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1-State 2 transition; Plastoquinone pool, oxidized/reduced; ( C reinhardtii ) We have studied kinase-dependent state transitions in vivo using photosynthetic mutants from the green alga Chlamydomonas reinhardtii lacking in quinone-binding proteins. The aim of our study was to identify proteins involved in the plastoquinone-dependent activation of the LHC-kinase. Whereas mutants totally devoid of the quinone-binding subunits D1 and D2 of Photosystem II showed unaltered state transitions, mutants lacking the b 6 f complexes were incapable of state transitions. These mutants were blocked in State 1, which is indicative of either the absence of the LHC-kinase responsible for the regulation, or of the loss of a component responsible for the activation of this enzyme. These two hypotheses are discussed in light of (i) the patterns of phosphorylation of the thylakoid membrane proteins observed in the b 6 f mutants and (ii) the characteristics of the kinase activities recovered from their thylakoids.

Introduction

Since the first report that state transitions in higher plants were associated with a reversible phosphorylation of some of the LHC subunits [1], several kinases have been identified and purified from spinach thylakoid membranes [2][3][4][5]. The LHC-kinase activity in higher plants as well as in Abbreviations: LHC, light-harvesting chlorophyll ab protein complex; PS, Photosystem; CF, coupling factor; PQ, plastoquinone; Fmax, maximal fluorescence level; PC, plastocyanin; Fe-S, iron-sulfur centre; TMBZ, 3,3,5,5'-tetramethylbenzidine; DBMIB, 2,5 -dibromo-3-methyl-6-isopropyl-p-benzoquinone; PMSF, phenylmethylsulphonyl fluoride; NQNO, 2-n-nonyl-4hydroxyquinoline N-oxide; DNP-INT, dinitrophenyl ether iodonitrothymol; Hepes, 4-(2-hydroxyethyl)-l-piperazineethanesulphonic acid.
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green algae has been reported to be regulated in situ by the redox state of the plastoquinones [1,6] which carry electron transport from Photosystem II to cytochrome b6f complexes in the photosynthetic electron transfer chain. The molecular mechanism by which this regulation process occurs remains largely unknown and no plastoquinone-dependent activity has as yet been reported for any of the thylakoid kinases that have been purified.

A possible association between a kinase and an integral membrane protein containing plastoquinone-binding sites, with different affinities depending on the redox state of the molecule, would elicit an interaction between a kinase catalytic site and this regulation site. We investigated this possibility using photosynthetic mutants from the green algae Chlamydomonas reinhardtii, lacking in either of the quinone-binding proteins identified so far in the thylakoid membranes. These include PS II mutants totally devoid of the 0005-2728/88/$03.50 © 1988 Elsevier Science Publishers B.V. (Biomedical Division) quinone-binding subunits D1 or D2 [7,8] and mutants lacking in cytochrome b6f complexes [9].

A preliminary report of this work has been published in Ref. [START_REF] Lemaire | Progress in Photosynthesis Research[END_REF].

Material and Methods

Wild-type and mutant strains of C. reinhardtii were grown in Tris-acetate/phosphate medium under continuous illumination (300 Ix) using cool fluorescent light.

The F34 mutant lacks the PS II centres but still shows membrane insertion of D1 and D2 polypeptides [START_REF] Delepelaire | [END_REF]; FUD7 and FUD47 mutants lack the PS II centres and are totally devoid of D1 and D2 polypeptides, respectively [7,8]. F18 and FUD4 mutants lack cytochrome b6f complexes [9]. ac21 and ac208 mutants lack the Rieske protein and plastocyanin, respectively [START_REF] Levine | Proc. Natl. Acad. Sci. USA[END_REF][START_REF] Gorman | Proc. Natl. Acad. Sci[END_REF].

ac21F34 and ac208F34 double mutants were obtained by crossing the corresponding nuclear single mutants according to Ref. 14. Tetrads were dissected and double mutant clones, screened by fluorescence as PS II mutants [15], were selected out of nonparental ditype tetrads. FUD7F18 double mutant was obtained by crossing the FUD7 chloroplast mutant, mt +, by the F18 nuclear mutant, mr-. Double mutants were selected after checking cytochrome deficiencies -by TMBZ staining after gel electrophoresis [16] -in whole cells taken from the four clones of a tetrad with a PS II-deficient phenotype.

