

Binding and Exchange of Nucleotides on the Chloroplast Coupling Factor CF_1. The Role of Magnesium

Guy Girault, Jean-Michel Galmiche, Claire Lemaire, Oscar Stulzaft

▶ To cite this version:

Guy Girault, Jean-Michel Galmiche, Claire Lemaire, Oscar Stulzaft. Binding and Exchange of Nucleotides on the Chloroplast Coupling Factor CF_1. The Role of Magnesium. European Journal of Biochemistry, 1982, 128 (2-3), pp.405 - 411. 10.1111/j.1432-1033.1982.tb06979.x. cea-02931621

HAL Id: cea-02931621 https://cea.hal.science/cea-02931621v1

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Binding and Exchange of Nucleotides on the Chloroplast Coupling Factor CF₁ The Role of Magnesium

Guy GIRAULT, Jean-Michel GALMICHE, and Claire LEMAIRE

Service de Biophysique, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette

Oscar STULZAFT

Service Hospitalier Frédéric Joliot, Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Gif-sur Yvette

(Received April 5/July 5, 1982)

On the soluble part of the coupling factor (CF₁), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF₁ when the enzyme is incubated with ADP either with or without Mg²⁺. Two ADP and one ATP are bound per CF₁ when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg²⁺. At high ATP concentration, in the presence of Mg²⁺, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF₁. When Mg²⁺ is omitted from the incubation medium of ATP and CF₁, only two ADP and around 0.5 ATP are bound per CF₁.

The three nucleotide binding sites of CF_1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides, ADP or ATP, are readily exchangable.

We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg^{2+} , one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF₁ in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandkötter and Strotman [(1976) FEBS Lett. 65, 102-106].

Purified CF₁ solubilized from chloroplast membranes has no ATPase activity, unless activated by trypsin [1], heat [2] or dithiothreitol [3] but like the membrane-bound enzyme, isolated CF₁ can bind nucleotides in a non-covalent and nonenergy-requiring process. The maximum number of bound nucleotides varies, depending on the way the complex AdN-CF₁ is recovered from the excess of free nucleotides. On the latent ATPase, the number of nucleotide-binding sites has been found to be two [4-6] or three [7-11] after rapid recovery of the AdN-CF₁ complex and only one after extensive and slow separation by Sephadex chromatography [7]. A conflicting point is the specificity of these sites for ATP or ADP and the effect of Mg²⁺ on the binding or exchange of nucleotides on CF₁. This cation is usually added to the suspending medium of CF₁ even if its effect is not explicated. Hochman and Carmeli proposed that the Mg2+ salt of the nucleotides is the true substrate for CF₁ [12].

The presence of Mg²⁺ increases the affinity of the nucleotides for the sites of the isolated CF₁. Higashida and Mukohata [11] found the same number of bound nucleotides with and without Mg²⁺ but, most of the other authors have reported an increase of this number by Mg²⁺ in comparison with the number found in the presence of EDTA [5,7,8]. Hochman and Carmeli [12] studied the binding of Mn²⁺ on CF₁ (Mn²⁺ is supposed to be interchangeable with Mg²⁺). They observed that CF₁ has one tight site and five loose sites for Mn²⁺ binding and that various diphosphonucleotides or

triphosphonucleotides induce the appearance of a second tight site and the disappearance of one of the loose sites. The authors suggested that the two tight sites are at the active site of the enzyme.

The purpose of this paper is to investigate the role of Mg²⁺ on the amount and the nature of the nucleotides bound to the purified latent ATPase (inactive CF₁) supplemented with ATP or ADP. We have looked for a correlation between the binding of the nucleotides and of Mg2+ to CF1 and between their ability to exchange with free nucleotides and Mg²⁺. ATP, ADP and Mg²⁺ bound to CF₁ were directly and simultaneously determined. Exchange and direct binding processes were discriminated by labelling free nucleotides and Mg²⁺ respectively by ¹⁴C or ³²P and ²⁷Mg; the specific radioactivity was measured for AdN as well as Mg2+. It was shown that three adenine nucleotides can be bound per CF₁: three ADP when CF₁ is incubated with ADP in the presence or absence of Mg²⁺ and one ADP plus two ATP when CF₁ is incubated with saturating concentrations of ATP, in the presence of Mg²⁺. Some tentative conclusions are drawn from the experimental results concerning the nature and function of the binding and exchange of AdN and Mg²⁺.

MATERIALS AND METHODS

Coupling factor, CF₁ was extracted and purified from spinach leaves following the method of Lien and Racker with 1 mM EDTA [13]. No nucleotide was added at any step of

the purification procedure. Only those fractions exhibiting a fluorescence intensity ratio 305 nm/340 nm (excitation at 280 nm) higher than 1.8 were collected and stored at 4°C in 20 mM Tris/HCl (pH 8), 1 mM EDTA, 2 M (NH₄)₂SO₄, no added ATP. The purity of the CF₁ was also checked by sodium dodecyl sulfate/polyacrylamide gel electrophoresis [14] and the result gave the normal five-band pattern.

