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Abstract

In order to extract informations on pairing correlations in nu-

clei from experimental masses, the different contributions to odd-even

mass differences are investigated within the Skyrme HFB method. In
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this first paper, the description of odd nuclei within HFB is discussed

since it is the key point for the understanding of the above mentioned

contributions. To go from an even nucleus to an odd one, the advan-

tage of a two steps process is demonstrated and its physical content

is discussed. New results concerning time-reversal symmetry breaking

in odd-nuclei are also reported.

PACS: 21.10.Dr; 21.10.Hw; 21.30.-x

Keywords: Mean-field theories; Pairing correlations; odd nuclei;

∗

1 Introduction

A proper description of odd nuclei by mean-field methods requires to break

the time-reversal symmetry, making their study much harder than for even

ones. Since this symmetry is broken by the unpaired nucleon, the BCS ap-

proximation is not anymore valid and has to be replaced by the Hartree-Fock-

Bogolyubov (HFB) one. This symmetry breaking has also the consequence

that the individual wave-functions are no longer doubly degenerate, doubling

at least the computing task. Nevertheless, because of present computer ca-

pacities and of the development of new iteration schemes, it is now possible

to describe even and odd nuclei on the same footing at the mean-field level

of approximation.

Thanks to that, observables can be calculated along an isotopic or isotonic

chain without uncertainties related to a different level of approximations for

even and odd particle number. This is particularly important for differen-

tial quantities computed by finite difference formulae, as the odd-even mass

staggering (OES). Such observables, directly related to experimental data,

∗Corresponding author : duguet@spht.saclay.cea.fr
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put into evidence the specificities of odd nuclei with respect to even ones and

have been intensively used to adjust effective pairing interactions.

Their proper analysis is difficult as self-consistency mixes the different

effects related to the addition of a nucleon, especially the modification of the

chemical potential, the breaking of time-reversal symmetry and the weak-

ening of pairing correlations. In order to isolate an interpret the different

contributions to odd-even effects, it is essential to correctly formalize and

understand the transition between even and odd quantum states. To give

some insights on this question, a perturbative analysis is particularly adapted

since one can a priori write analytical relations between neighbor nuclei in

term of creation or annihilation operators.

The HF approximation provides a useful step in the understanding of

this transition, since it does not involve pairing effects. In this case, the

link [1] between even and odd states is perturbatively given by the creation

of a particle on the first empty level in the state of the nucleus with one less

nucleon. We shall however reconsider this simple case because, to be useful

for the understanding of the more general HFB description of odd nuclei, the

HF approximation has to be derived as the zero pairing limit of the HFB

one.

When pairing is taken into account, a well-known successful perturbative

procedure consists in describing an odd state as a one quasi-particle (qp)

state on the even neighbor vacuum. However, this procedure suffers from an

inconsistency with regard to the particle number [1]. It demands an ad hoc

readjustment of the chemical potential. This is what is implicitly done when

the theoretical BCS gap at the Fermi energy taken from the calculation of

an even state is compared to experimental odd-even mass differences. This

procedure is however quite satisfactory for energy predictions, and has been

extensively used [2].
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We shall show that these inconsistencies can eliminated by a redefinition

of the vacuum on which the qp is created by perturbation. The two step

prodedure which is introduced allows to analyse in details the description of

odd nuclei by fully self-consistent calculations and in particular, to emphasize

the changes brought about by pairing correlations when going from an even

to an odd nucleus.

A similar two step picture to go from even to odd systems has been defined

by Balian, Flocard and Veneroni [3, 4] for the density operator. They intro-

duced it in terms of number-parity-projected BCS states in the more general

context of Fermionic super-conducting systems at finite temperature. How-

ever, they have not extensively studied the implications of this prescription

in the context of nuclear structure. This intermediate vacuum has also been

used as a natural definition of the smooth part of the microscopic binding

energy in a work dealing with the OES [5].

The present work is organized as follow. In section 2.1, the standard

perturbative qp creation process in BCS theory is reviewed and analyzed

in order to point out some important characteristics for the description of

odd states. In section 2.2, we propose a slightly different prescription for a

perturbative treatment of odd nuclei. In section 2.3, the zero pairing limit

of our revised picture is performed in order to show how it matches with the

usual HF one. In section 3 and 4, detailed HFB calculations are performed

on even and odd Ce isotopes in order to illustrate the procedures discussed

at the perturbative level in section 2. Conclusions are drawn in section 4.