A typical experiment devised to compare the amount of 32p incorporated in thylakoid polypeptides from cells having a plastoquinone pool oxidized (analogous to state 1) or reduced (analogous to state 2) was as follows: 200 ml of cells in midexponential phase (3.106 cells/ml) were resuspended in Tris-acetate at a chlorophyll concentration of 25/~g/ml and incubated in dim light for 120 min in the presence of 32p (200/~Ci//~mol) at 1 /~Ci/ml. Cells were then washed in 5 mM Hepes/0.3 M sucrose/10 mM EDTA and resuspended in the same buffer at a chlorophyll concentration of 50 /~g/ml. Half of the sample was placed in the anaerobic state by an incubation in a tightly capped vessel in the presence of 2 mg/ml glucose oxidase and 20 mM glucose. The other half was placed in a large flask under strong agitation in order to maximize the air/liquid medium interface. These anaerobic and aerobic treatments were performed in the dark for 40 rain. Cells were then rapidly broken in a pre-cooled French press at 35 MPa in the presence of 10 mM NaF and 200 /~M PMSF. Thylakoid membrane preparations, gel electrophoresis and autoradiography were then performed as previously described [6].

Fluorescence induction experiments at room temperature were performed as previously described [17] using intact cells pretreated as for 32p-labelling experiments, at a concentration of 0.4 A680 rim-Stationary labelling of whole cells was performed under 300 lx illumination by adding [14C]acetate (1/~Ci/ml) to cultures at 10 4 cells/ml. Cultures were harvested after seven cell divisions (2" 10 6 cells/ml) and processed for thylakoid purification.

For K m determination, purified thylakoid membranes (200 #g chlorophyll/ml) were resuspended in a reaction mixture containing 20 mM Hepes (pH 7.5)/0.1 M sucrose/10 mM NaC1/10 mM MGC12/2.5-500 /~M [~--32]ATP (50 /~Ci//~mol). The reaction was continued for 2 min in the light at room temperature. The incubation time was chosen in the time-range of linear 32p_ incorporation in the thylakoid membranes. The reaction was terminated by a 10-fold dilution with a chilled Mg2+-depleted Hepes buffer containing 10 mM NaF and 2 mM unlabelled ATP. After centrifugation, the membrane pellet was washed twice in the same buffer, resuspended in a small volume of Hepes buffer (500/~g chlorophyll/ml) and Cerenkov radioactivity was counted.

Preparation of kinase-enriched fractions was performed using a modification of the procedure for CF1CF 0 extraction developed by Pick and Racker [18] which we have already applied to the preparation of b6f complexes [9]. After octylglucoside/cholate membrane solubilization and ammonium sulphate fractionation of the crude extract, the 37%-48% fraction was subjected to sucrose gradient centrifugation. Gradient fractions (100 /~1) were then assayed for kinase activity according to Linet al. [2] in the presence of 100 /xM [z-a/P]ATP (200 cpm/pmol) using 500 /~g casein or lysine-rich hlstone-III as a substrate.

The cytochrome content in the gradient fractions was estimated spectrophotometrically as previously described [9].

Results

We first compared the extent of fluorescence quenching induced, at room temperature, by the reduction of the plastoquinone pool in three strains deficient in PS II centres, but showing (F34) or not (FUD7 and FUD47) membrane insertion of either of the two PS II quinone-binding subunits, D1 and D2. These differences in polypeptide insertion have been described previously [7,8,[START_REF] Delepelaire | [END_REF]. Independent of their content in D1 and D2, these PS II mutants had a lower fluorescence yield in the anaerobic state (Table I, columns 1-3), as expected for cells placed in State 2 [6].

