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Abstract

This paper deals with the theoretical foundation of effective two-

body forces for the Generator Coordinate Method (GCM) and the

projected mean-field method. The first aim of this paper is to reduce

into various local-densities the in-medium content of a generalized G

matrix removing the hard core problem in this extended context. Then,

we consider the possible renormalization of multi-body forces through a

density-dependent two-body interaction in the context of configuration

mixing calculations. A density dependence of the form ρσ, as used in

Skyrme and Gogny forces, is successfully interpreted as doing so when

the mixed density is used. Finally, we propose a simple extension

of the Skyrme force dedicated to the calculation of matrix elements

between non-orthogonal product states, which are needed to evaluate

the correlated energy.
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1 Introduction

Mean-field approximations are a first step towards the description of the

ground state and low-lying excited states in microscopic nuclear structure

calculations. They take into account the physical content of the one-body

density matrix only. Consequently, data not related to one-body operators

may not be satisfactorily reproduced in this context. Mean-field approxima-

tions make use of a product wave function to approximate the eigenstates

of the systems in the variational problem. It is a Slater determinant in

the Hartree-Fock (HF) theory [1] or a quasi-particle (qp) vacuum in the

Hartree-Fock-Bogolyubov (HFB) theory [2] which includes static pairing

correlations.

In cases where the agreement with the data is not satisfactory, one has

to go beyond this approximation to include important missing correlations.

Another reason to perform more elaborate calculations is the necessary

restoration of symmetries possibly broken by mean-field solutions. When

the symmetry breaking is weak, including appropriate correlations allows

for a significant improvement of the binding energy in addition to obtain a

wave-function with good quantum numbers.

Some variational methods beyond the mean-field make use of N -body

wave-functions of the form:

|Ψk〉 =
∑

α

fk
α |Φ

α
0 〉 , (1)

where {|Φα
0 〉} constitutes a set of product states. This discrete superposition

is sometimes an approximation for a mixing originally written in terms of

a continuous coordinate α. This is the case in the Generator Coordinate

Method (GCM) and for some symmetry restorations. Once such a trial

wave-function is given, its mean energy:
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Emix
k ≡

〈Ψk |H |Ψk〉

〈Ψk |Ψk〉
, (2)

=

∑

α,β fk ∗
β fk

α〈Φ
β
0 |H |Φ

α
0 〉

∑

α,β fk ∗
β fk

α〈Φ
β
0 |Φ

α
0 〉

. (3)

can be minimized with respect to variational parameters. The mean-field

approximation is recovered from Eq. 1-3 if only one coefficient is non zero; its

self-consistent version corresponding to the minimization of the energy with

respect to the individual wave-functions. Within this general framework, let

us explicit some methods mixing low-energy configurations.

The GCM [3, 4, 5] deals with large-amplitude collective motions in nuclei

and allows the evaluation of ground-state correlations, low-lying collective

spectra and transition matrix elements associated with different vibrational

modes or pairing vibrations. Within this method, the mixed states, generally

determined through constrained self-consistent calculations, are fixed non-

orthogonal mean-field states |Φα
0 〉. The energy is varied with respect to

fk ∗
β .

The projected mean-field method [6, 7, 8, 9] is another kind of mixing. It

is used to restore symmetries broken at the mean-field level such as particle

number and translational or rotational invariance. The degeneracy of the

symmetry breaking mean-field solutions |Φα
0 〉 is used to construct eigenstates

of the infinitesimal generator of the associated symmetry group. For Abelian

groups such a requirement fixes the coefficients of the mixing fk
α [1] and the

Variation After Projection (VAP) is performed with respect to the individual

wave functions from which the non-orthogonal product states |Φα
0 〉 are built.

Finally, an improvement of the ground-state as well as of low-lying state

properties can be achieved by going beyond the independent quasi-particles

picture through a mixing of quasi-particle excitations. This corresponds to

the treatment of small amplitude correlations. The set of product states is
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composed of zero, two, four etc... quasi-particles states |Φα
i 〉 built on top

of the mean-field state |Φα
0 〉 approximating the ground-state wave-function.

This gives a set of fixed, orthonormal product functions. Alternatively, each

of these quasi-particle states can be calculated self-consistently through the

minimization of the corresponding mean-field energy. In this case, the mixed

quasi-particle states |Φα
i 〉 are fixed non-orthogonal product wave-functions

with identical quantum numbers. The variation is performed with respect

to fk ∗
i .

The former cases have been distinguished not only for their different

physical content but also because one has in practice to determine whether

the mixed product functions are orthogonal or not and what the varia-

tional parameters are. Indeed, the evaluation of the energy in the corre-

lated state |Ψk〉 requires the calculation of matrix elements of the form

〈Φβ
0 |H |Φ

α
0 〉. The evaluation of two, three. . . body operators is feasible be-

tween non-orthogonal product states thanks to the generalized Wick theo-

rem [10]. For orthogonal states one has to express both of them with respect

to a single vacuum of reference before using the standard Wick theorem [11].

As for the variation, a double variational method with respect to fk ∗
i and the

single-particle wave-functions defining the mixed states could be performed

in principle; at least when the coefficients of the mixing are not completely

determined by geometrical arguments. However, the resolution of this prob-

lem is rather complicated and often contains a high degree of redundancy [1].

Finally, the above cases can be mixed through a more general ansatz for the

correlated function |Ψk〉 in order to study the coupling between different

physical effects (coupling of collective and single-particle degrees of free-

dom [12, 13], GCM in symmetry restored collective spaces [14, 15, 16]).

However, a formal problem arises when considering the calculation of

the correlated energy in connection with effective density-dependent Hamil-

tonians H [ρ]. This is the case for nuclear structure calculations with phe-

nomenological interactions [17, 18].
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At the mean-field level, no ambiguity exists since the evaluation of Eq. 3

requires the calculation of a single diagonal matrix element 〈Φα
0 |H [ρ] |Φα

0 〉

and the one-body density used is naturally taken as the corresponding mean-

field density. Precisely, it is generally taken as the local scalar-isoscalar part

of the one-body density matrix [17, 18, 19]:

ρα0 (~R) =
〈Φα

0 | ρ̂0(
~R) |Φα

0 〉

〈Φα
0 |Φ

α
0 〉

, (4)

where the local scalar-isoscalar part of the one-body density operator is

defined as:

ρ̂0(~r) =
∑

I,J,ζz,ζ′z ,sz,t

ϕ∗
I(~r, ζ

′
z, sz, t)ϕJ (~r, ζz, sz, t) c

†
Iζ′zszt

cJζzszt . (5)

The individual wave-functions ϕI=Nπ(~r, ζz, sz, t) have good parity π, z-

signature ζz, spin projection on the z-axis sz and isospin projection t; N

being the principal quantum number∗. They constitute a basis of the single-

particle Hilbert space.

