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Abstract

Recent experimental observation of the direct links between superdeformed

and normal-deformed structures in the A∼190 mass region offers a unique

information on the absolute nuclear binding energy in the 2:1 minima, and

hence on the magnitude of shell effects in the superdeformed well. In the

present paper, the self-consistent mean-field theory with density-dependent

pairing interaction is used to explain at the same time the two-particle sep-

aration energies in the first and second wells, and the excitation energies of

superdeformed states in the A∼190 and A∼240 mass regions.
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I. INTRODUCTION

Recent progress in gamma-ray spectroscopy with large gamma-ray detector arrays has re-
sulted in the discovery of discrete lines linking superdeformed (SD) bands to low-deformation
states. Transitions have been found in 194Hg [1] and 194Pb [2], which connect SD and normal-
deformed states in one step, allowing the excitation energies, spins and likely parities of SD
states to be determined. These quantities are only tentatively known in 192Hg, where high-
energy transitions have been observed but have not been placed in the decay scheme of the
SD band [3], and in 192Pb where one connecting transition has been tentatively assigned [4].

An important implication of these measurements is that it has became possible, for the
first time, to establish experimentally the two-neutron and two-proton separation energies
in SD minima. This study aims at analyzing these experimental results and at foreseeing
the impact similar discoveries may have in the future on our understanding of nuclear shell
properties.

The role of shell effects is well recognized in nuclear structure physics [5,6]. A decreased
density of single-particle states around the Fermi level always leads to an increased stability
of nuclear systems, in close analogy to phenomena known from atomic and molecular physics.
The shell effects are, therefore, intimately related to the mean-field approximation, to which
the very notion of individual particle orbits is inherent.

The observation of SD states constitutes an important confirmation of the shell struc-
ture of the nucleus. Quantum-mechanically, the remarkable stability of SD states can be
attributed to strong shell effects that are present in the average nuclear potential at very
elongated shapes [5,7–9]. For the oscillator potential this happens when the frequency ra-
tio is 2:1 (for more realistic average potentials strong shell effects appear even at lower
deformations). The structure of single-particle states around the Fermi level in SD nuclei
is significantly different from the pattern at normal deformations. Indeed, the SD shells
consist of states originating from spherical shells having different principal quantum num-
bers, hence having very different spatial character. Another interesting expected feature of
the single-particle SD spectrum is a beating pattern in the level density, and hence in the
shell-correction energy, giving rise to the so-called “super-shell” structure [6,5]. For nuclear
ground-state configurations, the predicted period of beating is very long, hence impossible
to see, considering the rather limited range of particle numbers available experimentally. On
the other hand, it is believed that the beating pattern in SD states is particularly simple
and its period is short, with the super-shell consisting of two neighboring SD shells only.
Super-shell structure has been observed in metal clusters [10] where large electron numbers
are accessible experimentally; it is consistent with the analysis based on a one-body finite
potential [11]. The systematic measurements of binding energies of SD states will certainly
shed some light on the super-shell structure of the deformed average field.

The main aim of this paper is to investigate the ability of the self-consistent mean-field
approaches with realistic effective forces to explain at the same time: (i) the ground-state
particle separation energies, (ii) the particle separation energies in SD minima, and (iii) the
excitation energies of SD states in nuclei around 194Hg and 238U. The theoretical analysis
is based on the self-consistent Hartree-Fock-Bogolyubov (HFB) approaches with effective
Skyrme interactions. The details of our calculations are given in Sec. II, the results are
presented in Sec. III, and Sec. IV contains summary and conclusions.
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II. METHOD OF CALCULATION

The calculations for separation energies in semi-magic nuclei (presented in Sec. III A)
have been carried out within the spherical HFB approach of Ref. [12] with two Skyrme
forces, SkP [12] and SLy4 [13,14]. In the latter case, we use in the pairing channel the
density-dependent zero-range interaction

VP =
V0

2
(1 − Pσ)

[

1 −
ρ(r1)

ρc

]

δ(r1 − r2) (1)

with parameters ρc and V0 adjusted within the method presented in Ref. [15]. In Eq. (1),
ρ(r) is the total local single-particle density in coordinate space.