Quinone-binding sites also exist on the brf complex. Therefore we looked for the redox control of the plastoquinone pool on the fluorescence yield at room temperature in strains lacking this complex. The comparison of the fluorescence yields at Fma ~ under reducing conditions expressed as a function of that in oxidizing conditions in strains having or not the b6f complex are shown in Table I, columns 3-6. The fluorescence decrease at Fm~ observed in the wild type in anaerobic conditions is not observed in the FUD4 chloroplast mutant lacking the b6f complex. The Fma x in the mutant remains at about the same level as it is in aerobic cells in the wild type (see values between brackets in Table I), which is characteristic of State 1. A similar observation arises from the comparison of the fluorescence yields in PS II mutants containing (FUD7) or not containing (FUD7F18) the b6f complex.
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The efficiency of reduction of the plastoquinones by the anaerobic treatment in brf mutants has been assessed previously [21] and causes a small increase at Fma x (Table I, columns 4 and 5) due to the lower chemical quenching of the plastoquinones in their reduced form [START_REF] Vernotte | Biochim[END_REF]. Thus, independent of the nuclear -in the case of F18 -or chloroplast -in the case of FUD4origin of the mutation, strains lacking the b6f complex do not display the fluorescence changes at room temperature which were to be expected from State 1-State 2 transitions.

We then looked for a possible absence of LHC phosphorylation in vivo in b6f mutants. The autoradiogram in Fig. 1 clearly shows that a number of thylakoid polypeptides were still phosphorylated in these mutants. The four PS II polypeptides which were phosphorylated in the wild-type cells [21] were still phosphorylated in the FUD4 mutant. These include the 47 kDa apoprotein of CPIV, analogous to the 43 kDa from PS II in higher plants, the quinone-binding polypeptide, D2, and the two small subunits, L5 and L6, in the 10 kDa region. These four bands were absent, as expected, in the two strains lacking PS II centres, strains FUD7 and FUD7F18. The other labelled bands in the wild type were as previously described [21], four LHC subunits (numbered 10, 11 13 and 17 [START_REF] Chua | Proc. Natl. Acad. Sci. USA[END_REF]) and a 40 kDa chlorophyll-binding polypeptide, numbered 9, the function of which is unknown. Two of these bands were no longer phosphorylated in the b6f mutants (FUD4 and FUD7F18) and correspond to the two LHC subunits 13 and 17.

The increase in 32p-labelling upon reduction of the PQ pool in cells from the wild-type or the FUD7 mutant was no longer observed in the two b6f mutants. The amount of labeling remained low under aerobic and anaerobic conditions. This is consistent with a block in State 1 in the latter mutants, as already suggested by their high fluorescence yield at room temperature.
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That mutant strains lacking in b6f complexes were blocked in State 1 suggested either an absence of the LHC-kinase or the loss of its activation site. In Fig. 2 is an autoradiogram of the polypeptide patterns from thylakoid membranes puri-fied from FUD4 and wild-type cells grown in the presence of [14C]acetate. Besides the deficiencies in b6f complex subunits previously reported in the FUD4 mutant [9], we noted a deficiency in a 40 kDa polypeptide (arrow on Fig. 2). We were unable to detect this deficiency using conventional staining procedures such as Coomassie blue staining or silver staining. The deficiency in a poor stainable 40 kDa polypeptide in b6f mutants might have been indicative of a possible association between a kinase and b6f complexes. We therefore looked for kinase activity in b6f complex preparations. In Fig. 3 are shown the distributions of b6f complexes and kinase activities in the gradient used in the last step of the purification procedure. The fractions showing enrichment in kinase activity stood at lower sucrose density than the b6f complexes. Moreover, kinase activity was still recovered from similar gradient fractions in a preparation using thylakoid membranes from the FUD4 mutant lacking the b6f complex. In both cases the activity with histone-III as a substrate was only 10% that obtained with casein. The respective kinase activities extracted from the two strains were compared in several ways, using casein as a substrate (Table II); the activity recovered from FUD4 membranes was only 36% of that recovered from the wild type, on a chlorophyll basis. However this difference had to be corrected for possible variations in the yield of the preparation between the two strains. This was assessed by comparing the relative yields of recovery of CF 1-CF 0 complexes which were in similar amounts in the starting membranes: the fractions containing the complex were pooled and run on an SDS-gel. We then scanned the Coomassie blue stained bands corresponding to the a and fl subunits, and observed that the yield of recovery of CF 1 was 1.7-times smaller in the FUD4 than in the wildtype preparation. The kinase activity recovered from the FUD4, when corrected by this yield parameter, measured up to 60% that recovered from the wild type.