2 Odd nuclei description in a mean-field the-

ory including pairing
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2.1 Perturbative nucleon addition process

Let us start with the BCS description of an even nucleus. For a given effective

Hamiltonian Ĥ , one determines the ground-state wave-function | Ψ(N) >

with the constraint that it has a mean number of particles equal to N . This

constraint is imposed by the chemical potential λN as Lagrange multiplier.

A first approximation for the ground state of the odd neighbor with one

more neutron † is obtained by a perturbative one qp creation | Ψk > =

α†
k | Ψ(N) > , where α†

k is a qp creation operator. The average particle

number of the state | Ψk > is N + u2
k − v2k, where v2k is the BCS occupation

number of the state k. This average-number of particles is not necessarily

equal to N + 1 and depends on the qp which has been selected [1]. The

energy difference between the state | Ψk > and the even ground-state is:

< Ψk | Ĥ| Ψk >−< Ψ(N) | Ĥ| Ψ(N) > = (u2
k−v2k)λ

N+EN
k (1)

=
ek(ek−λN)+∆k

2

√

(ek−λN )2+∆k
2
,

where the chemical potential λN and the qp energy EN
k =

√

(ek − λN)2 +∆k
2

are taken from the even ground-state.

If the qp corresponds to a state having an energy ek close to λ
N (u2

k−v2k ≈

0), the energy difference 1 is approximatively equal to EN
k and is close to ∆k.

However, the mean particle number is close to N, and | Ψk > is not a good

candidate to describe an odd nucleus. To ensure an odd average number of

particles in | Ψk > , one should create a qp such that (ek−λN ) is much larger

than ∆k. In such a case, the energy difference is approximatively given by

†In what follows we limit ourselves to the case of an odd isotope with one more neutron.

All what is presented can be easily transposed to the removal of a neutron, or to odd

isotones.

5



ek ≫ λN . Once again, | Ψk > is not a good candidate for the ground state

of the neighboring odd nucleus.

This analysis shows that an odd nucleus wave-function cannot be ap-

proximated by a perturbative one qp excitation on the ground state of an

even nucleus. Such a treatment does lead either to a wrong particle number

and/or to a bad energy.

To circumvent the problem, one can put artificially u2
k−v2k ≈ ±1 in Eq. 1

(see for instance ref. [1], Chap. 6.3.4) which leads to:

< Ψk | Ĥ| Ψk >−< Ψ(N) | Ĥ| Ψ(N) > = ±λN+ EN
k . (2)

Such a procedure is satisfactory for the determination of energies. How-

ever, it does not provide a tool to calculate other observables as radii or

deformation since the wave-function still does not have the right mean par-

ticle number.

Such a problem does not appear in self-consistent calculations since the

one qp excitation is numerically performed together with a constraint on the

correct average number of nucleons ‡. The chemical potential is readjusted

self-consistently whatever the starting point of the calculation is. However,

to correct the inconsistencies of the perturbative picture is a necessary step

to identify the various contributions to the transition from an even nucleus

to its odd neighbor.

2.2 Revised perturbative scheme

To improve the perturbative analysis requires the definition of a new vacuum

on which qp states are blocked in such a way that the choice of an energeti-

cally favorable qp leads to a state with a nearly correct particle number.

‡In BCS theory, it consists of solving the gap equation for an even number of particles

excluding the state occupied by the odd nucleon.

6



A way to do that is to first determine the fully paired state having the

right mean odd particle number. Let us denote that state by | ΨBCSE(N+1) >.

The subscript BCSE means that the state is constructed as an Even vacuum

without qp excitation and without breaking time-reversal invariance but with

an odd average particle number. The lowest excitation energy with respect

to this new reference vacuum will be generated by the qp with the lowest

energy but the | ΨBCS
k > will now have an odd mean number of particles with

a good approximation. The energy difference ∆E(k) with the even neighbor

becomes:

∆E(k) = EBCSE(N+1)− EBCS(N)
︸ ︷︷ ︸

+ EN+1
k

≈ ∂EBCSE

∂N
+ EN+1

k ,

where EN+1
k is the energy of the lowest qp in | ΨBCSE(N+1) > and EBCSE(N)

is the energy of the BCS fully paired vacuum with N particle (even or odd).

This result is formally similar to that of Eq. 2. However, the qp excita-

tion is now defined in the reference state | ΨBCSE(N+1) > and no had hoc

modification of the chemical potential is required.

This procedure, although not perfect as it remains perturbative, is now

qualitatively satisfactory from all points of view and provides at the same

time a good approximation for the energy and for the wave-function of an

odd nucleus.