The deformed calculations (Sec. III B-III D) have been performed with the HFB+LN
method presented in Ref. [16]. Three Skyrme forces, namely SkP, SLy4, and SkM∗ [17] have
been employed in the particle-hole channel. The SkM∗ force has been specifically adjusted
to the fission barrier of 240Pu, and it has been proved in numerous studies of deformation
effects to be quite successful. Recently, the SkM∗ force has been employed to describe the
SD minima in the Hg-Pb region [18] and in the actinides [19]. Predictions of the more recent
forces SkP and SLy4 for deformation effects have not yet been studied extensively.

The density-dependent pairing interaction of Eq. (1) has been used with a strength V0

modified as compared to spherical HFB calculations because of the inclusion of different
pairing spaces. It has been shown in Ref. [20] that changes in the size of the pairing space
lead to uncertainty in the total energies of the order of a few hundred keV. For SkM∗, the
value V0=−880 MeV fm−3 has been taken (see Ref. [16]) with a cut-off in the active pairing
space of 5 MeV above the Fermi level. For SLy4, the value V0=−1250 MeV fm−3 has been
used (see Ref. [21]) based on the properties of SD bands in the mass A≈150 region, with
a cut-off in the pairing space of 5 MeV both above and below the Fermi level. It has been
shown [16,21,22] that such an optimized model nicely reproduces high spin properties of SD
bands in the A≈150 and 190 mass regions. For the SkP interaction, we have determined a
strength V0 = −900 MeV fm−3, with the same cut-off recipe as for SLy4. This value leads
to similar pairing gaps as for the other two Skyrme forces.

III. RESULTS

A. Two-particle separation energies: semi-magic nuclei

In order to illustrate the ability of the present-day theoretical methods to describe the
experimental two-particle separation energies, we performed several sets of calculations for
ground-state configurations of semi-magic nuclei which are expected to be spherical.

Concentrating on the region of nuclei around the doubly-magic 208Pb, we present in Fig. 1
the two-neutron and two-proton separation energies in the Z=82 isotopes and N=126 iso-
tones, respectively. These chains of semi-magic nuclei can be safely described by a spherical
approximation. The self-consistent results obtained with the SkP and SLy4 interactions
are compared with experimental values [23–25] and with the results of the macroscopic-
microscopic Finite Range Droplet Model (FRDM) [26]. The SkM∗ results can be found in
Ref. [15].
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As seen in Fig. 1, the two-particle separation energies are reproduced with an overall
accuracy of 1 to 2 MeV. In particular, the FRDM gives a very good description of the data;
both the experimental two-neutron separation energies and the values extrapolated from
systematic trends [23] are well reproduced. In the as-yet inaccessible region of heavy lead
isotopes with N≈142, the FRDM predicts a sudden appearance of deformation which gives
rise to jumps in the S2n curve. The two-proton separation energies are described almost as
well as the two-neutron separation energies; only the magnitude of the Z=82 shell effect is
slightly underestimated by the FRDM.

Self-consistent models based on the Skyrme interaction do not perform so well in general,
as discussed in Refs. [27,28]. However, around 208Pb the results obtained with the SkP force
are fairly close to the data, except from slightly overestimated values of S2n just below the
N=126 gap and slightly underestimated values of S2p just above the Z=82 gap. This force
has an effective mass m∗/m equal to one, similar to that used in macroscopic-microscopic
methods, where it has been adjusted to specifically reproduce isotopic dependences of nuclear
masses. The fact that the force SLy4 adopts a lower effective mass, m∗/m=0.70, is reflected
in slightly overestimated shell effects at N=126 and Z=82. On the other hand, an effective
mass of the order of 0.70 seems to be required by other microscopic arguments [29–31]. (The
effective mass of SkM∗ is m∗/m=0.79, i.e., intermediate between the values for SLy4 and
SkP.)

Before discussing results for spherical and deformed even-even nuclei with 110≤N≤116
and 78≤Z≤82, we note that the spherical self-consistent calculations reproduce very accu-
rately the two-neutron separation energy in 194Pb and slightly overestimate the two-proton
separation energy in 208Pb. The quality of data reproduction for 208Pb is comparable to
that obtained within the FRDM which slightly underestimates the value of S2p.