Also shown in Table II is a comparison of the specific activities in fractions showing maximal kinase enrichment in the two strains. That from the FUD4 mutant was about 60% that from the wild type, an estimation which is consistent with the comparison of the total kinase activities extracted from the two strains. We note in Fig. 3 that the distribution of kinase activity in the b6f mutant was shifted slightly toward lower densities as compared to that in the wild type. When compared with the wild-type fraction of same density, the FUD4 fraction with maximal kinase enrichment displayed no significant decrease in specific activity. Therefore, the possibility that one type of kinase only (enriched in fractions 15-19 in the wild type on Fig. 3) would be missing from the FUD4 preparation is consistent with these mea- .20
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Fig. 3. Distributions of cytochromes b 6 and f and of kinase activity recovered from a Triton-containing sucrose gradient (dashed lines) using wild-type and FUD4 strains. Kinase activity (relative units) using casein as a substrate, was corrected by a factor of 1.7 in the FUD4 mutant (see text). Note that the distribution of kinase activity is slightly shifted toward lower densities in the FUD4 mutant as compared to the wild-type strain. a Relative units with respect to the wild-type specific activity (100). surements. However, the kinase activities in these fractions were highly unstable, and particularly sensitive to freezing (respective specific activities on a same wild-type sample before and after storage at -80°C were 457 and 122 pmol Pi/mg protein per min). The 40% kinase deficiency in the mutant should then be taken as indicative only.

The diversity in polypeptide content in the kinase-enriched fractions prevented a reliable attribution of the kinase activity to a particular silver-stained band (gels not shown).

We also studied the K m for ATP of the total phosphorylation process in the FUD4 and wildtype thylakoid membranes. These experiments were performed using purified thylakoid membranes incubated in the light (PQ pool reduced) with different concentrations of [32p]ATP, from 2.5 to 500 #M, for 2 min. These experimental conditions aimed at activating the LHC-kinase in the wild type so as to produce maximal contrast in kinase activity with that in FUD4. The data plotted as V vs. V/S (Eadie-Hofstee representation) in Fig. 4 indicated more than one phosphorylation process in the thylakoid membranes from the two strains. These data could be fitted by two K m values for ATP in each case. A 50 /~M K m was found in the wild-type as well as in the FUD4 thylakoid membranes. Computation of the value of the second K m was highly dependent on the choice of graphic representation. Nevertheless, a small but significant difference was consistently observed, with the K m computed for FUD4 mem- branes, 250 + 40/zM, being larger than that computed for wild-type membranes, 150 + 20/~M. We then looked for the possible involvement of the b6f complex in the activation process of the kinase. The subsequent experiments were undertaken on PS II mutants because they yielded larger [6] and more reproducible fluorescence changes upon state transitions than in the wild-type cell. In a first approach, we tried to mimic the absence of either of the two binding sites for plastoquinones on the b6f complexes by using specific inhibitors of each site: DNP-INT for the Qz site [START_REF] Trebst | [END_REF] and NQNO for the Qc site [24]. Table III shows the result of such an experiment using FUD7 cells. Neither of the two inhibitors blocked state transitions: a 40-50% decrease in fluorescence yield was observed upon reduction of the PQ pool.
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We then investigated the possible involvement of the Rieske protein which is likely to participate in the Qz site, and that of plastocyanin which binds to the b6f complex. This was examined using mutants lacking in the Rieske protein, as in the F34ac21 strain [START_REF] Levine | Proc. Natl. Acad. Sci. USA[END_REF], or lacking in plastocyanin, as in the F34ac208 strain [START_REF] Gorman | Proc. Natl. Acad. Sci[END_REF]. We observed a quenching in fluorescence (Table III) and an increase in 32p-labelling (Fig. 5) in these strains upon aerobic to anaerobic transitions in darkness. These results clearly show that neither of the two proteins was responsible for the block observed in b6f-deficient mutants.