The molar concentration of CF₁ in 20 mM Tris/HCl (pH 8), in the absence of nucleotides, was determined spectrophotometrically, in the ultraviolet region, using an absorption coefficient of 0.476 cm²/mg at 280 nm [10] and a molecular weight of 325000 [15]. In the presence of nucleotides, the protein content was estimated by the method of Lowry et al. [16] using purified CF₁ as a standard.

Before using the stock suspension of CF₁ for incubation with nucleotides, it was freed from ammonium sulfate and dissociable nucleotides, if any, by dialysis without dilution of CF₁, in a collodion membrane (Schleicher & Schüll) against 20 mM Tris/HCl (pH 8) and 0.5 mM EDTA.

Isolation of the Nucleotide-CF₁ Complex

The AdN-CF₁ complex was liberated from the excess of free AdN by the method developed by Penefsky [17] called centrifugation-filtration; the mixture of free AdN and of AdN-CF₁ complex was layered on a small syringe tube filled with Sephadex G-50 fine and quickly separated by centrifugation.

Titration of Nucleotide

Radioactive nucleotides were determined with a liquid scintillation system (mark III, Searle Analytice Inc.). Total ATP or ADP concentrations were determined by firefly bioluminescence using a purified luciferin-luciferase mixture (LKB-Wallace ATP monitoring kit 1250-120). AdN bound to CF₁ were released by addition of 2 M HCl at 0 °C then the medium was adjusted to pH 8 with 1 M Tris base. ATP and ADP were determined in aliquots of 0.45 ml 0.1 M Tris/ HCH₃COO (pH 7.75), 2 mM EDTA, 10 mM MgSO₄, 12.5 mM K₂SO₄, 80 μM phospho*enol*pyruvate and containing 8–10 μg of CF₁. The reaction was initiated by addition of 50 µl of the luciferin-luciferase mixture; then 2 µl of pyruvate kinase (10 mg/ml) was added. Luminescence was measured in a Muka luminomètre. Each determination was repeated at least twice and calibrated by the addition of a known amount of ATP equivalent to the amount titrated.

Titration of Magnesium

Non-radioactive magnesium was determined by atomic absorption with a Perkin-Elmer 290 B atomic spectrophotometer. Aliquots of 0.08 ml, containing 15-20 µM of the AdN-Mg-CF₁ complex were routinely used. Calibration was done with a 5 µM Mg(NO₃)₂ stock solution.

The isotope 27 Mg (half-life 9.45 min) was produced by neutronic activation during a (n, γ) -reaction. The thermal neutrons were provided by the OSIRIS reactor of the Commissariat à l'Energie Atomique. Irradiations lasted 15—30 min. 27 Mg was titrated in 0.1 ml of AdN-Mg-CF₁ complex, freed from the excess of Mg by centrifugation-filtration, after a decay of one or two periods. Gamma peaks at 844 and 1014 keV were sampled with a Plurimat analyzer and calibrated with ultra-pure Mg(NO₃)₂ solutions.

Chemicals

The standard solutions of Mg(NO₃)₂ were prepared from spectrographic quality MgO (Johnson Matthey Chemicals, Ltd).

5'[γ-³²P]ATP, 3 Ci/mmol was obtained from Amersham, [8-¹⁴C]ADP, 48 Ci/mmol from Schwarz-Mann and [U-¹⁴C]-ATP, 538 Ci/mol from New England Nuclear.

RESULTS

BINDING OF ADP, ATP AND Mg2+ ON CF1

Binding of ADP and ATP on CF₁. Effect of the Mg²⁺

When CF_1 is incubated with [14C]ADP, some radioactive nucleotide is found to bind to CF_1 . The amount of bound [14C]ADP was measured versus the concentration of added [14C]ADP after room-temperature incubation for 1 h. In the presence of 1 mM Mg(NO₃)₂ (Fig. 1), up to 3 moles of ADP are bound per mole CF_1 after isolation of the AdN- CF_1 complex by centrifugation-filtration, including the 0.6 mole ADP still present on the CF_1 even after extensive dialysis. The half-saturation of the binding sites with ADP is achieved with an initial ADP addition of 20 μ M. In the absence of Mg^{2+} , essentially the same type of binding curve is observed but the half-saturation is achieved with an addition of 40 μ M ADP.

The same type of experiment was performed with ATP added in the incubation medium. After an incubation of [γ-32P, U-14C]ATP with CF₁, in the absence of Mg²⁺, 2 moles of ADP are found bound per mole CF₁ but ATP binding is very weak and reaches 0.5 mole per mole CF₁ at the highest external ATP concentration used (Fig. 2). When the same experiment is performed in the presence of 1 mM Mg²⁺, the results are very different (Fig. 3). Between 0 and 50 μM ATP addition, the amount of ADP bound to CF₁ increases up to 2 ADP per CF₁ and the amount of ATP bound attains 1 ATP per CF₁. Above 50 μM ATP addition, the amount of bound ADP decreases progressively to 1 ADP per CF₁ and the amount of bound ATP increases up to 2 ATP per CF₁. Apparently 1 ATP replaces 1 ADP on the CF₁.