When going beyond the mean-field approximation through the use of

the trial state |Ψk〉, there is no natural choice for the local density to insert

into non-diagonal matrix elements 〈Φβ
0 |H [ρ] |Φα

0 〉. Two prescriptions have

been used up to now in such calculations:

(1) the local scalar-isoscalar part of the mixed density:

ρ
(β,α)
0 (~R) =

〈Φβ
0 | ρ̂0(

~R) |Φα
0 〉

〈Φβ
0 |Φ

α
0 〉

, (6)

which has to be used in the corresponding kernel 〈Φβ
0 |H |Φ

α
0 〉 in Eq. 3.

This choice has been made in the GCM with or without projection on
∗Upper cases will denote throughout the paper all quantum numbers except for sig-

nature, spin and isospin while lower cases will denote all quantum numbers including

signature, spin and isospin.
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particle number and angular momentum [14, 15, 16, 20, 21, 22]. Note

that the diagonal mixed density is nothing but a mean-field density :

ρ
(α,α)
0 (~R) = ρα0 (

~R). So far, this choice has been motivated by the

equivalence existing at the mean-field level between a three-body zero-

range force and a linearly density-dependent two-body interaction [17]

for time-reversal invariant systems. Considering this argument and

the fact that the kernel 〈Φβ
0 |V

(3) |Φα
0 〉 for a three-body force can be

expressed in terms of the mixed density-matrix only, it was chosen to

use the mixed local density in the two-body force [20, 21, 23]. However,

to our knowledge the above mentioned equivalence has not been shown

explicitly for a general configuration mixing. The extension to a non-

linear density-dependence as used in Skyrme and Gogny interactions

has not been theoretically justified as well.

(2) the local scalar-isoscalar part of the correlated density:

ρΨk

0 (~R) =
〈Ψk | ρ̂0(~R) |Ψk〉

〈Ψk |Ψk〉
, (7)

which does not depend on (β, α) and is to be used in all kernels in Eq. 3.

This choice has been made in approximate and exact variation after

particle number projection calculations [23, 24, 25]. Similar results to

those found with the mixed density were obtained. The choice of the

correlated density in the evaluation of the correlated energy seems as

reasonable as the use of the mean-field density in the calculation of

the mean-field energy. We discuss an a priori stronger argument in

favor of the correlated density [23] in appendix C.

One could add the possibility to use the local mean-field density as de-

fined by Eq. 4 in projected mean-field calculations. Indeed, it is possible

in this case to express the correlated energy in terms of the density matrix

and the pairing tensor of the single product state |Φ0
0〉 from which |Ψk〉

is projected out [9]. This suggests the use of the corresponding mean-field
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density in the Hamiltonian in order to keep the energy as a functional of

these variables only. No quantitative calculation has been performed until

now using this prescription. It is worth noting that this argument does not

hold in the general case. Indeed, the energy as given by Eq. 3 cannot a pri-

ori be written in terms of the density matrix and pairing tensor of a single

mean-field.

Given the lack of theoretical support for the commonly used prescrip-

tions, the aim of the present work is to develop theoretical arguments in

favor of a particular density dependence within the general framework of

configuration mixing calculations. In order to do that, one has to identify

physical reasons for the effective two-body force to depend on some density.

We now give a non exhaustive review of the possible origins.

2 Density-Dependence Origins of Two-Body In-

teractions.

One can roughly identify three cases where effective two-body forces should

have a density dependence [26, 27, 28]:

(1) the effective interaction includes some specific correlations induced by

the bare nucleon-nucleon (NN) interaction through explicit summation

of diagrams in a perturbative expansion. This is the case for two-body

correlations associated with the repulsive core and the tensor compo-

nent of the NN interaction which are taken care of, in presence of the

other nucleons, through Brueckner ladders summation [29, 30]. In that

sense, phenomenological forces have been characterized as Brueckner

Gmatrices in the Local Density Approximation (LDA) [31, 32] or after

a Density Matrix Expansion (DME) [33].

There are other correlations not considered explicitly at first-order

in the G matrix such as three-body, four-body... short-range corre-
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lations. The corresponding contributions to the binding energy can

be phenomenologically included through a density dependence of the

effective force [26].

Long-range correlations can be treated explicitly through configuration

mixings such as those considered in this work. If this is the case, the

effective interaction must not renormalize them.

(2) the phenomenological effective interaction omits explicitly some oper-

ators which are known to be important in realistic NN interactions and

known to bring about a non trivial density-dependence in the binding

energy. This is the case for the tensor force which is generally omit-

ted in phenomenological interactions such as the Skyrme [17, 19] and

the Gogny [18] forces. As this component of the force plays a crucial

role in the saturation process, any effective two-body interaction not

including it explicitly should have a corresponding phenomenological

density dependence [34].

(3) the Hamiltonian includes the bare two-body force but higher-order in-

teractions such as three-body terms are omitted. In this case, one can

think of renormalizing their effects through a density-dependent two-

body interaction [17, 27]. It is beyond the scope of this paper to discuss

the sub-nucleonic origins of three-body and higher multi-body forces

as well as their quantitative relevance [26, 27]. However, it is worth

mentioning their importance in nuclear systems. Three-body forces,

either phenomenological or derived from microscopic meson-exchange

models with nucleonic virtual excitations and nucleon-antinucleon pair

creations, have been necessary to get good properties of (a)symmetric

nuclear matter. In particular, they allow the reproduction of the em-

pirical saturation at the correct density and energy per particle in non-

relativistic Brueckner-Hartree-Fock calculations [35, 36]. Three-body

forces have also been essential to describe spectroscopic properties of
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light nuclei up to mass 10 in ab-initio calculations using the Green’s

function Monte Carlo method [37]. In addition to these studies on

bound nuclear systems, including three-body forces in the treatment

of nucleon induced deuteron break-up or nucleon-deuteron elastic scat-

tering has resolved several inconsistencies with the data observed when

using two-body forces only [38].

The renormalization of the described effects is understood at the mean-

field level. The deduced effective two-body interaction always depends on

the density of the underlying Slater determinant. However, as soon as the

model or the variational space is modified to include correlations explicitly,

not only must the analytical structure of the density dependence be changed

but the kind of density itself is no longer obvious.

The derivation of this analytical structure associated to each of the above

mentioned origins constitutes a difficult task at any level of approximation.

This is beyond the scope of this work. We rather concentrate on the deter-

mination of the type of density to be used in relation to origins (1) and (3) in

calculations beyond the mean-field. The corresponding analytical functional

will have a more phenomenological character. We are looking for guidelines

to the definition of phenomenological forces while the phenomenology em-

bodied by their fit on a few nuclear data should allow us to smooth out the

imperfections of the analytical derivation.

