problems, yet to be investigated.

8.3. Extension to more general weights. Clearly the parametrization (2.3) for the weights of
the 20V model covers only a small subset of the allowed values. In particular, the restriction
to real values of η confines the associated 6V model into its so-called disordered phase. The
result (3.7) of [CP10a] for the asymptotics of the one-point function H 6V

n (σ) was generalized
in [CPZJ10] for the 6V model with DWBC in its antiferroelectric regime. It should therefore be
possible to extend our results to this regime, namely, in the parametrization (2.3), to the case
of imaginary values of η, λ and µ. The expressions of [CPZJ10] involve elliptic functions and
this extension might in practice lead to quite involved calculations.

Another question concerns the symmetry of the weights under reversal of the edge orien-
tations. This symmetry was imposed for convenience throughout the paper and guarantees
that the arctic curve of the 20V model is symmetric under 180◦ rotation. In the case of the
6V model with DWBC, it is easily shown that there are enough sum rules for the numbers of
the different types of vertices to ensure that the symmetry of weights under edge orientation
reversal can be assumed without loss of generality (see for instance [CS16]). This is no longer
the case for the 20V model and non symmetric weights may lead to more general arctic curves
without the 180◦ rotation symmetry, a situation yet to be explored.

Another direction of exploration concerns other boundary conditions. In [DFG19c], an-
other type of boundary conditions for the 20V model, called DWBC3, was introduced and
shown to display nice combinatorics. These boundary conditions are expected to give rise to
a potentially simpler arctic phenomenon with an arctic curve made of a single portion sepa-
rating the liquid phase from the empty region. To derive such a curve, it would be desirable to
have more explicit expressions for the model partition function in terms of spectral parame-
ters, giving access to boundary one-point functions.

12The fact that the arctic curve of the Holey Hexagon model and that of the uniform 6V model share a common
portion is a direct consequence of the refined ASM-DPP correspondence shown in [BDFZJ12].
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Finally, a number of non-intersecting path problems were solved in a more general “Q-
deformed” framework, which consists in introducing an extra path weight QA involving the
area A below the path. In particular, the tangent method was applied successfully to some
of these models to obtain the corresponding Q-deformed arctic curve and we may wonder
whether this generalization can be carried out in our present setting for the QTHADT model.
Such a Q-deformation was carried out for DPP but not for ASM, hence the ‘Q-deformed” ver-
sion of the 20V model with DWBC1 or 2 remains a challenge like that of the 6V model with
DWBC.

APPENDIX A. THE RELATION BETWEEN THE 6V AND 20V REFINED PARTITION FUNCTIONS IN

ALL GENERALITY

The aim of this Appendix is to prove the general relations (3.1)-(3.2) and (3.4)-(3.5) relating
the restricted refined partition functions

Z 20VBC 2 –
n (τ) =

n∑
L=1

Z 20VBC 2 –
n;L τL−1 , Z 20VBC 2 �

n (τ) =
n∑

L=1
Z 20VBC 2 �

n;L τL−1

or their tilde counterparts to the refined partition function

Z 6V
n (σ) =

n∑
L=1

Z 6V
n;Lσ

L−1 .

The relation (3.1) may be obtained by attaching a different spectral parameter wθ (instead
of w) to the last column j = n. By unravelling the configurations of the 20V model with DWBC2
to a configuration of the 6V model on the sub-lattice 1, we have the relation, depicted in Fig-
ure 37:

(A.1) Z 20VBC 2
n [θ] =

(a2a3

t 1/3

)n2 (
a3[θ]

a3[1]

)n

Z 6V
n [θ] .

Here we shall use a different notation with brackets (as in Z 6V
n [θ]) to indicate that we deal

with a model where the last column has a modified spectral parameter wθ. It should not
be confused with the notation with parentheses (as in Z 6V

n (σ)) where all the column spectral
parameters are left equal to w but where we deal with the refined partition function defined
above keeping track of the position where the uppermost path hits the right boundary. The
notation ai [θ] (respectively bi [θ] and ci [θ]), i = 1,2,3, also refers to the weights13 obtained via
the general formula (2.2) with w → wθ. Let us now discuss precisely the connection between

13As before, when dealing with the 6V model, we use vertex weights normalized to (a,b,c) as in (2.5). The
change w → wθ then affects the vertex weights in the last column, equal to (a × a1[θ]

a1[1] ,b × b1[θ]
b1[1] ,c × c1[θ]

c1[1] ).
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1

32

(a1, b1, c1) (a, b, c)

a2[θ] = a2

a3

ωi[θ]

(a1[θ], b1[θ], c1[θ]) = (a1
a1[θ]
a1[1]

, b1
b1[θ]
b1[1]

, c1
c1[θ]
a1[1]

)

a2a2

a3[θ] = a3
a3[θ]
a3[1]