The presence of Mg²⁺ seems to enhance the affinity of CF₁ for ATP and for ADP. We cannot preclude that Mg²⁺ may stabilize the complex AdN-CF₁, during the isolation procedure, without modifying the intrinsic affinity of CF₁ for the nucleotides. Nevertheless the nature of the nucleotide bound to CF₁ depends on the presence of Mg²⁺ which favors the formation of the complex ATP-CF₁.

The plots of nucleotide binding versus concentration of added ATP or ADP show that the number of ¹⁴C-labelled nucleotides bound is always smaller than the total amount of nucleotides bound. This discrepancy indicates that the ADP already bound on CF₁ does not exchange extensively with the free nucleotides of the medium. We will discuss this point later.

Contrarily the amount of 32 P fixed is equal to the amount of bound ATP (Fig. 2 and 3). So all of the ATP bound to CF₁ comes from the binding of free [γ - 32 P]ATP from the medium or from the phosphorylation of the bound ADP by free [γ - 32 P]ATP.

Apart from the effect of Mg²⁺, two series of questions are thus raised by the experiments described: what are the processes which allow ADP to be bound to CF₁ when only free ATP is added to the incubation medium, and what mechanism leads to the replacement of bound ADP by ATP on the sites

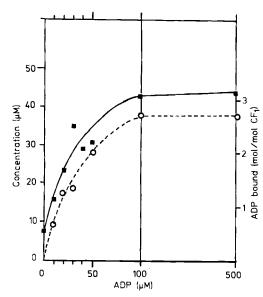


Fig. 1. Plot of the amount of ADP bound to CF_1 versus the initial concentration of added $[^{14}C]ADP$, in the presence of Mg^{2+} . The CF_1 (14 μ M) was incubated in 20 mM Tris/HCl (pH 8), 0.5 mM EDTA, 1 mM Mg(NO₃)₂ and $[^{14}C]ADP$. After 1 h the $[^{14}C]AdN$ -CF₁ complex was separated from the free $[^{14}C]ADP$ by centrifugation-filtration. Bound ADP (\blacksquare) and bound $[^{14}C]ADP$ (O) were expressed by their concentrations (left-hand scale) or the number of molecules per CF_1 (right-hand scale)

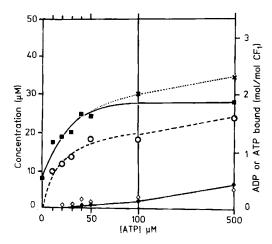


Fig. 2. Plot of the amount of ADP or ATP bound to CF_1 versus the initial concentration of $[\gamma^{-3^2}P, U^{-1^4}C]ATP$, in the absence of Mg^{2^+} . The CF_1 (14.8 μ M) was incubated, during 1 h, in 20 mM Tris/HCl (pH 8), 0.5 mM EDTA and a variable concentration of $[\gamma^{-3^2}P, ^{14}C]ATP$ as indicated on the horizontale scale. Bound nucleotides were expressed by their concentrations (left-hand scale) or the number of moles per CF_1 (right-hand scale): ATP (\spadesuit); ADP (\blacksquare); ATP + ADP (\times); $[^{14}C]AdN$ (\bigcirc); and $[^{3^2}P]AdN$ (\bigcirc)

of CF₁ when the concentration of added ATP is raised over $50 \mu M$ in the presence of Mg^{2+} ?

Binding of Mg2+ on CF1. Effect of the Nucleotides

The number of Mg^{2+} ions bound to CF_1 has been measured before and after incubation with $Mg(NO_3)_2$ in the presence or absence of ADP or ATP. After extensive dialysis of CF_1 and in the absence of added $Mg(NO_3)_2$ or nucleotides,

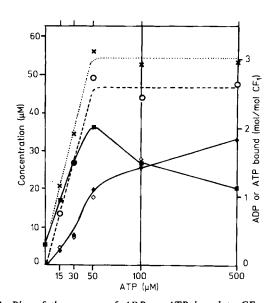


Fig. 3. Plot of the amount of ADP or ATP bound to CF_1 versus the initial concentration of $[\gamma^{-32}P, U^{-14}C]ATP$, in the presence of Mg^{2+} . The CF_1 (18 μ M) was incubated in the same medium as in Fig. 2 but in the presence of 1 mM $Mg(NO_3)_2$. The other conditions and symbols on the curves were the same as in Fig. 2