Section 3.1 recalls some results needed to extend the usual Goldstone-

Brueckner perturbation theory to configuration mixing calculations [39].

From section 3.2 to section 3.7, we deal with the local density approxi-

mation of the generalized Brueckner matrix emerging in that extended per-

turbation theory. These calculations concern the particle-hole channel of

the interaction since the Brueckner ladders should not be summed in the

pairing channel [40, 41, 42, 43, 44]. Section 4.1 then deals with the renor-

malization of three-body forces within the GCM while section 4.2 is devoted
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to the same problem for the projected mean-field method. We generalize

our results to higher multi-body forces in section 4.3 and make some com-

ments in section 4.4 about the configuration mixing of individual excitations.

We supplement this part of the work with appendices providing details of

our calculations, remarks concerning the use of the correlated density and

a discussion on the crucial role of rearrangement terms in the equations of

motion. The corresponding calculations are presented without taking care

of static pairing correlations but the results can be extended to the pair-

ing channel as well. Applying our results to the standard Skyrme force,

we propose in section 5 an extension of its density dependence to be used

in projected mean-field and generator coordinate methods. As an applica-

tion, the generalized Skyrme force is shown to be well defined for symmetry

restoration. Conclusions are given in section 7.

3 Two-Body Correlations for Mixed Non-Orthogonal

Vacua.

3.1 Generalized Brueckner matrix.

In Ref. [39], a generalized perturbation theory written in terms of non-

orthogonal Slater determinants has been developed. Contrary to usual per-

turbation theories [45, 46, 47, 48], this method aims at writing the actual

ground state of the system as a superposition of solutions originating from

several non-orthogonal product states close in energy at t = −∞. One

obtains a perturbative series taking care of long-range correlations which

cannot be included in a simple way by using an expansion referring to a

single vacuum. The new expansion still faces the problem related to the

hard core of the two-body nucleon-nucleon interaction V . Ref. [39] shows

how to sum generalized particle-particle ladders through a newly defined

Brueckner matrix removing the hard-core problem in this extended context.

10



This effective interaction G(β,α) is given in terms of two standard Brueckner

matrices Gβ and Gα referring to two different vacua |Φβ
0 〉 and |Φ

α
0 〉:

G(β,α)(Wβ,Wα) = Gβ(Wβ)V
−1 Gα(Wα) , (8)

where the standard Gα Brueckner matrix satisfies a self-consistent equation

of the form [29, 45]:

Gα(Wα) = V + V
Qα

Wα − hα0
Gα(Wα) . (9)

Qα is the Pauli operator acting in the two-particle space to exclude oc-

cupied states in |Φα
0 〉 as intermediate states in the Brueckner ladder. Eqs. 8

and 9 make use of the one-body Hamiltonian hα0 whose N -body ground-state

is |Φα
0 〉 (with energy Eα0 ). The single-particle eigenstates and eigenenergies of

hα0 are defined as {φαk
, ǫαk
} where k denotes the quantum numbers {Nπζzt}.

This set of quantum numbers covers the cases of triaxially deformed and/or

time-reversal symmetry breaking mean-field solutions. The starting ener-

gies Wα and Wβ characterize the dependence of the in-medium interaction

of two particles on the energy of the others. The diagrammatic content of

G(β,α), its matrix elements and the precise definitions of Wα and Wβ are

given in Ref. [39].

Considering the lowest-order of the extended perturbation theory, the

ground-state energy is approximated by [39]:

E n=0
0 =

∑

α,β f0 ∗
β f0

α〈Φ
β
0 | t + G(β,α)(0, 0) |Φα

0 〉
∑

α,β f0 ∗
β f0

α〈Φ
β
0 |Φ

α
0 〉

. (10)

This is precisely the energy Emix
0 for a state mixing non-orthogonal vacua

as used in the GCM or the projected mean-field method where the starting

two-body interaction V has been replaced by the regularized effective vertex

on the energy shell (Wα = Wβ = 0).
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3.2 LDA for Standard Brueckner Matrices: definitions and

goal.

The interaction Gα includes many-body effects through the operatorQα/(Wα−

hα0 ). The value of Wα depends upon the location of the Gα interaction in

a given graph. At that location, the matrix element 〈αm αn|G
α |αp αq〉 de-

pends upon ǫαp+ǫαq−Wα through the energy denominator of Qα/(Wα−h
α
0 ).

The question adressed now is whether these in-medium effects can be re-

duced to a simpler dependence on various local densities.

The Gα matrix elements are well defined in the {φαk
} representation.

Considering the transformation to configuration space, one can write:

〈αm αn |G
α |αp αq〉 =

∑

ζz1...t1...

∫

d~r1 d~r2 d~r′1 d~r′2 〈αm αn |~r1 ζz1 t1 ~r2 ζz2 t2〉

(11)

〈~r1 ζz1 t1 ~r2 ζz2 t2 |G
α | ~r′1 ζ

′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉 〈

~r′1 ζ
′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2 |αp αq〉 ,

where 〈 ~r′1 ζ
′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2 |αp αq〉 is an antisymmetrized two-body wave func-

tion. Eq. 9 satisfied by the standard Gα matrix reads in configuration space

as:

〈~r1 ζz1 t1 ~r2 ζz2 t2 |G
α | ~r′1 ζ

′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉 = 〈~r1 ζz1 t1 ~r2 ζz2 t2 |V |

~r′1 ζ
′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉

(12)

+ 〈~r1 ζz1 t1 ~r2 ζz2 t2 |V
Qα

Wα − hα0
Gα | ~r′1 ζ

′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉 ,

and is linked to the original matrix element in the {φαk
} representation

through its dependence on ǫαp + ǫαq . Note that it is not necessary to anti-

symmetrize the matrix elements in coordinate space since it is done in the

{φαk
} representation. We now write the bare interaction under the form [1]:

〈~r ′
1 ~r

′
2|V |~r1 ~r2 〉 = V (~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1.~̂τ2) δ(~r1 − ~r ′

1) δ(~r2 − ~r ′
2) , (13)
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where ~r = ~r1− ~r2 and ~p = (~p1− ~p2)/2 are the relative position and momen-

tum vectors of the two interacting nucleons. The ~p dependence is a practical

manner to take the non-locality of the force into account. Using this expres-

sion and the fact that Qα/(Wα−h
α
0 ) is diagonal in the (non-antisymmetrized

here) two-particle basis {|αr αs〉} :

Qα

Wα − hα0
=

∑

ǫαr>ǫα
F

ǫαs>ǫα
F

|αrαs〉 〈αrαs |

ǫαp + ǫαq −Wα − ǫαr − ǫαs

, (14)

one obtains by inserting the identity operator twice through closure relations

in the last term of Eq 12:

〈~r1 ζz1 t1 ~r2 ζz2 t2 |V
Qα

Wα − hα0
Gα | ~r′1 ζ

′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉 =

∑

ζz3ζz4t3t4

〈 ζz1 t1 ζz2 t2 |V (~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1. ~̂τ2) | ζz3 t3 ζz4 t4〉

∫

d~r3 d~r4 (15)

〈~r1 ζz3 t3 ~r2 ζz4 t4 |
Qα

Wα − hα0
|~r3 ζz3 t3 ~r4 ζz4 t4〉 〈~r3 ζz3 t3 ~r4 ζz4 t4 |G

α | ~r′1 ζ
′
z1 t

′
1
~r′2 ζ

′
z2 t

′
2〉 .