Such a perturbative qp creation on top of the odd fully paired state,

instead of the even neighbor’s one, has already been introduced by Ring et.

al [6] and used with success in Ref. [7]. Its main justification was simplicity

with respect to self-consistent blocking, but not the formal step achieved

with respect to a perturbative qp creation performed on the even vacuum.
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Figure 1: Schematic picture of the two step procedure proposed to determine

the ground state of an odd isotope.
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The introduction of an intermediate reference vacuum requires to study

an odd nucleus in two steps. This procedure, illustrated on Fig. 1, eliminates

the inconsistency between the addition of a nucleon and the creation of an

energetically favorable qp excitation. From a mathematical point of view,

it shows that the odd fully paired state is better grounded than an even

neighbor ground-state as the zero-order reference for a perturbation theory

of odd nuclei. In the rest of this paper, we will analyse these steps from a

physical point of view and use them to separate self-consistent calculations

in two identified processes.

2.3 Limit of zero-pairing

The description of an odd nucleus with respect to an even neighbor is at first

sight less complicated in the absence of pairing. Indeed, there is no problem

related to the particle number and an odd nucleus is simply obtained by

adding a nucleon on the first empty level in the even neighbor’s HF state.

Two different approximations are used within this picture.

If time-reversal invariance is not broken, each single-particle state is at

least doubly degenerate and the odd nucleon is added using the filling ap-

proximation: the first pair of empty levels in the even neighbor are identically

occupied with probability 0.5 in the odd state§.

If time-reversal symmetry breaking is properly taken into account and

for a deformed configuration, all degeneracies are lifted and the first pair of

empty levels in the even isotope are occupied with probability 1 and 0 in the

odd neighbor¶.

§For spherical nuclei, one adds 1/2j + 1 particle in each state of the last degenerate j

shell
¶For spherical nuclei, one orbital of the shell is completely filled, lifting the degeneracies.

Several tries have to be done in order to get the lowest in energy.
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Let us now analyze how the standard HF picture matches with the zero-

pairing limit of the perturbative method described in section 2.2. Most of

the developments presented in this section have straightforward zero-pairing

limits. Let us look explicitly to the limit for odd states only.

The limit of the perturbative one qp BCS state with an odd particle

number is:

| ΨBCS
n (N+1) > → | ΨHF

n (N+1) > = a†n
∏N/2

k=1 a
†
k a

†
k̄
|0〉 , (3)

whereas the fully paired odd vacuum leads to:

| ΨBCSE(N+1) > → | ΨHFE(N+1) > = 1√
2

(

1 + a†n a
†
n̄

)
∏N/2

k=1 a
†
k a

†
k̄
|0〉 .(4)

One can check that:

| ΨHF
n (N+1) > = α†

n | ΨHFE(N+1) > (5)

where α†
n = 1√

2
(a†n − an̄) is the singular‖ zero-pairing limit for the lowest qp

creation operator.

The wave function | ΨHFE(N+1) > introduced as the limit of the BCSE

state is none of the two currently used HF wave-functions. However it leads

to the same one-body density matrix, and thus to the same energy as the

HF wave-function ∗∗ obtained using the filling approximation.

‖Other qp operators α
(†)
k (k 6= n, n̄) tend to standard particle creation or annihilation

operators a
(†)
k .

∗∗The filling approximation is actually defined through a density operator which is a

statistical mixture of the two Slater determinants where one of the two time-reversed

orbitals at the Fermi energy is filled. The | ΨHFE > state 4 for odd nuclei is a linear

combination of the two neighboring even HF states.
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The HF ground-state for odd nuclei is now described by a one qp exci-

tation on top of the HFE state and not as in the usual procedure directly

on top of the HF wave function of an even neighbor through particle op-

erators. The two-step picture defined in the BCS case is thus extended to

the zero pairing limit and will allow an analysis of the OES for any pairing

correlations intensity.

The zero pairing limit illustrates the physical content of the nucleon ad-

dition process. The nucleon is added in the HFE wave function by increasing

the occupation of each state of the last couple of degenerate orbits by 0.5.

For odd N , the qp excitation specifies which one of the two states will even-

tually be occupied by the single nucleon in the odd wave function. The only

difference in presence of pairing is that the nucleon is added over the whole

fermi sea in the BCSE wave function because of pair scattering, while the qp

creation still specifies the state eventually occupied by the single nucleon.

2.4 Self-consistent HFB treatment of odd nuclei

Since time-reversal symmetry is broken in an odd nucleus, a proper treat-

ment of pairing correlations requires the use of the HFB method and the

introduction of time-odd components in the mean-field.