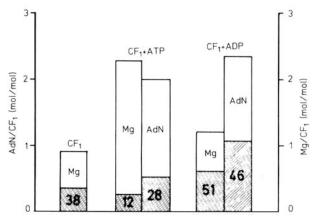


Fig. 4. Amount of magnesium and AdN bound or exchanged during a short incubation (5 min) with CF₁. Amount of Mg²⁺ and (or not) of AdN bound to CF₁ were measured after an incubation during 5 min of 21 μM CF₁, extensively dialyzed, with 0.5 mM ²⁶⁻²⁷Mg(NO₃)₂ and with or without [¹²⁻¹⁴C]ATP or [¹²⁻¹⁴C]ADP. Exchange of free and bound substrate was measured as following. First 21 μM CF₁ was loaded with non-radioactive substrate by a 10-min incubation in the presence of 0.25 mM ²⁶Mg(NO₃)₂ and (or not) 1 mM [¹²C]ATP or ADP. Then the exchange of bound and free substrate was observed after addition of ²⁷Mg(NO₃)₂ and with or without [¹⁴C]ADP or ATP. Total concentration of Mg²⁺ was 0.5 mM and of nucleotides if present, 2 mM during the 5 min of the incubation period. Binding was expressed by the number of moles bound per mole CF₁ (left hand scale for AdN, right hand scale for Mg) and exchange by the percentage of the free substrate exchanged with the bound one (numbers in the scored blocks)

the bound magnesium is sometimes hardly measurable and always less thant $0.6~Mg^{2+}$ per CF_1 . After incubation of CF_1 with a magnesium salt, the number of cations bound increases to a value close to one Mg^{2+} per CF_1 (0.92 Mg^{2+} per CF_1 in Fig. 4). If nucleotides are added concomitantly with Mg^{2+} , this value increases to $1.25~Mg^{2+}$ per CF_1 in the presence of ADP and $2.3~Mg^{2+}$ per CF_1 in the presence of ATP (Fig. 4). In this last case the amount of bound Mg^{2+} runs parallel to the total amount of nucleotides (ATP + ADP) bound to CF_1 .

EXCHANGE OF Mg2+, ADP AND ATP BOUND TO CF1

Effect of the Nucleotides on the Mg2+ Exchange

The following experiments have been performed to test whether Mg²⁺ and nucleotides bound to CF₁ can be exchanged with free Mg²⁺ and nucleotides added in the medium. For this purpose, CF₁ is first loaded with non-radioactive substrate ²⁶Mg(NO₃)₂ in the presence or absence of [¹²C]-ATP or ADP. Then the exchange between bound and free Mg²⁺ or AdN is observed after addition of ²⁷Mg(NO₃)₂ in the presence or absence of [¹⁴C]ADP or ATP (Fig. 4).

After 5 min the exchange extent for Mg²⁺ and nucleotides

After 5 min the exchange extent for Mg^{2+} and nucleotides respectively is: 12% and 28% in the presence of free Mg^{2+} and ATP; 51% and 46% in the presence of free Mg^{2+} and ADP. In the same time period. 38% of the bound Mg^{2+} is exchanged with the free Mg^{2+} in the absence of added nucleotides.

Effect of Mg2+ on the Nucleotide Exchange

The exchange of the CF₁-bound nucleotides has been further studied during longer periods from 0.5-22 h. In the experiment reported in Table 1, CF₁ saturated with [14 C]-ADP or [14 C]ATP, in the presence or absence of Mg $^{2+}$, is freed from the excess of 14 C-labelled nucleotides and transferred to a medium containing free [γ - 32 P]ATP with or without Mg $^{2+}$. The results of an exchange period of 1 h are summarized below.

CF₁ first exposed to [14 C]ATP exchanges its bound nucleotides with free [γ - 32 P]ATP more slowly than CF₁ exposed first to [14 C]ADP (compare lines 1-4 with lines 5-8).

first to [14C]ADP (compare lines 1-4 with lines 5-8).

The presence of Mg²⁺ during the first exposure of CF₁ to the nucleotides stabilizes the complex AdN-CF₁ and the exchange rate of the bound nucleotides with the free ATP is slowed down (compare lines 1-2 and 5-6 respectively with lines 3-4 and 7-8).

These results permit us to classify the AdN-CF₁ complexes according to their decreasing stability: Mg-ATP-CF₁ > ATP-CF₁ > Mg-ADP-CF₁ > ADP-CF₁.

Effect of Mg^{2+} on the Free Nucleotides during their Incubation with CF_1

For this purpose free and bound nucleotides were titrated after an incubation of CF₁ with ATP. After 1 h, if the concentration of added ATP is less than three times that of CF₁, practically all the ATP added to the medium is bound to CF₁ as ADP or ATP (lines 3-6 in Table 2). When the concentration of added ATP is over 20 times that of CF₁, besides the two ATP and one ADP bound per CF₁ in the presence of Mg²⁺, the free ATP is recovered half hydrolyzed into ADP (line 1 in Table 2). If Mg²⁺ is omitted, only 10% of the free ATP is hydrolyzed into ADP (line 2 in Table 2).

Origin of the Bound ADP and ATP during Incubation of CF_1 with ATP and Mg^{2+}

In addition to ATP, one or two ADP are bound per CF₁, depending on the concentration of the added ATP in the presence of Mg²⁺.