3.3 LDA for Standard Brueckner Matrices: analysis.

We study the operator Qα/ (Wα − hα0 ) which is responsible for the in-

medium effects and thus for the possible density dependence. Its non-

antisymmetrized matrix elements read in coordinate space as:

〈~r1 ζz3 t3 ~r2 ζz4 t4 |
Qα

Wα − hα0
|~r3 ζz3 t3 ~r4 ζz4 t4〉 =

∑

ǫαr>ǫα
Ft3ζz3

ǫαs>ǫα
Ft4ζz4

φ∗
αs
(~r4)φαs(~r2)φ

∗
αr
(~r3)φαr (~r1)

ǫαp + ǫαq −Wα − ǫαr − ǫαs

,

(16)

and are diagonal in isospin. The isospins of the states involved in the sum

satisfy (tr = t3, ts = t4) and (ζzr = ζz3, ζzs = ζz4). This is specified through
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two labelled Fermi energies ǫαFt3ζz3
and ǫαFt4ζz4

.

In order to write an approximation in terms of local densities, one has

to make the one-body density-matrix appear in the numerator of Eq. 16.

To do so, one has to perform some average on the energy denominator to

make it independent of the running indices (αr, αs). In most existing works

the procedure consists of averaging this denominator over the Fermi sea in

nuclear matter [33, 49]. This mean value depends on the Fermi energy, which

in turn depends upon the total density of the system. This dependence is

eventually transformed into a local-density dependence when going back to

finite nuclei. Together with a density-matrix expansion in the numerator,

this provides the full local density dependence of the effective interaction [33,

49]. However, this strategy is doubtful from a formal point of view: indeed,

three types of energies should be distinguished in the energy denominator

of Eq. 16.

The first energy, ǫαp + ǫαq , refers to the unperturbed two-body ket in

the original matrix element 11. This energy is fixed in the right hand-side

of Eq. 16. It is indeed reasonable to average it out over the Fermi sea since

the matrix elements of Gα involved in the calculation of the energy at the

lowest order concern occupied states. However, such an average is related to

the Fermi energies in the studied finite nucleus, and thus to N and Z rather

than to a local density at the center of mass of the interacting nucleons.

Besides, even if he used it successfully, Negele has shown the crudeness of

the above procedure for this energy dependence [49].

The second energy, Wα, induces a non-trivial dependence of Gα on its

location in the diagram. Given that location, Wα is fixed for all matrix

elements defined by Eq. 11. At the lowest order, this parameter is zero since

the Brueckner matrix is taken on the energy shell.

The last energy, ǫαr + ǫαs , makes the denominator of Eq. 16 dependent

on the running indices αr and αs. This energy comes from each two-body

propagator in the Brueckner ladder and the indices run over particles states
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up to infinite energies. It is in no way related to any energy in the Fermi

sea. As it is a weighting factor for each particle-particle intermediate state

entering the ladder, it is strongly connected to the numerator in Eq. 16.

Omitting this link amounts to giving up an important part of the physics

involved in the Brueckner resummation by providing particle states with the

same weight whatever their unperturbed energies.

The usual averaging procedure finally amounts to stating that the Pauli

operator:

〈~r1 ζz3 t3 ~r2 ζz4 t4 |Q
α |~r3 ζz3 t3 ~r4 ζz4 t4〉 =

[

δ(~r2 − ~r4)− ραt4ζz4(~r2, ~r4)
] [

δ(~r1 − ~r3)− ραt3ζz3(~r1, ~r3)
]

,

(17)

is the essential quantity to treat in detail in the operator Qα/ (Wα − hα0 ).

It is where the DME is performed [33, 49]. As the procedure providing

Eq. 17 is questionable, and as a simplification of the Gα is by far necessary

to proceed to extensive nuclear structure calculations, we could think of a

direct local approximation of the “energy-density” defined by Eq. 16 [50].

Following the spirit of the DME, this approximation should be of similar

quality as for Eq. 17 [33]. However, this would not provide the interaction

with dependences on local densities (ρα(~R),∇2 ρα(~R), τα(~R) . . .)†.

In spite of the weaknesses we have just discussed, there is no fully coher-

ent picture available approximating the matrix element 16 by a functional

of local densities. Consequently, we give up the idea of deriving analytically

the density dependence induced by the operator Qα/ (Wα − hα0 ).

3.4 Ansatz.

Because of the conclusions of the previous section, we postulate the pos-

sibility to approximate the matrix element 16 through a local, zero-range

quantity of the form:

†For the definitions of the different densities, see for instance Ref. [51].
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〈~r1 ζz3 t3 ~r2 ζz4 t4 |
Qα

Wα − hα0
|~r3 ζz3 t3 ~r4 ζz4 t4〉 ≈ K

[

ραt3ζz3(~r1), ρ
α
t4ζz4(~r2)

]

δ(~r1 − ~r3) δ(~r2 − ~r4)

(18)

≈ F
[

ρα0 (
~R)
]

δ(~r1 − ~r3) δ(~r2 − ~r4) δ(~r1 − ~r2) ,

where F (K) is an unknown functional of the local scalar-isoscalar (isospin

and signature dependent) density(ies) associated with the product state

|Φα
0 〉.

The DME, which we keep as a motivation for the local approximation 18,

suggests a dependence of F (K) on a power series of the relative coor-

dinates ~r1 − ~r3 and ~r2 − ~r4 [49] figuring the non-locality of the operator

Qα/ (Wα − hα0 ). Thus, some corrective terms depending on second deriva-

tives of the local densities ρα(~R) and on the kinetic densities τα(~R) should

also be considered. For systems breaking time reversal invariance, the DME

provides dependences on spin densities ~sα(~R), current densities ~jα(~R) and

spin-current densities ~Jα(~R). The fully local approximation embodied by

Eq. 18 is correct at high density but particularly crude at the surface in

finite nuclei. The zero-range approximation in ~r1 − ~r2 is much safer since

Qα/ (Wα − hα0 ) is always surrounded by two V interactions in Gα [33]. It is

responsible for the dependence of ραt3ζz3 and ραt4ζz4 on ~R rather than on ~r1

and ~r2 respectively in Eq. 18.