B. Two-particle separation energies: first well

To analyze the ground-state two-particle separation energies in nuclei which are not
semi-magic, one has to explicitly consider the deformation effects. Since the present study
addresses questions related to both isotopic trends and deformation, we discuss results
obtained with all the three forces, as they are focused on either one of these two particular
aspects.

The calculated ground-state two-neutron separation energies in even Pt, Hg, and Pb
isotopes with neutron numbers between N=110 and 116 are shown in Fig. 2. Figure 3
displays the calculated S2n values for the even-even U and Pu isotopes with 140≤N≤146.
When confronting theoretical results with experiment we use the recent Schottky mass
measurements at the GSI ESR [24,25,32] which generally confirm the systematic values of
Ref. [23]. Based on these results, several conclusions can be drawn. For the SkM∗ force, the
agreement with experiment is rather poor; in all cases, SkM∗ leads to an overestimation of
the data by 0.5-1 MeV. This confirms earlier observations [15] that SkM∗ does not reproduce
correctly the isotopic dependence of nuclear masses. On the other hand, the SkP interaction
reproduces the data very well in all cases, as does the FRDM. The disagreement in 188Pt
obtained in the FRDM results from a sudden change of deformation predicted by this model
in this nucleus [26]; such an effect is not obtained with the Skyrme forces. The SLy4 force
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gives a good data reproduction in the Hg region while it slightly underestimates the S2n

values in the U and Pu isotopes.
When it comes to the two-proton separation energies, the pattern obtained for various

forces is different (see Fig. 4). The SkM∗ interaction does very well for the Hg isotopes, it
slightly underestimates the data for the Pb isotopes, and fails rather badly for Z=94. The
results obtained with SkP are of similar quality as those obtained with SLy4: the former
gives a very good description of the data for the Hg isotopes, the latter gives an excellent
agreement with the U data. In the Pb isotopes both overestimate the experimental S2p

values by ∼1 MeV. The overall quality of data reproduction by the FRDM is slightly better
than for the SkP and SLy4 models, although a failure to reproduce the Pb chain is to be
noted.

Up to now, no direct constraints on the surface energy has been introduced in the adjust-
ments procedures of the Skyrme forces. The SkM∗ parametrization is the only one for which
a deformation property has been included in the fit. Many properties of the forces have been
adjusted to the global nuclear matter properties, such as volume and symmetry energies.
These measures seem to be too crude when describing experimental data at the level of
accuracy below 1 MeV. More important are probably positions of individual single-particle
levels which crucially influence the deformations and deformation energies, and hence the
ground-state separation energies. In spite of these qualifications, both SkP and SLy4 per-
form surprisingly well, and their very different effective masses do not seem to affect the
quality of agreement with data. It is also clear that the SkM∗ interaction is probably not
the optimal choice when describing isotopic variations of binding energies.

C. Excitation energies of superdeformed minima

In several previous works based on macroscopic-microscopic methods and self-consistent
approaches, excitation energies of SD minima have been predicted (see Ref. [33] for a review).
However, since the excitation energy involves a difference between the binding energies of SD
and ground-state minima, it can easily be obscured by a different quality of the theoretical
description for such different states. Here, particular properties of Skyrme parametrizations
that determine the deformability of a nucleus, such as the surface tension, may play a
significant role. Another source of uncertainty concerns the corrections which should be
added to the calculated energies to account for rotational symmetry breaking. For some
interactions, for example SkM∗ and D1S [34], selected deformation properties (e.g., fission
barriers) have been included in the global fit of force parameters, assuming no rotational
corrections. In such cases, one assumes that all the corrections due to deformation have
been effectively included. In other cases (see, e.g., Ref. [35]) predicted masses have been
corrected for the rotational zero-point energy. Finally, for some interactions such as SkP
and SLy4, only properties of spherical nuclei have been considered. In most cases, results
of deformed calculations are not corrected for the rotational zero-point motion.