Experiments were achieved to test whether ADP bound to CF₁ is the result of ATP hydrolysis *in situ* (bound ATP gives bound ADP) or of the fixation of the ADP which has

Table 1. Exchange of the [14C]AdN bound to the AdN-CF₁ or AdN-Mg-CF₁ with free ATP

CF₁ was first allowed to bind [¹⁴C]AdN in the following medium: 15 µM CF₁, 20 mM Tris/HCl (pH 8), when present 1 mM Mg(NO₃)₂ and 0.5 mM [¹⁴C]ATP or [¹⁴C]ADP. After 2 h the [¹⁴C]AdN-CF₁ or [¹⁴C]-AdN-Mg-CF₁ complex was recovered by centrifugation-filtration directly in the same medium but with 0.5 mM ATP with or without 1 mM Mg(NO₃)₂. After 1 h AdN-CF₁ complex was recovered again by centrifugation-filtration

Additions	[¹⁴ C]AdN	Fraction of		
first stage	second stage	bound per CF ₁ during the first stage	the bound [14C]AdN exchanged in the second stage	
			%	
[14C]ATP	$ATP + Mg^{2+}$	1.56	39	
[¹⁴ C]ATP	ATP	1.56	46	
$[^{14}C]ATP + Mg^{2+}$	$ATP + Mg^{2+}$	2.00	20	
$[^{14}C]ATP + Mg^{2+}$	ATP	2.00	16	
[¹⁴ C]ADP	$ATP + Mg^{2+}$	2.04	60	
[¹⁴ C]ADP	ATP	2.04	83	
$[^{14}C]ADP + Mg^{2+}$	$ATP + Mg^{2+}$	2.30	54	
$[^{14}C]ADP + Mg^{2+}$	ATP	2.30	56	

been released in the medium after ATP hydrolysis on the catalytic site(s). The addition in the medium of phosphoenol-pyruvate plus pyruvate kinase, an ATP-regenerating system which eliminates the free ADP, prevents only 15% of the ADP from being bound to CF_1 (Table 2, lines 7–8). The ADP bound to CF_1 is thus mostly the result of direct hydrolysis of ATP into ADP and inorganic phosphate (P_i) on the site where ATP was bound and where ADP remains afterwards.

We have seen previously (Fig. 3) that when the ATP concentration is increased beyond 50 µM, progressively 2 ATP and 1 ADP are bound per CF₁ instead of 2 ADP and 1 ATP at lower ATP concentrations. Apparently 1 ADP is replaced by 1 ATP. Experiments were done to test whether the ATP bound to CF₁ is the result of an exchange of bound ADP with free ATP or of the phosphorylation of the bound ADP by free ATP. CF₁ was incubated with saturating amounts of [¹⁴C]ADP and then recovered as a complex [¹⁴C]-ADP-CF₁ by centrifugation filtration in a medium supplemented with $[\gamma^{-32}P]ATP$ (Table 3). After an exchange period of 0.5-2 h the complex AdN-CF1 was recovered and analyzed for its content in ¹⁴C, ³²P, ATP and ADP bound to the protein. The total amount of bound AdN changes only to a small extent (0.4 AdN/CF₁) during the second incubation, i.e. from 2 to 2.4 AdN per CF₁ (column 5 in Table 3), but bound ATP increases from 0 to 0.9 ATP per CF₁ (column 4 in Table 3) when bound ADP decreases from 2 to 1.4 ADP per CF₁ (column 3 in Table 3). In parallel, the amount of ¹⁴C decreases from 1 to 0.4 per CF₁ (column 1 in Table 4) and the amount of ³²P increases from 0 to 1 CF₁ (column 2 in Table 3). If the [32P]ATP bound to CF₁ was the result of a direct phosphorylation of the bound [14C]ADP by the external [32P]ATP, then the increase in the amount of bound ³²P would correlate with no change in the amount of bound ¹⁴C. Since that is not the case, we conclude that bound ATP is the result of an exchange between bound ADP and free ATP. There is no indication of a direct phosphorylation of the bound ADP by the free ATP.

Table 2. Effect of the Mg^{2+} and of the addition of an ATP-regenerating system during the incubation of the CF_1 with ATP. Nature of the free and bound nucleotides recovered after different times of incubation

The incubation medium was 20 mM Tris/HCl (pH 8), 17 µM CF₁, ATP as indicated, 1 mM Mg(NO₃)₂ when present. The regenerating system was 2 mM phospho*enol*pyruvate (*PPyr*), 20 µg pyruvate kinase in a 0.1 ml volume. Results were given as concentration of free or bound nucleotides and number of molecules per CF₁ (numbers between brackets)