In this context, Eq. 3 is replaced by:

EHFB(N) = EHFBE(N) + [EHFB(N)− EHFBE(N)]

= EHFBE(N) +
︷ ︸︸ ︷

Epol(N) + ∆(N) , (6)

where HFBE refers to fully paired states, ∆(N) is the positive contribution

due to the self-consistent blocking of pairing correlations in odd nuclei due

to the presence of a single nucleon. Epol(N) is the part of the binding en-

ergy related to polarisation effects in odd nuclei. First, it contains a static
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deformation-polarisation of the core induced by the non-zero multipole mo-

ment of the odd nucleon density. Second, the breaking of the time-reversal

symmetry by this odd nucleon brings about non-zero spin and current con-

tributions. The sum Epol(N)+∆(N) can be viewed as the self-consistent qp

energy to be compared to the perturbative one, EN+1
k .

In a fully self-consistent calculation, HFE and HF states are defined as

the self-consistent zero-pairing limit of HFBE and HFB states.

3 Results

3.1 Addition of a nucleon

In this section, we apply the decomposition of energy introduced in section 2

to a chain of cerium isotopes, from 118Ce to 166Ce. Our aim is to determine

to which extent this decomposition allows to decouple both effects related to

the addition of a nucleon.

We have performed Hartree-Fock-Bogolyubov plus Lipkin-Nogami (HF-

BLN) calculations with the formalism and forces in the particle-hole (SLy4

Skyrme force) and particle-particle (zero-range density dependent pairing

force) channels described in ref [8, 9]. Each odd nucleus is calculated twice:

first, as a HFBLN fully paired vacuum with an odd average number of neu-

trons (HFBE state) and then with the fully self-consistent HFBLN scheme

(HFB state). In this case, several qp configurations are investigated to de-

termine the one corresponding to the ground state.

Cerium isotopes have been chosen because of their intermediate masses

and also because their axial mean quadrupole deformation evolves regularly

along the whole chain from sphericity to large deformations.

Fig. 2 displays the chemical potential as a function of mass from 150Ce to

12
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Figure 2: Chemical potential along the cerium isotopic line between 150Ce

and 160Ce for HFE, HF, HFBE and HFB calculations.
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160Ce for HFE, HF, HFBE and HFB calculations. The chemical potentials

in HF(E) †† states are well defined in the zero-pairing limit of HFB(E) ones.

The results are represented for a sub-zone which is representative of the

full cerium isotopic line that we have calculated. The figure shows that

the change of Fermi level due to the addition of a nucleon is fully taken into

account by introducing only a constraint on an odd particle number (HF(B)E

calculations) and is not affected by the self-consistent blocking in the final

state. It proves that the qp creation carries no additional particle with respect

to the reference vacuum HF(B)E, as expected from the perturbative picture.

This justifies from a quantitative point of view the decoupling of the single

nucleon addition in the fully paired vacuum and its blocking in the full HF(B)

odd state.

The evolution of λ with N depends on the underlying mean-field as well as

on the occupation numbers. On Fig. 3 are shown the neutron single-particle

spectra obtained in the HFBE and HFB calculations. For odd nuclei, the

double degeneracy of the single-particle energies is lifted in the HFB cal-

culation, leading to an odd-even staggering of these single-particle energies.

However, if one takes the mean energy between the states of a doublet, the

HFBE and HFB single-particle spectra are identical. Fig. 4 displays the

single-particle neutron spectra for HF(E) calculations and shows that the

same remark remains valid in the zero-pairing limit.

We can conclude from these comparisons that constraining the HF(B)E

state to an odd number of particles without creating a qp excitation lead to

the same mean-field as the full HF(B) state, except for small polarisation

effects due to the breaking of time-reversal invariance.

††The parenthesis in HFB(E) means that the corresponding sentence deals with “HFB

and HFBE”. Identically, HF(B)E means “HFE and HFBE” and HF(E) means “HF and

HFE”.
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Figure 3: Single-particle spectrum as a function of the mass number A

between 150Ce and 160Ce. The left panel corresponds to the HFBE case,

the right one to the HFB one. The conventions for (parity, signature)

are : (+,+)=solid line, (+,-)=long-dashed line, (-,+)=dotted line, (-,-)=dot-

dashed line. Circles are for the chemical potential.
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Figure 4: Same as Fig. 3 for the HFE and HF cases respectively.

We will therefore take EHF (B)E as the “Mean-Field” part of the binding

energy. In the zero-pairing limit, this definition reduces to the time-reversal

invariant part of the interaction. When pairing correlations are present, this

energy includes also the part of the pairing energy which is not related to

the blocking effect and which varies smoothly with the particle number.