The excitation energies of the SD minima, ESD, calculated in this work are shown in
Figs. 5 (Pt, Hg, and Pb) and 6 (U and Pu). It is seen that (i) the predicted values rather
strongly depend on the interaction and (ii) none of them does a particularly good job, the
SkM∗ results being closest to the data. The disagreement is particularly striking for the
actinides where the SkP and SLy4 forces overestimate experimental values of ESD by more
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than 2 MeV. On the other hand, considering the uncertainties discussed above, the excitation
energy of a SD state is not a very useful characteristic of the model; small model variations
can result in large changes in ESD. For instance, the values of ESD predicted for the actinide
nuclei in Ref. [19] with the same SkM∗ force as in this work are by ∼1MeV lower than our
results. This difference can probably be attributed to a different treatment of the pairing
channel. Namely, a seniority force within the HF+BCS method approximation was used in
Ref. [19]. One should note that this latter choice is closer to the pairing treatment adopted
in the fitting procedure of SkM∗.

The accuracy of self-consistent methods for reproducing the absolute ground-state en-
ergies of heavy deformed nuclei is considerably less than for the relative energies [28]. For
example, the values of binding energies BGS=−EGS are in 238U underestimated by about
7.4, 6.6, and 10.8 MeV for SkP, SLy4, and SkM∗, respectively. Some part of this discrepancy
can be attributed to the numerical algorithms used in the present calculations, namely the
finite-difference treatment of the kinetic energy. The resulting systematic error is expected
to increase the deviation between experiment and theory by additional 3 to 4 MeV. These
large errors suggest that the absolute energies should be used with caution when assessing
merits of effective forces used in the self-consistent calculations. On the other hand, the
relative energies (e.g., particle separation energies or deformation energies) are reproduced
much better, and hence are more useful for assessing the quality of the effective interactions.

Figure 7 displays the calculated potential energy curves for 238U and 240Pu as functions
of the total quadrupole moment Q20. In both nuclei, the energies are shown relative to the
ground-state energy EGS. The axial barrier heights obtained for 240Pu (238U) are 11.6 MeV
(11.1 MeV) for SLy4, 10.5 MeV (9.7 MeV) for SkP, and 9.1 MeV (9.0 MeV) for SkM∗.
According to the analysis of Ref. [36], experimental inner barriers in 240Pu and 238U are
∼5.7 MeV and ∼5.6 MeV, respectively. For a meaningful comparison between experiment
and theory, however, one should take into account the effect of triaxiality. For SLy4, the
inclusion of nonaxial degrees of freedom reduces the inner barrier in 240Pu by 2.1 MeV; a
slightly smaller effect was obtained for SkM∗ in Ref. [19]. Hence it can be concluded that
all the Skyrme parametrizations employed in this work overestimate barrier heights in 240Pu
and 238U by roughly 3 to 4 MeV. A similar conclusion has been reached in Ref. [37] with
non-relativistic and relativistic calculations.

Considering the above uncertainties, it seems much safer to concentrate on the energy
differences between SD minima, i.e., particle separation energies in the second well. For
those quantities, involving energy differences between SD states only, one can hope that
dynamical effects and treatment of pairing correlations would play a less important role.

D. Two-particle separation energies: second well

When studying the separation energies in the SD configurations, one expects that theo-
retical predictions should be robust as they depend on general properties of effective interac-
tions. This fact may have its roots in specific symmetry properties of SD states [38,39] and
has been noticed in several theoretical studies of SD high-spin bands using the HF method
[40–42]. Energy relations between the ground states and SD minima in three adjacent even-
even nuclei 192Hg, 194Hg, and 194Pb are schematically presented in Fig. 8. It shows three
potential energy curves in these nuclei, approximately shifted in energy according to the ex-
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perimental two-particle separation energies. The absolute binding energies of ground states
and SD minima define six points in the absolute energy scale, hence seven interesting energy
differences, which are indicated in Fig. 8 by straight dotted lines. These are three excitation
energies ESD of SD minima in the three considered nuclei as well as the two-neutron and
two-proton separation energies in normal and SD minima. Given the uncertainty in the
excitation energy ESD in 192Hg, the mass difference for the SD states in 194Pb and 194Hg is
also an interesting quantity.