(a1, b1, c1)

(aa1[θ]a1[1]
, bb1[θ]b1[1]

, c c1[θ]a1[1]
)

3

12

FIGURE 37. The unraveling of Figure 7 in the presence of a spectral parameter wθ

in the last column that modifies the weights for the nodes within the red boxes. In
practice, only the weights of sub-lattices 1 and 3 are modified (since those of sub-lattice
2 do not involve the modified spectral parameter). We thus have a modified weight
a3[θ] = a3 × a3[θ]

a3[1] for the n nodes in the upper red box labelled 3, unmodified weight
a2[θ] = a2 for the nodes in the red box labeled 2, and after the same renormalization as
in Figure 7 to go from (a1,b1,c1) to (a,b,c), modified weights (a× a1[θ]

a1[1] ,b× b1[θ]
b1[1] ,c× c1[θ]

c1[1] )
in the red box labeled 1. This leads to the relation (A.1).
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the two objects Z 6V
n [θ] and Z 6V

n (σ): by decomposing Z 6V
n [θ] according to the position L where

the uppermost path hits the right boundary, we have

Z 6V
n [θ] =

n∑
L=1

Z 6V
n;L

(
b1[θ]

b1[1]

)L−1 c1[θ]

c1[1]

(
a1[θ)]

a1[1]

)n−L

=
(

a1[θ]

a1[1]

)n c1[θ]a1[1]

c1[1]a1[θ]

n∑
L=1

Z 6V
n;L(σ[θ])L−1

︸ ︷︷ ︸
=Z 6V

n (σ[θ])

with

σ[θ] = b1[θ]a1[1]

b1[1]a1[θ]
.

Similarly, decomposing Z 20VBC 2
n [θ] according to the position L where the uppermost path hits

the right boundary and to whether the step before the hitting point was horizontal or diagonal,
we have

Z 20VBC 2
n [θ] =

n∑
L=1

Z 20VBC 2 –
n;L

(
ω1[θ]

ω1[1]

)L−1 ω4[θ]

ω4[1]

(
ω0[θ]

ω0[1]

)n−L

+
n∑

L=1
Z 20VBC 2 �

n;L

(
ω1[θ]

ω1[1]

)L−1 ω2[θ]

ω2[1]

(
ω0[θ]

ω0[1]

)n−L

=
(
ω0[θ]

ω0[1]

)n (
ω4[θ]ω0[1]

ω4[1]ω0[θ]

n∑
L=1

Z 20VBC 2 –
n;L (τ[θ])L−1

︸ ︷︷ ︸
=Z

20VBC 2 –
n (τ[θ])

+ω2[θ]ω0[1]

ω2[1]ω0[θ]

n∑
L=1

Z 20VBC 2 �
n;L (τ[θ])L−1

︸ ︷︷ ︸
=Z

20VBC 2�
n (τ[θ])

)

with

τ[θ] = ω1[θ]ω0[1]

ω1[1]ω0[θ]
= (b1[θ]a2[θ]b3[θ])(a1[1]a2[1]a3[1])

(b1[1]a2[1]b3[1])(a1[θ]a2[θ]a3[θ])
= b1[θ]b3[θ]a1[1]a3[1]

b1[1]b3[1]a1[θ]a3[θ]
.

Using
ω0[θ]

ω0[1]
= a1[θ]a2[θ]a3[θ]

a1[1]a2[1]a3[1]
= a1[θ]a3[θ]

a1[1]a3[1]

since a2 is not changed by the replacement w → wθ, we obtain from (A.1)

(A.2)
(a2a3

t 1/3

)n2

Z 6V
n (σ[θ]) = Z 20VBC 2 –

n (τ[θ])+ g (σ[θ])Z 20VBC 2�
n (τ[θ])

with

g (σ[θ]) = c1[1]a1[θ]

c1[θ]a1[1]

ω2[θ]ω0[1]

ω2[1]ω0[θ]
= c1[1]a1[θ]

c1[θ]a1[1]

(b1[θ]a2[θ]c3[θ])(a1[1]a2[1]a3[1])

(b1[1]a2[1]c3[1])(a1[θ]a2[θ]a3[θ])

= c1[1]b1[θ]c3[θ]a3[1]

c1[θ]b1[1]c3[1]a3[θ]
.



ARCTIC CURVES OF THE TWENTY-VERTEX MODEL WITH DOMAIN WALL BOUNDARIES 63

Note the absence of prefactor in front of Z 20VBC 2 –
n (τ[θ]) in (A.2), due to the identity

c1[1]a1[θ]

c1[θ]a1[1]

ω4[θ]ω0[1]

ω4[1]ω0[θ]
= c1[1]a1[θ]

c1[θ]a1[1]

(c1[θ]a2[θ]a3[θ])(a1[1]a2[1]a3[1])

(c1[1]a2[1]a3[1])(a1[θ]a2[θ]a3[θ])
= 1 .