Even if the previous conclusions are valid in both the HF(E) and HFB(E)

cases, the situation differs depending whether pairing correlations are in-

cluded or not. The left panels of Fig. 3 and 4 show that the single-particle

spectra are different in the two cases. In addition, Fig. 2 shows the smoother

behavior for λHFB(E) as compared to λHF (E). This proves that the inclusion of

the pairing is not a perturbative effect and deeply modifies the wave-function.

The fundamental difference between | ΨHFBE > and | ΨHFE > is related

to the way a nucleon is added in both cases: while it is added on a specific

pair of time reversed orbits in the HFE case as discussed in section 2.3, it is
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spread out on several orbits around the Fermi level in the HFBE case because

of pair scattering, making the variation of λHFB(E) smoother with A.

The same type of analysis is valid for other observables. Fig. 5 gives the

mass number dependence of the axial quadrupole moment. The smooth vari-

ation related to the modification of the mean-field is fully taken into account

in the HFBE state. In the HFB calculation of odd nuclei, a tiny additional

change of deformation appears due to the qp creation. The proposed scheme

allows to decouple the two contributions.

3.2 Qp creation effect without pairing

We have studied the process of the addition of one nucleon through the

definition of | ΨHF(B)E > as a reference vacuum. Let us focus now on the

blocking of this added nucleon. We propose a simple tool to disentangle

the two components of the qp creation process: the breaking of time-reversal

invariance and the quenching of pairing. First, the zero-pairing case is treated

because it contains one of the two effects only.

The energy difference EHF - EHFE displayed on Fig. 6 gives a direct

information on polarisation effects brought by the odd nucleon, especially

through the breaking of the time-reversal symmetry. This symmetry breaking

removes the degeneracy between signature partners (see Fig. 3 and 4). As

noticed in previous works [10, 11], this effect is the largest for signature

partners corresponding to the qp which is created. Fig. 6 shows that the net

effect is repulsive and of the order of a few hundreds keV. Along the cerium

isotopic line, it ranges from 48 keV for 155Ce to 223 keV for 147Ce.

The polarisation effects obtained with the Sly4 interaction have been

found attractive on average in ref [12] for light nuclei. The difference with

our results may be related either to a mass dependence of the effect or to

a competition between isovector and isoscalar effects [13]. The effect of the

18



isovector terms of the interaction is indeed very weak in the study of N ≈ Z

nuclei of Ref. [12] while it is not the case in the present study of Ce isotopes.

In appendix A is derived an approximate expression for the difference

between HF and HFE energies. It is based on the assumption that the HF

and HFE single-particle wave-functions are identical, leading to the same

matrix elements for the two-body force; the two N-body wave-functions only

differing through individual occupation numbers. This assumes that the

deformation-polarisation of the core induced by the blocked nucleon is very

weak.

This perturbative calculation for the polarisation effect in absence of pair-

ing gives:

Epol = EHF −EHFE ≈
ẽn − ẽn̄

4
. (7)

where ẽn and ẽn̄ are the split orbits in the HF wave-function having occupa-

tion numbers 1 and 0 respectively.

The results obtained using this approximation are also plotted on Fig. 6

and are in very good agreement with the full polarisation effect along the

whole cerium isotopic line. This justifies that the individual wave-functions

are marginally modified by the qp creation and shows that core deformation-

polarisation effects are weak.

The energy difference 7 can be rewritten in terms of a single unper-

turbed diagonal particle-hole matrix element of the two-body force between

the blocked time-reversed states:

Epol ≈ −
V̄ p−h
nn̄nn̄

4
. (8)
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Figure 6: Diamonds: energy difference EHF - EHFE (see text) along the

cerium isotopic line. Stars: approximation [ẽHF
n − ẽHF

n̄ ]/4 for the polarisa-

tion effect in odd nuclei. Circles: time-odd mean-field terms contribution

−V̄ odd
nn̄nn̄/4 to the time-reversal symmetry breaking effect.
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On Fig. 6 is also plotted the contribution of the time-odd terms of the

interaction −V̄ odd
nn̄nn̄/4 to Epol. The explicit expression of V̄ odd

nn̄nn̄ can be worked

out from Ref. [14]. One can see that the time-odd terms are roughly respon-

sible for 2/3 of the time-reversal symmetry breaking effect for all isotopes.

The erratic behavior of the polarisation effect as a function A is directly re-

lated to these terms, while the time-even terms seem to be less sensitive to

the characteristics of the blocked orbits.

Eq. 7 and 8 allow to extract the polarisation effect in a simple way from

a single calculation. Either one performs a full HF calculation and evaluates

the polarisation effect in term of the single-particle energy splitting, or one

performs a simpler HFE calculation and evaluates the polarisation effect by

extracting the relevant matrix element.