No.	Addition	Time of incuba-tion	AdN bound		AdN free	AdN free	
			ATP	ADP	ATP	ADP	
		h	μМ				
1	ATP 400 μ M + Mg ²⁺	1	34.5 (2.03)	19.0 (1.12)	194	147	
2	ATP 435 μM	1	23.4 (1.38)	28.7 (1.69)	351	32	
3	ATP 50 μ M + Mg ²⁺	1	19.2 (1.13)	29.5 (1.74)	1.05	0.75	
4	ATP 50 μM	1	4.2 (0.25)	27.8 (1.64)	2.30	16.25	
5	ATP 30 μ M + Mg ²⁺	1	9.1 (0.54)	17.0 (1.0)	1.28	3.22	
6	ATP 34 μM	1	1.3 (0.08)	24.1 (1.42)	0.90	7.7	
7	ATP 64 μ M + Mg ²⁺	1	18.87 (1.11)	25.53 (1.49)			
8	ATP 64 μ M + Mg ²⁺ + PPyr		` ,	` ,			
	+ pyruvate kinase	1	21.93 (1.29)	19.38 (1.14)			

Table 3. Exchange and fixation of AdN on a CF₁, preloaded with $[^{14}C]$ -ADP, during an incubation with $[\gamma^{-32}P]ATP$

The medium during the first incubation was 20 mM Tris/HCl (pH 8), 15 μ M CF₁, 0.5 mM [¹⁴C]ADP; Mg²⁺ was omitted. After 2h, the [¹⁴C]ADP-CF₁ complex was freed from the excess of [¹⁴C]ADP by centrifugation-filtration and supplemented straight with 0.5 mM [γ -³²P]ATP 1 mM Mg(NO₃)₂. At intervals, as reported, aliquots of 0.1 ml were freed from the excess of AdN by centrifugation-filtration and analyzed for ¹⁴C, ³²P, ADP and ATP

Time of the exchange	Bound 14C/bound ADP	Bound ³² P/bound ATP	Bound ADP/CF ₁	Bound ATP/CF ₁	Total bound AdN/CF ₁
h					
0	1.03		2.04	0	2.04
0.5	0.35	1.10	1.44	0.79	2.23
1.0	0.39	0.95	1.47	0.89	2.36
2.0	0.39	1.10	1.38	0.91	2.29

Presence of One Site on CF₁ where Bound ADP Is Difficult to Exchange with the Free Nucleotides

We have already shown that not all the bound nucleotide exchanges with the free nucleotide (Fig. 4 and Table 1).

When CF₁ was first loaded with [14 C]ADP, then freed from the excess of free nucleotides and supplemented with free unlabelled ATP, the bound 14 C-labelled nucleotides are progressively replaced by unlabelled nucleotides. The extent of exchange increases at higher concentrations of added unlabelled nucleotides and for longer times of incubation, with normal ATP. But this exchange is never complete and there remains at least 0.4-0.6 14 C-labelled nucleotides, most likely [14 C]ADP, per CF₁ (Table 3).

DISCUSSION

Properties of the Different Nucleotide-Binding Sites

The varibility of the methods used to titrate the nucleotides and the specific properties of CF₁ may explain the dispersion of the results published about nucleotide binding. If the determination of the affinity constants of CF₁ for the nucleotides appears to be a difficult objective, our data give some information on the nature of the binding sites and on the effect of Mg²⁺.

The first point which seems well established is the presence of at least three nucleotide-binding sites on CF_1 . In the presence of saturating amounts of ATP and Mg^{2+} we find 2 ATP and 1 ADP bound per CF_1 , agreeing with the results reported by Harris and Slater [18] for binding of the nucleotides on CF_1 in vivo.

The second point concerns the exchange of the nucleotides bound on CF₁. As already emphasized by Carlier and Hammes [7], the binding sites on isolated CF₁, the latent enzyme, fall into two different categories according to the ability of the bound nucleotides to be exchanged with free nucleotides.

The Site where Bound ADP is Difficult to Exchange

One site where the nucleotide is difficult to exchange has been characterized. It is the site where ADP is found bound after extraction and purification of the CF₁. This ADP is not desorbed by ammonium sulfate precipitation and Sephadex filtration. Extensive dialysis against 1 mM EDTA containing buffer does not remove all this ADP since 0.4–0.6 ADP remains bound per CF₁ after this treatment. Treatment with 50% glycerol, according to Senior [19], does not succeed in removing this ADP. This ADP exchanges very slowly with added free ATP of ADP in the presence of absence of Mg²⁺ but not with the nucleotides bound to the other sites on CF₁.

More likely this hardly exchangeable ADP is equivalent to the nucleotide which has been found by Strotmann et al. [20] on isolated CF₁ from chloroplasts. This nucleotide becomes exchangeable with free nucleotides only when the chloroplast membranes where the CF₁ is buried are energized by the light which induces ATPase activity. We favor a scheme where the 'tight' ADP binding takes place on a site of the active enzyme different from the catalytic ones [21]. This nucleotide binding, as already discussed by Bickel-Sandkötter and Strotmann [22] has no strict requirement for Mg²⁺ since 50% of this nucleotide is exchanged in the light, in the presence of 1 mM EDTA.