In particular, if we wish to impose a strict proportionality relation between Z 20VBC 2
n (τ[θ]) and

Z 6V
n (σ[θ]), i.e. impose g (σ[θ]) = 1, we must impose ω2[θ]

ω2[1] =
ω4[θ]
ω4[1] for all θ, i.e. µ=λ−5η.

The relation between τ and σ and that between g and σ are obtained by eliminating θ. We
obtain

τ=σ
σ sin(λ−η)sin

(
λ+3η−µ

2

)
− sin(λ+η)sin

(
λ−η−µ

2

)
σ sin(λ−η)sin

(
λ−η−µ

2

)
− sin(λ+η)sin

(
λ−5η−µ

2

) × sin
(
λ+3η+µ

2

)
sin

(
λ−η+µ

2

)
g (σ) =

σsin(2η)sin
(
λ+3η+µ

2

)
σ sin(λ−η)sin

(
λ−η−µ

2

)
− sin(λ+η)sin

(
λ−5η−µ

2

)
(A.3)

which, with (A.2), is nothing but (3.1)-(3.2).
Using the original parametrization

σ(ξ) = sin(λ+η)sin(λ−η+ξ)

sin(λ−η)sin(λ+η+ξ)
,

we get

τ(ξ) =
sin(λ+η)sin

(
λ+3η+µ

2

)
sin(ξ+λ−η)sin

(
ξ+ λ−η+µ

2

)
sin(λ−η)sin

(
λ−η+µ

2

)
sin(ξ+λ+η)sin

(
ξ+ λ+3η+µ

2

)
g (σ(ξ)) =

sin(ξ+λ−η)sin
(
λ+3η+µ

2

)
sin(λ−η)sin

(
ξ+ λ+3η+µ

2

) .

(A.4)

By attaching a different spectral parameter zθ̃ (instead of z) to the top line, we get by a similar

argument the relation(a2a3

t 1/3

)n2

Z 6V
n (σ̃[θ̃]) = Z̃ 20VBC 2 |

n (τ̃[θ̃])+ g̃ (σ̃[θ̃])Z̃ 20VBC 2�
n (τ̃[θ̃])

where

σ̃[θ̃] = b1[θ̃]a1[1]

b1[1]a1[θ̃]
, τ̃[θ̃] = b1[θ̃]b2[θ̃]a1[1]a2[1]

b1[1]b2[1]a1[θ̃]a2[θ̃]
, g̃ (σ̃[θ̃]) = c1[1]b1[θ̃]c2[θ̃]a2[1]

c1[θ̃]b1[1]c2[1]a2[θ̃]
,

i.e. expressions where the sub-lattices 2 and 3 have been exchanged. By eliminating θ̃, we ob-
tain for τ̃ and g̃ the same relation (A.3) as above up to a simple substitution µ→−µ. This is
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nothing but the desired relations (3.4)-(3.5). As a consequence of the above symmetry, tak-
ing for σ̃ the same parametrization as that for σ above, this leads for τ̃ and g̃ to expressions
identical to (A.4) with µ→−µ. Note that the overall prefactor(a2a3

t 1/3

)n2

=
(
sin

(
λ+3η−µ

2

)
sin

(
λ+3η+µ

2

))n2

is itself invariant under µ→−µ.

APPENDIX B. ENUMERATION OF WEIGHTED SCHRÖDER PATHS BY TRANSFER MATRIX

We wish to compute the partition function Y 20V
(n,L)→(n+M ,0) = Y 20V

(n,L)→(n+M ,0)(β1,β2,β3) for the
escaping path, namely a weighted Schröder path from (n,L) to (n +M ,0) with (horizontal, di-
agonal and vertical) steps (1,0), (1,−1) and (0,1) and weights corresponding to the 20V model
at each vertex visited by the path. The parameters β1, β2 and β3 denote suitably chosen
weights for the first node of the path (the escape point), to be determined according to di-
rection of the last step before the escape point. Note that the empty space around the path
also receives a weight ω0 per empty vertex. Factoring those weights, the remaining weight is
ωi /ω0 per vertex visited by the path, for which the local configuration corresponds to a vertex
with weight ωi in Figure 6. To compute Y 20V

(n,L)→(n+M ,0), we use a transfer matrix technique. We
introduce the 3×3 matrix T with the following entries:

T =


• • •
• • •
• • •


•
•
•

• • •

= 1

ω0

 ω1u ω2u ω4u
ω2uv ω3uv ω5uv
ω4v ω5v ω6v



Multiplication by T on the left amounts to adding one extra step to paths, with the suitable 20V
model normalized weightsωi /ω0 and some extra weights u,uv, v per horizontal, diagonal and
vertical step respectively so as to keep track of the global vertical and horizontal shifts. Then
the generating function for the partition functions Y 20V