The single-particle character of the polarisation energy illustrated by Eq.

7 and 8 has been pointed out in ref. [12] where it has been shown that:

Epol(N − Z = 2n) = Epol(N − Z = 2n+ 1) +Epol(N − Z = 2n− 1) . (9)

The fact that the polarisation energy is shown to be related to the splitting

of a single pair of states or a single matrix element simplifies the analysis.

One can therefore relate the magnitude of the polarisation energy in an

odd nucleus with three properties of the blocked orbital. In decreasing order

of importance they are: a small jz component on the deformation axis (K

quantum number), a down-slopping behavior of the individual energy with

A and a large total angular momentum j for the spherical shell from which

the orbit originates. That orbitals with these characteristics have large po-

larisation effects is not surprising since the same orbitals are known to be

very sensitive to rotation which is also an effect related to time-odd terms

of the mean-field. The large energy difference that can be seen on Fig. 6
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for 147Ce is associated with the blocking of the very down-slopping Nilsson

orbital [660]1/2, originating from the 1i13/2 shell. In 123Ce and in 141Ce, the

large polarisation corresponds to the [541]1/2 blocked orbitals coming from

the 2f7/2 spherical shell. These last two nuclei are of particular interest

because although they have different masses and very different deformations

(see Fig. 5), their large polarisation energy is of the same order of magnitude

since it is related to the matrix element involving the same pair of Nilsson

blocked states. This demonstrates that K is a relevant quantum number

in order to characterize the magnitude of Epol. These conclusions are valid

along the whole cerium isotopic line.

3.3 Qp creation effect with pairing

When pairing correlations are included, the energy difference EHFB - EHFBE

mixes both the effect of the blocking of pairing and the polarisation effect

and cannot be used to extract one of them only. However, it is shown in

Appendix A that the approximation 7 for the polarisation effect still holds

for HFB calculations.

As a consequence, Epol has the same order of magnitude in average in HF

and HFB cases although it can be significantly different for a given nucleus

as it can be seen on Fig. 7. Polarisation energies in the non zero pairing case

are given on Fig. 7 only for nuclei for which the assumption of a perturbative

calculation is valid.

Due to self consistency, the ordering of the qp levels may be different in

the HFE and HFBE calculations. On Table 1 are listed the Nilsson labels

of the orbitals corresponding to the qp created for each odd cerium isotopes

in the HF and HFB calculations. The differences that can be seen on Fig. 7

between both calculations are related to the different qp corresponding to the

ground states of 123,145,147,155,163,165Ce. For 161,163,165Ce, the difference is due
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to a shift by two neutron units for the blocked qp. Thus, the polarisation

energies in 163Ce and165Ce with pairing included are respectively equal to

those of 161Ce and 163Ce without pairing.

¿From 141Ce to 163Ce the polarisation energy has a smoother behavior

when pairing is included. In the HF calculation, the lowest qp automatically

changes from one odd nucleus to next, while the same qp may remain the

lowest in energy in several neighboring nuclei in the HFB case, making the

effect smoother with A.

There are only eight nuclei for which the created qp excitation is iden-

tical in both calculations. For five of them, 119,129,151,159Ce, the polarisation

effect is not significantly modified by the inclusion of pairing. However, for

three others, 125,131,141Ce, the self-consistency between the mean-field and the

pairing field in the HFB calculation is large enough to induce a significant

modification of the energy splitting ẽn − ẽn̄.

As in zero-pairing case, the contribution of time-odd terms, plotted on

Fig. 7, contributes to approximately 2/3 of the full polarisation energy and

follows the average behavior of Epol. This illustrates the sensitivity of time-

odd components of the interaction to the (jz, j) quantum numbers of the

created qp.

The polarisation energies have been calculated for the tin isotopic line

in Ref. [15] within the framework of relativistic mean-field theory. Pairing

correlations were treated in the BCS approximation. It was found attractive

by about 300 keV for two different parametrizations of the force. We have

performed a similar study within our approach and we have found that the

polarisation energy for the same isotopes is repulsive by approximately 100

keV. These contradicting results show the necessity of further analysis on the

dependency of the polarisation effect on self-consistent models and forces that

are used. The main source of uncertainty is due to the fact that the time-odd
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terms of the phenomenological forces have only been indirectly constrained

through time-even ones [16]. The possibility to associate the polarisation

effect with a specific matrix element of the force could open a way for the

inclusion of a constraint on these terms in the standard fitting procedures.