Discussion

The respective abilities of photosynthetic mutants, blocked at different points of the electron transport chain, to perform the kinase-regulated changes in light energy distribution between the two photosystems, were studied in vivo in the green alga, C. reinhardtii. This process had to be studied using state transitions that were not to be driven by a photosynthetic electron flow. Therefore we compared aerobic (PQ pool oxidized) versus anaerobic (PQ pool reduced) conditions in darkness. The latter condition has been previously shown to induce State 2 in C. reinhardtii in vivo [6,7]. State 1, reached under aerobic conditions in darkness, compared well with that obtained previously by an illumination in the presence of DCMU [6,7], as shown by the amplitude of the changes in LHC phosphorylation and in fluorescence obtained in the present experimental conditions (about 30 and 50% quenching in State 2 in the wild-type and the F34 mutant, respectively).

Several reports have suggested a specific involvement of PS II centres in the regulation mediated by the LHC-kinase. These included the possibility that PS II centres would either diffuse laterally in association with phosphorylated LHC [25], control LHC movements through electrostatic repulsion due to a phosphorylated PS II component [26], contain a kinase [START_REF] Owens | Cell Function and Differentiation[END_REF] or its activation site on quinone-binding subunits as considered in the present paper. Previous studies using the F34 mutant from C. reinhardtii, lacking in PS II centres, gave evidence for an unaltered kinase-mediated regulation process [6,21]: this strain underwent a re-versible association of LHC with PSI centres, depending on the phosphorylation state of LHC.

However, the F34 mutant still showed membrane insertion of the quinone-binding PS II subunits, D1 and D2 [START_REF] Delepelaire | [END_REF]. These could still be part of the kinase activation process observed in the mutant. The present analysis, showing identical behaviour in the F34 mutant and in two other PS II-deficient strains mutated respectively in the genes of D1 or D2 [7,8] and totally lacking in either of the two polypeptides, demonstrated that PS II has no part in the regulation mediated by the LHC-kinase. In particular, the absence, in such mutants, of the phosphorylated PS II subunits, L5 and L6, which are the probable counterparts of the 9-10 kDa phosphoprotein of PS II from higher plants, argues against the hypothesis of a specific involvement of this PS II subunit in the regulation process [26].

The absence of the b6f complex prevented the occurrence of State 1-State 2 transitions in vivo and greatly modified the phosphorylation pattern of thylakoid membrane polypeptides. These observations could be made irrespective of the presence (FUD4) or absence (F18F34) of PS II centres. We note that two different mutations, leading to the deficiency of the entire set of b6f subunits [9], but located on the nuclear (F18) and plastid (FUD4) chromosomes, respectively, similarly prevented state transitions. This excludes the possibility that this alteration could originate from the genetic background in a particular strain, or from a genetic link between either of the two mutations and another gene involved in the regulation process.