As suggested by Eqs. 17 and 18, the in-medium content of the effective

force depends on the isospin of the interacting nucleons and should provide

a dependence on both the isoscalar and the isovector components of the

local part of the density matrix. However, phenomenological forces used

generally depend on the isoscalar density only whatever the isospin of the

interacting nucleons. This has been satisfying for nuclei around the stability

line but could be questionable for near drip-line nuclei. In the same spirit,

the in-medium content of the effective force depends on the signature of the

interacting nucleons and should provide a dependence on both the scalar and
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the vector components of the local part of the density matrix. This would

differenciate the effective interaction for even-even and odd-even nuclei as

well as for J = 0 and J > 0 states.

Taking the complete dependences into account would complicate the

following theoretical and numerical developments dramatically. This is why

none of the refinements with respect to a dependence of the local scalar-

isoscalar part of the density matrix will be considered here. This is consistent

with the present form of Gogny and Skyrme forces. Corrections will be

included through the phenomenological nature of these interactions.

Using the ansatz 18, and the fact that the operator ~p = (~p1− ~p2)/2 does

not act on ~R, the matrix element defined through Eq. 12 becomes :

〈 ζz1 t1 ζz2 t2 |G
α
LDA(

~R,~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1. ~̂τ2)− V (~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1. ~̂τ2) | ζ
′
z1 t

′
1 ζ

′
z2 t

′
2〉 =

(19)

F
[

ρα0 (~R)
]

〈 ζz1 t1 ζz2 t2 |V (~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1. ~̂τ2) G
α
LDA(~R,~r, ~p, ~̂σ1, ~̂σ2, ~̂τ1. ~̂τ2) | ζ

′
z1 t

′
1 ζ

′
z2 t

′
2〉 .

Let us introduce a closure relation in the tensorial product space of

signature/isospin spaces between V and Gα
LDA, iterate Eq. 19 and eliminate

this closure relation. We obtain an expression valid for all Gα
LDA matrix

elements in signature/isospin spaces which, without writting explicitly the

dependences of V and Gα
LDA on the operators ~̂σ1, ~̂σ2 and ~̂τ1. ~̂τ2, takes the

form:

Gα
LDA(~R,~r, ~p) =

∞
∑

l=0

V l+1(~r, ~p)F l
[

ρα0 (~R)
]

(20)

= V (~r, ~p) + V 2(~r, ~p)F
[

ρα0 (~R)
]

+ V 3(~r, ~p)F2
[

ρα0 (~R)
]

+ . . .
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3.5 LDA for G(β,α).

We now turn to the local approximation of the G(β,α) matrix on the energy

shell. Using Eq. 8 and Eq. 20, we obtain after some manipulations :

G
(β,α)
LDA (~R,~r, ~p) =

∞
∑

l=1

V l(~r, ~p)
F l
[

ρβ0 (
~R)
]

− F l
[

ρα0 (
~R)
]

F
[

ρβ0 (
~R)
]

− F
[

ρα0 (
~R)
]

(21)

= V (~r, ~p) + V 2(~r, ~p)
{

F
[

ρβ0 (
~R)
]

+ F
[

ρα0 (~R)
]}

+V 3(~r, ~p)
{

F2
[

ρβ0 (
~R)
]

+ F
[

ρβ0 (
~R)
]

F
[

ρα0 (~R)
]

+ F2
[

ρα0 (~R)
]}

+ . . .

This form of the effective interaction relies on general manipulations

only and is still far too complicated to be used in extensive calculations of

finite nuclei. It needs to be simplified. However, one can already conclude

one important point. Eq. 21 shows that whatever the explicit form of the

functional F is, G
(β,α)
LDA will depend neither on the mixed density nor on the

correlated density, but on local mean-field densities ρα0 (
~R) and ρβ0 (

~R) of the

two product states involved in the matrix element 〈Φβ
0 | t+G(β,α) |Φα

0 〉.

We shall now go through some simplifications. As standard phenomeno-

logical forces such as Gogny and Skyrme forces have often been interpreted

as local density approximations of Brueckner matrices [17, 49], one should

recover their usual mean-field density-dependence when considering a diag-

onal term (β = α) in Eq. 21. For instance, a typical Skyrme force reads

as [19]:

vSkyrme(~R,~r,
−→
k ,
←−
k′ ) = t0 (1 + x0Pσ) δ(~r)

+
1

2
t1 (1 + x1Pσ) (δ(~r)

−→
k

2
+
←−
k′

2
δ(~r))

+ t2 (1 + x2Pσ)
←−
k′ . δ(~r)

−→
k (22)
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+
1

6
t3 (1 + x3Pσ)

[

ρα0 (
~R)
]σ

δ(~r)

+ iW0 ( ~̂σ1 + ~̂σ2)
←−
k′ ∧ δ(~r)

−→
k ,

where
−→
k = (∇1 − ∇2)/2i embodies the momentum operator acting on the

right while
←−
k′ embodies the same operator, with a sign minus, acting on the

left. Pσ is the spin exchange operator. Tensor forces are still not included

in Skyrme forces. On one hand, Hartree-Fock calculations including such

a term have shown no improvement on spin-orbit splittings in spin unsatu-

rated nuclei [52]. On the other hand, perturbative calculations have shown

the importance of the tensor component in generating two-body correlations

and associated density-dependence [53, 54]. This is due to the dependence of

the tensor force contribution to the energy on the Pauli operator Qα. This

remark is also supported by many-body calculations taking into account the

mesonic degree of freedom which shows the strong in-medium effects gener-

ated by pions exchange [55]. Thus, one would expect a density-dependent

tensor term in phenomenological effective interactions to be important for

some phenomena. Whereas the density dependence associated to the two-

body correlations generated by the tensor force is thought to be included in

F , a better treatment of the tensor force in effective interactions, especially

as a function of isospin, deserves additional work in the future.