4 Conclusions

In this paper, we have re-analyzed the way odd nuclei are described in self-

consistent mean-field calculations with a double goal. We wanted to focus on

the nucleon addition process in the nuclear mean-field wave-function and on

its energetic consequences when going from one nucleus to the neighbor. We

also wanted to define a procedure such that the HF treatment of odd nuclei

is the zero-pairing limit of the HFB treatment. To achieve these goals, we

have defined a two steps procedure.

The first step corresponds to the description of odd nuclei as even ones,

by an appropriate constraint on the particle number. This has required a

modification of the usual HF filling approximation. It has been shown that

this pseudo even state takes into account the variation of the mean-field with

mass number.

In the second step, a qp is created on top of this odd vacuum. This does

not modify the position of the Fermi level whatever the characteristics of the

created qp (shell, spin, parity). Thus, the physical effect of the addition of

a nucleon is contained in this fully paired state while the qp creation brings

the extra polarisation and the modification of pairing correlations due to the

non pairing of this added odd nucleon.

An application to the Ce isotopic line has illustrated the relevance of

this decoupling and the possibility to remove a smooth behavior of physical

observables like energies and quadrupole moments thanks to this pseudo even
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structure.

Thus, the creation of a qp has two effects on binding energy of odd nuclei.

The first is related to the breaking of time-reversal invariance while the second

is due to the non pairing of a nucleon. In the HF case, we have shown that

the first effect can be related with an excellent accuracy to the lift of the

Kramers degeneracy of the conjugate pair of orbits in the single-particle

spectrum having occupation 1 and 0. This effect is also present with pairing

correlations and can still be related to the same Kramers degeneracy. In

this case, its energetic effect is dominated by the quenching of pairing in

the qp creation process. We have also shown that the first effect can be

associated with a single matrix element in the particle-hole channel. This

result is promising for the necessary inclusion of a constraint on the mean-

field time-odd terms in the standard fitting procedure of phenomenological

two-body forces. In the present study, this result has allowed us to isolate

the specific contributions of these time-odd terms which have been shown to

account for 2/3 of the time-reversal symmetry breaking effect in odd cerium

isotopes when using SLy4.

In the second part of this work, we will use the above analysis of odd

nuclei in order to understand the different contributions to the odd-even

mass fomulas currently used to approximate the pairing gap [17, 18].

APPENDIX: Perturbative calculation of the qp creation effect

The energy of an HFB state can be expressed in the canonical basis and

is given by:

EHFB =
∑

k

(

ek −
1

2

∑

k′
V̄ p−h
kk′kk′ v

2
k′

)

v2k −
1

4

∑

k,l

V̄ p−p
kk̄ll̄

uk vk ul vl , (10)
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where V̄ p−h
kk′kk′ and V̄ p−p

kk̄ll̄
are the antisymmetrised matrix elements of the two-

body force, v2k are the eigenvalues (u2
k = 1− v2k) of the density matrix and ek

the diagonal matrix elements of the Hartree-Fock field in the canonical basis:

ek = tk +
∑

k′
V̄ p−h
kk′kk′ v

2
k′ , (11)

where tk is the diagonal matrix element of the kinetic energy operator for an

individual wave-function φk in the canonical basis. We use the convention

that k and k̄ are paired partners. If not specified, the sum runs over all

individual states. For simplicity, the rearrangement terms in the mean-field

due to the density dependence of the Skyrme interaction are not included.

However, their introduction does not modify the final expression for the

polarisation energy.

The diagonal matrix element of the pairing field can also be defined by:

∆k = −
1

2

∑

l

V̄ p−p
kk̄ll̄

ul vl (12)

Let us consider two approximations a and b ‡‡ of the exact HFB state of a

given nucleus. To evaluate the difference between the energies obtained with

these two approximations, we will suppose that one has only to take into

account the changes in occupation v2k and that changes in the canonical basis

wave functions can be neglected in the calculation of the matrix elements of

the interaction.

Let us take as state a a time-reversal invariant HFB state. One has then

ek = ek̄. The differences between the individual energy ek in the state a and

‡‡All quantities referring to the case b will be upper-lined with a tilde.
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the energies ẽk and ẽk̄ in the state b are given by:

ẽk − ek =
∑

k′
V̄ p−h
kk′kk′

(

ṽ2k′ − v2k′
)

,

ẽk̄ − ek =
∑

k′

V̄ p−h
k̄k′k̄k′

(

ṽ2k′ − v2k′
)

, (13)

Using the relations V̄ p−h
kk′kk′ = V̄ p−h

k′kk′k and
∑

k′ V̄
p−h
kk′kk′ v

2
k′ =

∑

k′ V̄
p−h
kk̄′kk̄′

v2k′,

one can derive the following expression:

Eb −Ea =
1

2

∑

k

[

(ek + ẽk)
(

ṽ2k − v2k
)

− ∆̃k ũk ṽk + ∆k uk vk
]

.(14)

A Without pairing

Let us take for a the HFE wave-function and for b the HF one. The energy

difference Eb − Ea is due to time-reversal symmetry breaking and is equal

to the polarisation energy EPol. The occupation numbers of all individual

states below the Fermi level λodd are 1, and 0 for all states above, except for

the pair of states with energies just above λodd which are 1/2 for a and 1 and

0 for b.