Kinase activity was still detected in the thylakoid membranes of the b6f mutants, although it was no longer regulated by the redox state of the PQ pool. When present, the PS II subunits showed unaltered phosphorylation, as did some of the other phosphoproteins currently observed in the wild-type or in PS II mutants. However, a group of two LHC subunits -polypeptides 13 and 17 -was no longer phosphorylated, whereas another group of polypeptides comprising polypeptide 9, which is a chlorophyll-binding protein (Bassi, R., personal communication), as well as two other LHC subunits -polypeptides 10 and 11 -still was. The former group was previously shown to undergo phosphorylation changes with kinetics different from those of the latter: only this second group of LHC subunits closely followed the kinetics of the state transitions [21]. The distinct phosphorylation characteristics of these two families of LHC subunits demonstrates a b6f-complex-dependent heterogeneity within LHC for the kinase system. This heterogeneity could involve two LHC-kinases with different specificities, a hypothesis which will be discussed below. Alternatively, it could result from a conformational change between two states of the LHC or from two different locations of the complex in the membrane. In these hypotheses, the phosphorylation sites on polypeptides 13 and 17 would be accessible to the kinase only upon an association between LHC and b6f complexes. Such an association has been suggested previously on the basis of the ultrastructural modifications observed in the thylakoid membranes of the b6f mutants [START_REF] Olive | [END_REF]. We can rule out the possibility that the extra-membrane segments of polypeptides 13 and 17, which contain the phosphorylation sites and protrude at the outer thylakoid surface in the wild type, were buried in the membrane in the b6f mutants, since their trypsin sensitivity was conserved (not shown).

However more subtle conformational changes may have occurred.

The question should then be raised of a possible link between the absence of redox control on the phosphorylation of thylakoid membrane polypeptides in the b6f mutants and the total lack of phosphorylation on polypeptides 13 and 17. Although phosphorylation of these two LHC subunits may be a prerequisite for an increase in phosphorylation of the other phosphopolypeptides in vivo, this is not the case in vitro: we have occasionally observed similar phosphorylation patterns (not labelled bands corresponding to polypeptides 13 and 17) in wild-type thylakoid membranes incubated with [r-32P]ATP (unpublished observation). However, these membranes still showed reversible phosphorylation of the other LHC subunits in a dark to light transition.

The low level of phosphorylation of the thylakoid membrane polypeptides in b6f In the first hypothesis, one should take into account the multiple kinase activities that have been found in thylakoid membranes [3,21,[29][30][31][32]. Two, maybe three, such enzymes have been purified [2][3][4][5]. Therefore, depending on their respective substrate specificities, the absence of the LHC-kinase in b6f mutants could be partly masked by the ability of the other(s) to phosphorylate some LHC subunits. Consistent with the absence of an LHC-kinase would be the slight but significant shift towards lower densities in the distribution of kinase activity among the gradient fractions recovered from the b6f mutant FUD4, as compared to that obtained with the wild type. The somewhat lower total kinase activity extracted from FUD4 thylakoids could also be indicative of a possible deficiency in one type of kinase, but the significance of this observation is severely limited by the variations in the level of kinase activity obtained with the wild type from one experiment to another.

The polypeptide of about 40 kDa lacking in the thylakoid membranes from b6f mutants is a candidate for the particular LHC-kinase that would be missing in these strains. It has about the same molecular weight as CPK2, a putative kinase purified by Lin et al. [2] from spinach thylakoid membranes. The identity of CPK2 was, however, challenged by Coughlan and Hind [5] who attributed this polypeptide to ferredoxin-NADP reductase, an enzyme which may interact as well with b6f complexes.

On the other hand, we noted some difference in our analysis of the K m values for ATP associated 93 with the total phosphorylation activity in thylakoid membranes from the b6f mutants and from the wild type. However, out of the two K m values which fitted the data from the two strains, the lower one around 50 /zM -which is supposedly associated with the LHC-kinase responsible for the regulation [START_REF] Bennett | Proc. Natl. Acad. Sci[END_REF][START_REF] Black | [END_REF]4] -was unchanged. Therefore, either the LHC-kinase, if missing in the mutant, has a higher K m for ATP in the 100-150 /~M range where we noted a difference between the wild-type and b6f mutants, or it should have a similar K m -in the 50 ~tM range -as one of the other kinases which remain in the mutants.