The Two Sites where the Bound Nucleotides are Readily Exchangeable

Two other nucleotide binding sites on CF₁ are readily exchangeable. In fact, the exchange between bound and free nucleotides observed with CF₁ which has been previously

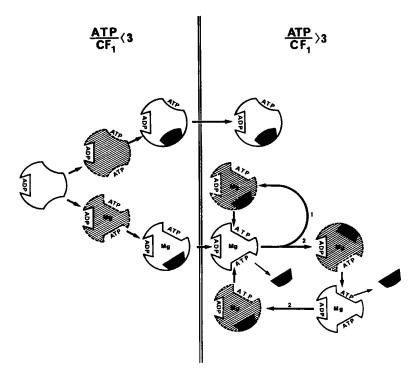


Fig. 5. Final scheme of the hypothetical role of nucleotide binding sites on CF_1 . The contours with interrupted lines represent transitory but short-lived and undetectable states. In the left part of the figure, CF_1 is supplemented with ATP at a concentration inferior to three times the CF_1 concentration and in the right part at a concentration more than three times the CF_1 concentration. $Mg(NO_3)_2$ is absent in the upper part and present in the lower part of the figure. Hydrolysis of ATP proceeds only in the right part of the scheme. In pathway 2, two sites hydrolyze alternatively ATP. In pathway 1, ATP is hydrolyzed always on the same site. The black blocks represent ADP bound to CF_1 or free in the medium

loaded with nucleotides concerns mainly these two sites at least for short incubation periods.

This exchange depends on the presence of $\mathrm{Mg^{2^+}}$ bound on the CF₁ or free in the supernatant. $\mathrm{Mg^{2^+}}$ in all cases stabilizes the complex AdN-CF₁ and decreases the exchangeability of the bound nucleotides (Fig. 4 and Table 1). The complex AdN-CF₁ is more stable and the bound AdN less exchangeable when CF₁ is preloaded with ATP than with ADP (Table 1). That is to be compared with the lower $^1\mathrm{H}$ - $^2\mathrm{H}$ exchange of the peptidic bonds in the Mg-ATP-CF₁ than in the Mg-ADP-CF₁ complexes [23].

The apparent higher affinity of CF₁ for ADP or ATP in the presence of Mg²⁺ than in its absence could be the result of the higher stability of the AdN-CF₁ complex when Mg²⁺ is present; the Mg-AdN-CF₁ complex is not decomposed during the centrifugation-filtration contrary to the AdN-CF₁ complex when Mg²⁺ is absent. This proposal is confirmed by previous analyses of the AdN-CF₁ complex with circular dichroism (without separation of the complex) where we did not find any difference between the affinity of CF₁ for the nucleotides in the presence and absence of Mg²⁺ (unpublished results).

After addition of ADP, we find at saturation, 2 ADP fixed on these sites in the presence of Mg^{2+} or not. Conversely, in the presence of ATP and Mg^{2+} , we find 1 ADP and 1 ATP or 2 ATP bound to these sites, according to the concentration of the nucleotide (Fig. 3). If we omit the Mg^{2+} , we find besides 1 ADP around 0.5 ATP bound to these sites (Fig. 2). The simplest hypothesis is that these sites can bind either ATP or ADP. This is supported by the exchange of 1 ADP by 1 ATP when the concentration of added ATP increases from 3-10-times this of the CF₁ in the presence of Mg^{2+} (Fig. 3 and Table 3).

Final Scheme of the Hypothetical Role of Nucleotide Binding Sites on CF₁

The Fig. 5 shows the hypothetical scheme that we propose to explain the results that we have obtained.

After addition of ATP, even if Mg²⁺ is omitted, we find ADP bound to CF₁. This bound ADP comes from the hydrolysis of the bound ATP on the enzyme and not from free ADP which could have been released from the protein after ATP hydrolysis (Table 2). The simplest assumption is that, after ATP addition, ADP is bound on the sites of CF₁ where bound ATP has been hydrolyzed.

In the absence of Mg²⁺, this bound ADP coming from hydrolyzed ATP is not replaced by ATP even after addition of a high concentration of ATP (see upper part on Fig. 5). The release and replacement of the ADP on this site needs the presence of Mg²⁺ and the presence of an ATP bound to the other site. (See lower part on Fig. 5.)

We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. We cannot say whether one site of the catalytic part of CF_1 hydrolyzes ATP, the second one regulating this process (pathway 1 on Fig. 5) or the two sites hydrolyzes ATP alternately in a flip-flop process (pathway 2 on Fig. 5). In that case the binding of ATP on one site would induce the exchange of the ADP bound on the second by a new molecule of ATP with a concomitant hydrolysis of the ATP bound on the first site. Nevertheless we favor pathway 2 where the two sites play alternately the same role. We have one reason for this choice. CF_1 contains two identical β subunits. As the two sites involved in the catalytic activities are supposed to be on the β subunit, they should be equivalent. In the scheme these sites exercise a cooperative control of the enzyme

activity. Such a cooperativity has been discussed by Grubmeyer and Penefsky for F₁ activity [24].