Values of the energy differences of Fig. 8 are shown in Fig. 9. Experimental data are
presented in panel (a), while panels (b), (c), and (d) show deviations between the theoretical
and experimental results. One should note that the experimental separation energies in Fig.
9 are taken from Ref. [24,25] and have error bars of the order of 0.1 MeV. An uncertain piece
of experimental data is the excitation energy of the SD minimum in 192Hg. Unfortunately, in
spite of several experimental efforts, the direct link between SD bands and the known yrast
line in 192Hg has not yet been found. The number quoted in Fig. 9 is based on estimates from
on-going analysis [3]. The only firmly established quantity is the binding energy difference
between the SD minima in the A=194 isobars of Hg and Pb, i.e., the difference between
two-proton and two-neutron separation energies S2p−S2n.

The general observation following results shown in Fig. 9 is that the self-consistent cal-
culations reproduce the data to within 1–2 MeV. This seems to be true for both ground
states and SD states. As far as the SD minima are concerned, both SLy4 and SkP give an
excellent agreement with the experimental value of S2p−S2n, Table I.

In spite of this agreement, the analysis of results shown in Fig. 9 suggests that there is
still room for improvement. For the forces SkP and SLy4, the pattern of desired modifications
is quite clear. As illustrated in Fig. 9 by thick arrows and numbers in ovals, a significant
improvement of results would have been obtained if the theoretical energies of the SD state
in 192Hg were raised (∼0.8 MeV for SkP and ∼0.5 MeV for SLy4) and the ground-state
energies of 194Pb were raised by a similar amount (∼0.9 MeV for SkP and ∼1.3 MeV for
SLy4). Changes of that order would bring the agreement with the experimental data to the
level of 0.5 MeV. Due to the uncertain experimental value of ESD in 192Hg we may speculate
that a value lower by about 0.6 MeV would result in a very consistent picture for the SkP
and SLy4 forces. Namely, in such a situation the only significant remaining discrepancy
would be the ground-state energy of a semimagic spherical system 194Pb.

For SkM∗, the pattern of changes is different and the magnitude of deviations is larger. In
particular, it seems that in 194Pb both the ground-state and the SD state energies should be
shifted. This suggests that the good reproduction of the excitation energy of SD minimum
in 194Pb by this model (see Fig. 5) is fortuitous.

For the shape isomers in actinide nuclei, energies have been reported for 236U, 238U, but
only an approximate energy is known for 240Pu. One can construct and analyze similar
binding energy differences as for the 194Hg, 192Hg, and 194Pb nuclei. In particular, one
can deduce three excitatation energies ESD and the two-proton and two-neutron separation
energies in shape-isomeric states. Again, both SLy4 and, in particular, SkP give a good
agreement with the experimental values of S2p for the SD minimum in 240Pu and S2n for
the SD minimum in 238U, Table I. The force SkM∗ gives a very poor description of the SD
separation energies for both neutrons and protons.
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IV. SUMMARY

The self-consistent Skyrme-HFB method has been applied to investigate binding energy
relations in the first and second wells of nuclei in the A∼190 and A∼240 mass regions.
For the two-nucleon separation energies within the first and within the second minimum, the
Skyrme interactions that have been optimized for isotopic trends, SLy4 and SkP, give a good
agreement with experimental data, irrespective of their very different effective masses. For
the ground-state separation energies, the level of data reproduction by these forces is similar
to that obtained with the macroscopic-microscopic method. For the limited number of
binding energy differences in the SD minima known experimentally, the agreement between
theory and experiment is good for both SLy4 and SkP. The SkM∗ parametrization has
been confirmed to have wrong isospin behavior and should not be considered when making
binding-energy extrapolations.

The good agreement obtained for particle separation energies does not hold for relative

energy differences between the first and second well. Namely, neither SLy4 nor SkP have
been able to reproduce the excitation energy of the SD minimum, although their predictions
are very close with each other. One has to bear in mind, however, that the values of ESD

are sensitive to model uncertainties such as treatment of pairing or dynamical zero-point
correlations [37,43].