(n,L)→(n+M ,0) reads:

Y(u, v) =
∑

L,M≥0
uL v M Y 20V

(n,L)→(n+M ,0) = 1+ (1,0,0) (I−T )−1

 β1u
β2uv
β3v


The final state (1,0,0) corresponds to a vertical final step, as in the geometry of Figure 8. As
for the initial state (β1u,β2uv,β3v)t , it includes the special β weights for the escape point
depending on its local environment in the geometry at hand (in practice, the value of these
weights is irrelevant as they do not affect the large n asymptotics, as shown below). The quan-
tity Y(u, v) is a rational fraction Y(u, v) = g (u, v)/∆(u, v) where g (u, v) is a polynomial which
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implicitly depends on the β weights and

∆(u, v) = det(I−T ) = 1−α1u −α2v −α3uv −α4u2v −α5uv2 −α6u2v2

with

α1 =
ω1

ω0
, α2 =

ω6

ω0
, α3 =

ω0ω3 +ω2
4 −ω1ω6

ω2
0

α4 =
ω2

2 −ω1ω3

ω2
0

, α5 =
ω2

5 −ω6ω3

ω2
0

, α6 =
2ω2ω4ω5 +ω1ω6ω3 −ω3ω

2
4 −ω1ω

2
5 −ω6ω

2
2

ω3
0

.

(B.1)

The large n,L = `n, M = m n asymptotics of Y 20V
(n,L)→(n+M ,0) are governed by ∆(u, v) only. In-

deed, for large L, M ∝ n:

Y 20V
(n,L)→(n+M ,0) =

∮
du

2iπuL+1

d v

2iπv M+1
Y(u, v)

∝
∮

du

2iπuL+1

d v

2iπv M+1
g (u, v)

∑
p≥0

(α1u +α2v +α3uv +α4u2v +α5uv2 +α6u2v2)p

=
∮

du

2iπuL+1

d v

2iπv M+1
g (u, v)

∑
L′,M ′

uL′
v M ′ ∑

P1,P2,...,P6≥0
P1+P3+2P4+P5+2P6=L′
P2+P3+P4+2P5+2P6=M ′

(
P1 +P2 +P3 +P4 +P5 +P6

P1,P2,P3,P4,P5,P6

)
6∏

i=1
α

Pi
i .

For large n, the integral selects values of L′ and M ′ that differ from L and M by finite amounts
bounded by the degree of the polynomial g (u, v). Taking L′ = `n +O(1) and M ′ = m n +O(1),
we obtain the leading behavior for large Pi = npi :

Y 20V
(n,n`)→(n(1+m),0) ∝

∫ 1

0
d p3d p4d p5d p6en S(`,m,p3,p4,p5,p6)

where

S(`,m, p3, p4, p5, p6) = (`+m −p3 −2p4 −2p5 −3p6)Log(`+m −p3 −2p4 −2p5 −3p6)

− (`−p3 −2p4 −p5 −2p6)Log

(
`−p3 −2p4 −p5 −2p6

α1

)
− (m −p3 −p4 −2p5 −2p6)Log

(
m −p3 −p4 −2p5 −2p6

α2

)
−

6∑
i=3

pi Log

(
pi

αi

)
.

(B.2)

A saddle point estimate then allows to write

Y 20V
(n,n`)→(n(1+m),0) ∝ en S(`,m)

where S(`,m) is equal to S(`,m, p3, p4, p5, p6) taken at the value of p3, p4, p5 and p6 which
maximizes this latter quantity.
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The above expression can be adapted to a situation where the αi for i ∈ I ⊂ {3, · · · ,6} vanish.
In this case, the recipe consists in simply dropping all the terms with indices i ∈ I .

Finally, the expression (B.2) can also be used to compute the asymptotics of the escape path
partition function in the “shear” geometry, i.e. the function S̄(`,m) defined via

Ȳ 20V
(n,n+L−1)→(n+M ,2n) ∝ en S̄(`,m) .

Indeed, the change of geometry, which corresponds to an up-down symmetry together with a
change of weights from the original valuesωi to the inverted 20V model values ω̄i of Figure 13
is entirely accounted for by changing in the above expression for S(`,m, p3, p4, p5, p6) both `

into 1−` and αi into ᾱi , where the αi ’s are obtained via (B.1) with ωi changed into ω̄i . From
the equivalence Figure 13 , the ᾱi ’s are alternatively obtained from the αi ’s by exchanging the
role of ω0 and ω1, and simultaneously that of ω2 and ω4, keeping ω3, ω5 and ω6 unchanged.
In terms of angular parameters, this change corresponds to the involution

(η,λ,µ) ↔
(
η,π− λ+η+µ

2
,π− 3λ+η−µ

2

)
.
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