The identification of G
(α,α)
LDA(

~R,~r, ~p) with vSkyrme(~R,~r,
−→
k ,
←−
k′ ) requires to

neglect the tensor force in the bare interaction and to perform an expansion

to second order in the range of the effective interaction G
(β,α)
LDA(

~R,~r, ~p)‡; that

is, for all powers V l(~r, ~p) of the bare interaction. Performing these expan-

sions and grouping the terms coming from the central and the spin-orbit

parts, one formally obtains:

V l(~r,
−→
k ,
←−
k′ ) ≈ V0(l) δ(~r)

‡The Gogny force also makes use of a zero-range density-dependent velocity-

independent term.
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+V1(l) (δ(~r)
−→
k

2
+
←−
k′

2
δ(~r))

+V2(l)
←−
k′ . δ(~r)

−→
k (23)

+ V3(l) ( ~̂σ1 + ~̂σ2)
←−
k′ ∧ δ(~r)

−→
k .

In this equation, the coefficients Vi(l) incorporate dependences on ~k orig-

inally denoted as ~p, but also on ~̂σ1, ~̂σ2 and ~̂τ1.~̂τ2 originating from V . From a

general point of view, it is unfortunately not possible for an given interaction

to express these coefficients as a function of l or through iterative relations.

Here in fact, only the terms independent of the velocities should present

a density-dependence in G
(α,α)
LDA(

~R,~r, ~p) in order to recover a Skyrme type

interaction. Thus, the expansion 23 as to be cut to zero-order in
−→
k and

←−
k′

for l ≥ 2. A few coefficients only remain and one obtains:

G
(β,α)
LDA(

~R,~r,
−→
k ,
←−
k′ ) ≈ V0(1) δ(~r)

+V1(1) (δ(~r)
−→
k

2
+
←−
k′

2
δ(~r))

+V2(1)
←−
k′ . δ(~r)

−→
k (24)

+ V3(1) ( ~̂σ1 + ~̂σ2)
←−
k′ ∧ δ(~r)

−→
k

+
∞
∑

l=2

V0(l)
F l
[

ρβ0 (
~R)
]

− F l
[

ρα0 (
~R)
]

F
[

ρβ0 (
~R)
]

− F
[

ρα0 (
~R)
] δ(~r) .

3.6 Mean-Field.

In order to really identify G
(β,α)
LDA(

~R,~r,
−→
k ,
←−
k′ ) with a Skyrme force used at the

mean-field level, one has to do α = β in Eq. 24. Doing so, the identification

can be done by truncating the power series appearing in G
(α,α)
LDA to first order

in F , by taking:

F
[

ρα0 (
~R)
]

= a
(

ρα0 (
~R)
)σ

, (25)

where a is a constant, and by establishing the formal correspondance:
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t0 (1 + x0Pσ) ⇔ V0(1)
1
2 t1 (1 + x1Pσ) ⇔ V1(1)

t2 (1 + x2Pσ) ⇔ V2(1)
1
6 t3 (1 + x3Pσ) ⇔ 2 aV0(2)

iW0 ⇔ V3(1) .

(26)

As we were not able to derive F explicitely, Eq. 25 is to be understood as

its phenomenological determination relying on existing successful effective

interactions. The actual value of σ has been a subject of debate. On one

hand, general arguments were in favor of σ = 2/3 [34]. Fits to diagonal

Brueckner matrix elements at the Fermi level calculated from realistic forces

gave σ = 1/6 [56] or 1/3 [57] as good values for the short-range repulsive as

well as for the long-range attractive parts of the interaction; this being true

for several spin/isospin channels. Similar calculations provided two different

values for the short and the long-range parts of the interaction, namely 1 and

1/3 [33, 58]. On the other hand, fits of phenomenological forces on empirical

nuclear matter properties gave several values ranging from σ = 1 for previous

versions of the Skyrme force [59] to σ = 1/6 for some recent versions [19].

This low value has been necessary to get realistic values for both the effective

mass m∗
∞ and the compressibility K∞ of infinite symmetric nuclear matter.

Such fits take into account the density dependence stemming from several

physical effects as listed in section 2.

3.7 Beyond the Mean-Field.

We can now extend the density dependence of the effective interaction for

calculations beyond the mean-field approximation. The hypothesis of a

truncation to first order in F together with the previous phenomenologi-

cal determination of this function provide the non-diagonal term of Eq. 24

(α 6= β):
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1

6
t3 (1 + x3Pσ)

[ρβ0 (
~R)]σ + [ρα0 (

~R)]σ

2
δ(~r) , (27)

as the natural extension for the density-dependent part of the Skyrme force

to be used in 〈Φβ
0 | . . . |Φ

α
0 〉. The derived prescription is different from those

used until now in GCM or projected mean-field calculations. For projection

on particle number, one can check that Eq. 27 reduces to a dependence on

a single local mean-field density since the mean-field local density ρ00(
~R) is

invariant under rotation in gauge space.

Eq. 27 constitutes the main result of the present section. It has been

obtained through a sequence of reasonable approximations. The last ones

have been performed in relation with the specific form of the Skyrme force.

The presently developed scheme is more general and one could avoid some

approximations in order to generalize Eq. 27. For instance, one could keep

a finite-range density-dependent term or at least the density-dependence of

the velocity-dependent terms in Eq. 24 as suggested in Ref. [57]. One could

also consider higher powers of F in Eq. 21 or in Eq. 24. The reduction of the

original isospin-dependent densities to the isoscalar density could be avoided,

at least for exotic nuclei.The reduction of the original signature-dependent

densities to the scalar density could be avoided for odd-even and rotating

nuclei§. Last but not least, the dependence on starting energies should also

be kept since it is known to play a role [60]. However, all these extensions

would correspond to more general forms of the Skyrme or Gogny forces at the

mean-field level which have not been considered up to now in quantitative

microscopic calculations of finite nuclei. Following the strategy behind the

use of phenomenological forces, implementing such further complications in

the interaction will have to be motivated by clear experimental hints.

§Then, one should be careful to end up with an energy functional invariant under

time-reversal symmetry.
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3.8 Higher-Orders.

The generalized Skyrme force derived from the G(β,α) interaction on the

energy shell should not be used beyond the lowest order in the perturba-

tive expansion of the energy. However, it can be useful in some systems to

include diabatic effects in the GCM for instance [61]. Associated diagrams

correspond to non-zero orders in the extended Goldstone-Brueckner pertur-

bation theory [39]. They make use of G(β,α) off the energy shell for which

the energy denominator appearing in Eq. 16 is modified. Within the local

approximation, the functional F should be changed for each vertex with re-

spect to its definition at the lowest order. This means that the use of Eq. 27

in the GCM is questionable when including diabatic effects. This deserves

additional work in the future.