An unchanged 50 /~M K m is more consistent with an alteration of the activation process in the b6f mutants. This could be due to the loss of the quinone-binding sites, Qc or Qz, of the b6f complexes. However, inhibitors of quinone binding on the Qc site, such as NQNO, as well as on the Qz site, such as DNP-INT, did not alter significantly the fluorescence transitions which accompany the reduction of the PQ pool in thylakoid membranes having a normal b6f complement.

Alternatively, kinase activation could depend on the redox state of an electron carrier, other than the plastoquinones, but associated with the b6f complex. Our experiments showed that neither plastocyanin nor the Rieske protein was part of the regulation process. However the redox carrier, G, which interacts with the b6f complex [35] as well as the two b cytochromes, b h and bl, become reduced upon the aerobic to anaerobic transitions in darkness used in the present study. The midpoint potential of G and b h is at about 0 mV [35,36], which is consistent with the titration of kinase activation performed by Horton et al. [37]. In addition, changes in the redox state of these components may still occur via the Q~ site upon illumination of higher plant chloroplasts in the presence of DBMIB, an experiment which has been taken as indicative of the involvement of the PQ pool in the activation process [1].

O

  

Fig. 1 (

 1 Fig. 1 (left). Autoradiogram of thylakoid membranes isolated from 32p-labeled cells. O: aerobic state (oxidizing conditions), analogous to State 1; R: anaerobic state (reducing conditions), analogous to State 2. Note the similar amount of labelling in States 1 and 2 and the absence of phosphorylated bands corresponding to LHC subunits 13 and 17, in the b6f mutants FUD4 and FUD7F18.Fig. 2 (right). Autoradiogram of thylakoid polypeptides from 14C-labelled cells, viewed after urea-SDS polyacrylamide gel electrophoresis. Note the absence of cytochrome f, cytochrome b 6, the Rieske protein and subunit V in the b6f mutant (FUD4). The arrow indicates an additional polypeptide of about 40 kDa which is absent in the FUD4 strain.

Fig. 4 .

 4 Fig. 4. 32p incorporation (V) in the thylakoid membranes from the wild-type and FUD4 mutant strains, incubated with 2.5-500/~M [r-32p]ATP (S) for 2 rain in the fight. Eadie-Hofstee representation. Linear regression analysis elicits computation of two different K m values for each strain, which are given by the slope of each straight line. g m values for the wild type: 50 t~M and 150 + 20/~M. K m values for the FUD4 mutant: 50 t~M and 250+40/~M.

Fig. 5 .

 5 Fig. 5. Autoradiogram of thylakoid membrane polypeptides from 32p-labelled cells of PS II mutant strains lacking in either plastocyanin (PC), the Rieske protein (FeS), or the b6f complex. O: aerobic state (oxidizing conditions) analogous to State 1; R: anaerobic state (reducing conditions) analogous to State 2.

TABLE I

 I Fma x IN THE ANAEROBIC STATE (STATE 2) IN STRAINS DEFICIENT IN PS II AND b6f COMPLEXESFrnax is expressed as a function of Fm~ x (100) in the aerobic state (State 1).

	-PS II			-PS II -b6f	-b6f	Wild type
	F34	FUD47	FUD7	FUD7F18	FUD4	(6)
	(1)	(2)	(3)	(4)	(5)	
	54	66	52	108	104	70
	....		(46/48) a	(46.5/32.5) a

a Fmax values (arbitrary units) in (State 1/State 2) at a cell concentration of 0.4 A680nrn in wild type and FUD4 strains.

TABLE III

 III Fma x IN THE ANAEROBIC STATE (STATE 2) IN PS II MUTANTS WITH VARIOUS BLOCKS AT THE b6f LEVELFma X is expressed as a function of Fma x (100) in the aerobic state (State 1).

	FUD7			ac21 F34	ac208F34
	No block	Qz blocked a	Qc blocked b	--Fe-S	-PC
	52	50	62	62	62
	a Blocked with 30/.tM DNP-INT.			
	b Blocked with 2 ~M NQNO.			
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