Our results can be compared with those obtained by Grubmeyer and Penefsky [24] on the mitochondrial ATPase, F₁. These authors have used an ATP analog, the 2',3'-O-(2,4,6-trinitrophenyl)adenosine triphosphate, NTP, which is hydrolyzed 600-fold slower by F₁ than ATP. This slow hydrolysis permits one to characterize intermediary steps. With CF₁, ATP is only slowly hydrolyzed by the latent enzyme in the presence of Mg²⁺ and practically not in its absence. So we can use ATP with CF₁, in the same way as NTP was used with F₁, to obtain evidence about AdN-CF₁ complexes which are short-lived and not isolatable when the enzyme is fully activated.

In F_1 and in CF_1 , the catalytic part of the enzyme bears two nucleotide-binding sites. In F₁, ATP is hydrolyzed on the two sites and in CF₁ we cannot exclude that the two sites hydrolyze ATP alternatively. It has been proposed [24] that in F₁ the rate-limiting step during steady state hydrolysis is the breakage of the phosphate ester bond or a step subsequent to binding and prior to bond breakage. In CF1 the limiting step is the release of ADP after the bond breakage. The two results can be reconcilied if we remark that the extent of the [32P]NTP hydrolysis has been determined by the release of bound ³²P from F₁, in a two-step experiment. In the first stage, [³²P]NTP was bound to F₁ in the absence of Mg²⁺; in a second stage, Mg²⁺ and nonradioactive NTP were added and the release of ³²P from F₁ was taken as a measure of the induced [32P]NTP hydrolysis. It is not excluded that even during the first stage [32P]NTP can be hydrolyzed and ³²P-labelled inorganic phosphate can be bound to F₁. So the limiting step could be, as in CF₁, the release of the products of NTP hydrolysis from F₁.

The scheme we propose does not take into account the ATPase activation and the possible role of the ADP bound to CF_1 and difficult to exchange (represented on the left part of the enzyme on Fig. 5).

We would like to thank Mrs M. Bozec and J. Fayet for their expert technical assistance, Dr B. Lagoutte for helpful access to the atomic absorption spectrophotometer and Dr M. Laine for radioactive determinations.

REFERENCES

- 1. Vambutas, V. & Racker, E. (1965) J. Biol. Chem. 240, 2660 2667.
- 2. Farron, F. & Racker, E. (1970) Biochemistry, 9, 3829-3836.
- 3. McCarty, R. & Racker, E. (1968) J. Biol. Chem. 243, 129-137.
- 4. Cantley, L. & Hammes, G. (1975) Biochemistry, 14, 2968-2975.
- Banai, M., Shavit, N. & Chipman, D. (1978) Biochim. Biophys. Acta, 504, 100-107.
- Vandermeulen, D. & Govindjee (1977) Eur. J. Biochem. 78, 585-598.
- 7. Carlier, M. F. & Hammes, G. (1979) Biochemistry, 18, 3446-3457.
- 8. Shoshan, V. & Selman, B. (1979) FEBS Lett. 107, 413-418.
- Shoshan, V., Shavit, N. & Chipman, D. (1978) Biochim. Biophys. Acta, 504, 108-122.
- 10. Girault, G. & Galmiche, J. M. (1977) Eur. J. Biochem. 77, 501-510.
- Higashida, M. & Mukohata, Y. (1976) J. Biochem. (Tokyo) 80, 1177-1179.
- 12. Hochman, Y. & Carmeli, C. (1981) Biochemistry, 20, 6287-6297.
- 13. Lien, S. & Racker, E. (1971) Methods Enzymol. 23, 547-555.
- 14. Weber, K. & Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412.
- 15. Farron, F. (1970) Biochemistry, 9, 3823-3828.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951)
 J. Biol. Chem. 193, 265-275.
- 17. Penefsky, H. (1977) J. Biol. Chem. 252, 2891-2899.
- 18. Harris, D. & Slater, E. (1975) Biochim. Biophys. Acta, 387, 335-348.
- 19. Senior, A. (1979) J. Biol. Chem. 254, 11319-11322.
- Strotmann, H. & Bickel-Sandkotter, S. (1977) Biochim. Biophys. Acta, 460, 126-135.
- Bickel-Sandkotter, S. & Strotmann, H. (1981) FEBS Lett. 125, 188-192.
- Bickel-Sandkotter, S. & Strotmann, H. (1976) FEBS Lett. 65, 102
 – 106.
- Nabedryk-Viala, E., Calvet, P., Thiery, J. M., Galmiche, J. M. & Girault, G. (1977) FEBS Lett. 79, 139-143.
- 24. Grubmeyer, C. & Penefsky, H. (1981) J. Biol. Chem. 256, 3718-3727.
- G. Girault, J.-M. Galmiche, and C. Lemaire, Service de Biophysique, Département de Biologie, Centre d'Etudes Nucléaire de Saclay, Bâtiment 32, F-91191 Gif-sur-Yvette-Cedex, Essonne, France
- O. Stulzaft, Service Hospitalier Frédéric Joliot, Centre d'Etudes Nucléaire de Saclay, Boîte Postale 2, F-91191 Gif-sur-Yvette, Essonne, France