4 Multi-Body Forces Renormalization.

We now turn to another origin of the density dependence of the two-body ef-

fective interaction. Let us make the hypothesis that the actual Hamiltonian

of the N -body nuclear system reads as:

H(3) =
∑

i,j

tij c
†
i cj +

1

4

∑

i,j,k,l

V
(2)
iljk c†i c

†
l ck cj +

1

36

∑

i,j,k,l,m,n

V
(3)
ilnjkm c†i c

†
l c

†
n cm ck cj ,

(28)

where V̄
(2)
iljk and V̄

(3)
ilnjkm are antisymmetrized matrix elements. The creation

and annihilation operators {c†i , cj} refer to the single-particle basis {ϕi}. We

consider at this stage that two-body correlations have already been renor-

malized in such a way that V (2) is to be seen as the Brueckner matrix G
(β,α)
LDA

and that the three-body vertex approximately includes these correlations

through:
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V (3)(~r1, ~r2, ~r3) ≡ Ṽ (3)(~r1, ~r2, ~r3) (1−η(~r1−~r2)) (1−η(~r2−~r3)) (1−η(~r3−~r1)) ,

(29)

where Ṽ (3) is the actual bare three-body force and η(~r1− ~r2) is some average

of the two-body defect wave function over occupied states [30]. The proper

treatment of these correlations together with a three-body force relies on

the Bethe-Faddeev equations [62].

In what follows, no density dependence appear in V (2) and V (3), unless

otherwise specified. Of course, the previous statement about two-body cor-

relations implies that some density dependences originating from two-body

correlations are contained in the first place in both the effective two-body

and three-body interactions. We will return to this issue later.

We separate the GCM from the projected mean-field method since the

energy minimization is performed with respect to different variational pa-

rameters in the two cases.

4.1 GCM and Three-Body Force.

In order to identify the density dependence accounting for three-body force

effects, we calculate and minimize the energy for two different Hamiltonians.

First, the three-body force is taken into account but no density-dependence

occurs in the two-body one. Then, the three-body force is omitted in the

Hamiltonian but a density dependence is introduced explicitly in the two-

body force. In this second case the Hamiltonian is denoted as H
(3)
eff .

• We obtain in the first case using the general Wick theorem [10]:

〈Ψk |H
(3) |Ψk〉 =

∑

β,α

fk ∗
β fk

α 〈Φ
β
0 |H

(3) |Φα
0 〉 (30)

=
∑

β,α

fk ∗
β fk

α





∑

i,j

tij ρ
(β,α)
ji +

1

2

∑

i,j,k,l

V
(2)
iljk ρ

(β,α)
ji ρ

(β,α)
kl
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(31)

+
1

6

∑

i,j,k,l,m,n

V
(3)
ilnjkm ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mn



 〈Φβ
0 |Φ

α
0 〉 ,

where

ρ
(β,α)
ji =

〈Φβ
0 | c

†
i cj |Φ

α
0 〉

〈Φβ
0 |Φ

α
0 〉

, (32)

denotes a matrix element of the mixed one-body density operator. The

minimization of the energy with respect to the fk ∗
β gives:

∑

β

δ

δfk ∗
β

[

〈Ψk |H
(3) |Ψk〉

〈Ψk |Ψk〉

]

δfk ∗
β = 0 , (33)

for all δfk ∗
β , which can be recast into a set of coupled equations of motion:

∑

α

fk
α





∑

i,j

tij ρ
(β,α)
ji +

1

2

∑

i,j,k,l

V
(2)
iljk ρ

(β,α)
ji ρ

(β,α)
kl

(34)

+
1

6

∑

i,j,k,l,m,n

V
(3)
ilnjkm ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mn



 〈Φβ
0 |Φ

α
0 〉

= Emix
k

∑

α

fk
α 〈Φ

β
0 |Φ

α
0 〉 ,

for all β.

• Omitting the three-body force, we proceed to the same calculation

using an effective two-body force depending linearly on the mixed density¶:

V
(3)(β,α)
eff (~r, ~R) = V (2)(~r) + v(~r) ρ(β,α)(~r1, ~r2) , (35)

¶For simplicity, we do not write the dependences of V
(3)(β,α)
eff , V (2) and v on the relative

momentum ~p, the spin and isospin operators (~̂σ1, ~̂σ2, ~̂τ 1.~̂τ 2).
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where ~r and ~R are respectively the relative and center of mass position

vectors of the two interacting nucleons while ρ(β,α)(~r1, ~r2) denotes the non-

local mixed nucleon density:

ρ(β,α)(~r1, ~r2) =
∑

sz ,s′z,t,t
′

ρ(β,α)(~r1 sz t, ~r2 s
′
z t

′)

=
∑

ij

ϕ∗
I(~r2, ζ

′
z, s

′
z, t)ϕJ (~r1, ζz, sz, t) ρ

(β,α)
ji (36)

= ρ
(β,α)
0 (~r1, ~r2) + (s

(β,α)
0 )x(~r1, ~r2) .

where ρ
(β,α)
0 and ~s

(β,α)
0 are its scalar-isoscalar and vector-isoscalar parts [51].

The non appearence of isovector components in ρ(β,α)(~r1, ~r2) is due to the

fact that we restrict our study to systems where protons and neutrons are

not mixed. The interaction defined through Eq. 35 depends on (β, α) and is

to be used in the corresponding matrix element 〈Φβ
0 |H

(3)(β,α)
eff |Φα

0 〉. Thus,

one gets:

〈Ψk |H
(3)
eff |Ψk〉≡

∑

β,α

fk ∗
β fk

α





∑

i,j

tij ρ
(β,α)
ji +

1

2

∑

i,j,k,l

(

V
(3)(β,α)
eff

)

iljk
ρ
(β,α)
ji ρ

(β,α)
kl



 〈Φβ
0 |Φ

α
0 〉 .

(37)

Developing V̄
(3)(r,s)
eff in Eq. 37, one obtains the same expression as that

given by Eq. 31 with V̄
(3)
ilnjkm replaced by the matrix element vilnjkm defining

an effective three-body force:

vilnjkm = 3

∫ ∫

d~r1 d~r2 ϕ
∗
i (~r1)ϕ

∗
l (~r2)ϕ

∗
n(~r2) v(~r1 − ~r2, ~p, ~̂σ1, ~̂σ2, ~̂τ1.~̂τ2)

(38)

ϕm(~r1) [ϕk(~r1)ϕj(~r2) − ϕj(~r1)ϕk(~r2)] .
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Thus, the correlated energy in the state |Ψk〉 for the Hamiltonian H(3) is

finally reproduced term by term for all spin/isospin indices. The key point

of this derivation is the mixed nature of the density inserted in the effective

two-body force.