The energy difference given by Eq. 14 becomes:

EPol = EHF − EHFE = (ẽn − ẽn̄) / 4 ,

= −V̄ p−h
nn̄nn̄ / 4 ,

(15)

the second expression being obtained using Eq. 13 and the cancelation of the

antisymmetrised matrix element V̄ p−h
nnnn.
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B With pairing

In the presence of pairing correlations, the energy difference (EHFB - EHFBE)

contains contributions coming from the blocking of pairing and from polar-

isation effects due to the breaking of time-reversal invariance. This energy

difference is calculated in two steps. First, the polarisation effects are elimi-

nated by performing a filling approximation. This means that starting from

the fully paired HFBE state, the occupation probabilities in the canonical

basis are changed from v2k to ˜̃v
2

k for all states, except for two of them close

to the Fermi energy for which the occupations ˜̃v
2

n and ˜̃v
2

n̄ are set to 1/2. The

blocking of pairing is taken into account by excluding these two states n and

n̄ from the calculation of ∆. Second, we consider the fully blocked state,

for which the occupation probabilities are denoted by ṽ2k, the state n and n̄

having an occupation 1 and 0 respectively.

We have checked numerically that it is a fair approximation to take the

occupation probabilities ṽ2k and ˜̃v
2

k and the pairing gaps ˜̃∆k and ∆̃k equal for

all k and k̄ except for n and n̄.

Using this assumption, one can show that:

˜̃ek = ˜̃ek̄ = ẽk −
(

V̄ p−h
knkn − V̄ p−h

kn̄kn̄

)

/ 2 ,

= (ẽk + ẽk̄) / 2 .
(16)

The two successive energy differences can now be given in terms of the

full blocked state variables (variables defined with one tilde on top of them)

using Eq. 14:
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˜̃
EHFB −EHFBE = 1

2

∑

k 6=n,n̄

(

ek +
ẽk+ẽ

k̄

2

)

(ṽ2k − v2k) +
(

en +
ẽn+ẽn̄

2

) (
1
2
− v2n

)

,

− 1
2

∑

k

(

∆̃k ũk ṽk − ∆k uk vk
)

˜EHFB −EHFBE = 1
2

∑

k

[

(ek + ẽk) (ṽ
2
k − v2k) − ∆̃k ũk ṽk + ∆k uk vk

]

.

We approximate the pure polarisation effect in the presence of pairing

correlations by the energy difference ˜EHFB −
˜̃

EHFB. Using the last two

equations, we obtain:

EPol =
ẽn − ẽn̄

4
, (17)

(18)

This result is formally identical to the HF result.
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Table 1: Nilsson numbers of created qp in odd cerium isotopes for zero as

well as for realistic neutron pairing intensity (in MeV.fm−3). Numbers are

not reported when the created qp mixes several Nilsson states.

Cerium V p−p
n = 0 V p−p

n = 1250

K[NnzΛ]
119Ce 3/2[422] 3/2[422]
121Ce 3/2[422] 5/2[532]
123Ce 1/2[541] 5/2[413]
125Ce 1/2[411] 1/2[411]
127Ce 7/2[523] 5/2[402]
129Ce 7/2[523] 7/2[523]
131Ce 7/2[404] 7/2[404]
133Ce 9/2[514]
135Ce 3/2[402]
137Ce 9/2[514]
139Ce 11/2[505]
141Ce 1/2[541] 1/2[541]
143Ce 3/2[532] 3/2[532]
145Ce 1/2[530] 3/2[532]
147Ce 1/2[660]
149Ce 3/2[651] 3/2[521]
151Ce 3/2[521] 3/2[521]
153Ce 5/2[642] 3/2[521]
155Ce 5/2[523] 1/2[521]
157Ce 1/2[521]
159Ce 5/2[512] 5/2[512]
161Ce 7/2[633] 5/2[512]
163Ce 1/2[600] 7/2[633]
165Ce 1/2[510] 1/2[600]
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