The SkM∗ parametrization fails in reproducing isotopic trends. It does slightly better
for fission barriers and ESD. Clearly, the inclusion of a deformation effects during the fitting
procedure of force parameters should have an effect on the predictive power of the force at
large deformations. Another necessary improvement would be a simultaneous optimization
of the mean-field and the pairing field. Such a philosophy has been adopted for the D1S
and SkP interactions, which are simultaneously used in both the particle-hole and pair-
ing channels. Also, the dynamical zero-point corrections should be consistently considered
when optimizing force parameters. The latter corrections are expected to be of particular
importance when comparing energies of minima with very distinct intrinsic structures and
deformations.

This work has been motivated by the recent experimental data on absolute energies
of SD bands in the A∼190 mass region. Although very scarce, the experimental data on
separation and excitation energies have already shed a new light on basic properties of
effective interactions such as the isospin dependence and the response of the system to
shape deformations.
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TABLES

TABLE I. Particle separation energies (in MeV) in superdeformed minima calculated with

three Skyrme interactions and compared with available experimental data.

S2p(
194Pb)—S2n(

194Hg) S2p(
240Pu) S2n(

238U)

SkM∗ 10.3 10.0 12.4

SLy4 8.3 12.1 10.5

SkP 8.5 11.4 11.1

EXP 8.20 11.52 11.47
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FIGURES

FIG. 1. Two-neutron ground-state separation energies in the chain of lead isotopes (top) and

two-proton separation energies in the chain of N=126 isotones (bottom). Solid and dashed lines

show the results obtained with the SLy4 and SkP forces, respectively, using the spherical HFB

approach. The FRDM results of Ref. [26] (dash-dotted line) are also given.

FIG. 2. Two-neutron ground-state separation energies in the even-even Pt, Hg, and Pb isotopes

with the neutron numbers between N=110 and 116 obtained in the deformed HFB+LN model.

Solid, dashed, and dotted lines show the results obtained with the SLy4, SkP, and SkM∗ forces,

respectively. They are compared to the results of the FRDM approach [26] (dash-dotted line) and

to experimental data [23–25].

FIG. 3. Same as in Fig. 2 but for the even-even U and Pu isotopes with 140≤N≤146.

FIG. 4. Same as in Fig. 2 but for the two-proton ground state separation energies in the

even-even Hg, Pb, and Pu isotopes.

FIG. 5. Excitation energies of the SD minima with respect to the ground-states of the

even-even Pt, Hg, and Pb isotopes with the neutron numbers between N=110 and 116. Solid,

dashed, and dotted lines show the results obtained with the SLy4, SkP, and SkM∗ forces, respec-

tively. Experimental data are taken from Ref. [2] (194Pb; 4.64MeV) and [1] (194Hg; 6.01MeV).

The tentative points for 192Hg (5.4MeV) [3] and 192Pb (3.9MeV) [4] are also shown.

FIG. 6. Same as in Fig. 5 but for the even-even U and Pu with 140≤N≤146. Experimental data

are taken from Ref. [44] (236U; 2.75MeV), [45,46] (238U; 2.56MeV), and [47,46] (240Pu; 2.8MeV).

Only an approximate value is known for 240Pu.

FIG. 7. Potential energies as functions of the quadrupole moment for 238U (top) and 240Pu

(bottom) calculated with the SkP (dashed line), SLy4 (solid line), and SkM∗ (dotted line) Skyrme

forces. The values are normalized to zero at the ground-state energies EGS.

FIG. 8. Schematic representation of potential energy curves in three adjacent even-even nuclei
192Hg, 194Hg, and 194Pb. Dotted straight lines indicate the relative binding energy relations in and

between these nuclei. These are the two-particle ground-state separation energies, the two-particle

SD separation energies, and the SD excitation energies. The same straight lines are reproduced in

Fig. 9 below where the calculated and experimental values for each of these energies are given.
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FIG. 9. Values of the relative energies shown in Fig. 8. Experimental values (a) are compared

with the results of the self-consistent HFB+LN calculations with SLy4 (b), SkP (c), and SkM∗

(d) effective interactions. The numbers in panels (b)–(d) give the differences between theory and

experiment. The value of ESD for 192Hg in panel (a) has not been measured, but is the current

estimate from on-going analysis [3]. For clarity all values have been rounded to 0.1MeV. See text

for the meaning of thick arrows and numbers in ovals.
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Figure 8
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Figure 9
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