The equivalence is not complete since the effective matrix elements 38

cannot simulate all antisymmetrized matrix elements of an arbitrary three-

body force V (3)(~r1, ~r2, ~r3), in particular because of their non-antisymmetrized

character in (k,m) and (j,m). However, the freedom in the choice of the

two-body term v(~r, ~p, ~̂σ1, ~̂σ2, ~̂τ 1.~̂τ2) can be used to make vilnjkm reproduce

V
(3)
ilnjkm as accurately as possible. The possibility of an exact equivalence has

already been discussed at the mean-field level in connection with particular

forms of the three-body effective interaction. In practice, this has only been

done for zero-range forces. It has been shown how a Skyrme force depending

linearly on the mean-field matter density in the (S=1,T=0) channel allows

for the reproduction of the HF energy obtained with a zero-range three-body

force in a spin-saturated (time-reversal invariant) system [17]. Alternatively,

by changing the spin-isospin dependence of the density-dependent two-body

term, Onishi and Negele were able to reproduce the effect of the zero range

three-body force for the HF energy, single-particle spectrum and two-body

p-h matrix elements of a spin-isospin saturated system [63]. Both versions

could be easily recovered by taking α = β in previous expressions; the local

part of the density ρα0 (
~R) being selected by the zero-range character of the

force. In both cases however, the equivalence came out to be invalid for

systems breaking time-reversal symmetry. It also became clear that the use

of a simple zero-range three-body force having a necessary repulsive nature

in the (S=1,T=0) channel led to spin instabilities in time-reversal invari-

ant systems [64, 65, 66]. The exact equivalence in systems breaking time

reversal symmetry is not achievable if one does not keep any spin-density

dependence in the zero-range two-body term, as shown by Eq. 36. However,

the spin instability associated to the Skyrme interaction can be cured by
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restricting oneself to a density-dependent two-body term with appropriate

spin-isospin dependence [64], by keeping a finite-range three-body force or

at least by considering attractive velocity-dependent three-body terms. The

last option however often induces a collapse in the equation of state of sym-

metric nuclear matter at high density [65, 67] while a finite range would

destroy the numerical convenience of the Skyrme interaction.

The reduction of the density dependence of the two-body term to the

scalar part of the density matrix is a stronger limitation beyond than at the

mean field level. Indeed, even for time reversal invariant systems, the vector

part of the local mixed density is non zero for α 6= β [20]. If one forgets

about the dependence on ~s
(β,α)
0 in Eq. 35, non-diagonal matrix elements

vilnjkm in (nsz ,msz) will not be considered. By keeping this dependence,

one would have to be careful about spin instabilities as discussed before.

The above derivation is a general starting point for the quantitative

renormalization of three-body forces. First, it shows the mixed nature of

the density required for non-diagonal N -body matrix elements. Second, we

think that it will be useful to move ahead towards the next step which has

to be the gross renormalization of realistic three-body interactions. Indeed,

rather than the reproduction of a simplified analytical three-body inter-

action, which is itself phenomenological, it would be more worthwhile to

reproduce the main properties of a three-body force derived from an under-

lying field theory. Using Eq. 38, together with a sufficiently simple two-body

effective interaction which satisfies Eq. 36, could help to do so. In particu-

lar, the repulsive or attractive character of three-body forces derived from

microscopic meson-exchange models has been characterized in each (S,T)

channel in nuclear matter calculations [35, 36]. The subtle combination of

these contributions as a function of the density is an important part of the

saturation process. It allows a correct reproduction of the empirical values

of the density and energy per particle at the saturation point in Brueckner-

Hartree-Fock calculations [36]. These combined contributions are also im-
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portant to describe asymmetric nuclear matter correctly as a function of

isospin. Consequently, the different channels of the three-body force should

be treated carefully in mean-field type calculations using phenomenological

effective forces. In particular, one has to reconcile the crucial binding ef-

fect of three-body forces in light nuclei [37] with its saturation character at

normal density of nuclear matter [35, 36].

Varying the energy given by Eq. 37 with respect to fk ∗
β , the same equa-

tions of motion as with the Hamiltonian H(3) are obtained. The choice of

the mixed density in V
(3)(β,α)
eff (~r, ~R) leads to a zero rearrangement term:

ΓδV =
∑

β,α

fk ∗
β fk

α 〈Φ
β
0 |

∂V
(3)(β,α)
eff (~r, ~R)

∂ρ(β,α)(~r1, ~r2)

∂ρ(β,α)(~r1, ~r2)

∂fk ∗
β

|Φα
0 〉 / 〈Ψk |Ψk〉 = 0 ,

(39)

since ρ(β,α)(~r1, ~r2) is independent of the mixing coefficients fk ∗
β .

Thus, the contribution from the three-body force to Eq. 34 is recovered

from the redefinition of the two-body force only. As demonstrated in ap-

pendix A, the use of the correlated density would generate redundant terms,

notably through a non-zero rearrangement term.

4.2 Projection and Three-Body Force.

The same question as in the previous section is addressed for projection type

configuration mixings. In this case, the VAP is performed with respect to

the individual wave functions defining the product state from which |Ψk〉 is

projected out. As a application, we consider the restoration of angular mo-

mentum I, with projection M , for an axially symmetric Slater-determinant.

The projected state reads as:

|ΨIM 〉 =

n
∑

α=−n

f IM
α |Φα

0 〉
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(40)

= P̂IM |Φ
α
0 〉 ,

where P̂IM is the angular momentum projector [6] and |Φα
0 (IM)〉 is written

in terms of a fixed product state of reference |Φ〉 through:

|Φα
0 〉 = e

1
2

∑

u,u′ Z
IM
uu′

c†u cu′ |Φ〉 . (41)

Note that |Φα
0 〉 implicitely depends on (IM) since the minimization pro-

cedure provides a different product state for each value of these quantum

numbers.

• The variation of the mean-energy in the state |ΨIM 〉 is done with

respect to the ZIM
uu′ and reads as:

δ
〈ΨIM |H

(3)|ΨIM 〉

〈ΨIM |ΨIM 〉
=

1

2

∑

u,u′

[

〈ΨIM | c
†
u cu′ H(3) |ΨIM〉

〈ΨIM |ΨIM 〉

−
〈ΨIM | c

†
u cu′ |ΨIM 〉 〈ΨIM |H

(3) |ΨIM 〉

〈ΨIM |ΨIM 〉2

]

δZIM
uu′

= 0 , (42)

for all δZIM
uu′ . The equations of motion are:

〈ΨIM | c
†
u cu′ H(3) |ΨIM 〉 = Emix

IM 〈ΨIM | c
†
u cu′ |ΨIM 〉 , (43)

for all couples (u, u′). These equations are valid only if no rearrangement

term appears. This is the case with H(3). Eq. 43 expanded in terms of

mixed densities is given in appendix B.1.

• As for the GCM, we do the calculation using the Hamiltonian H
(3)(β,α)
eff .

In this case, there is a non-zero rearrangement term in the equations of

motion. The calculation is performed in appendix B.2. The comparison
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between the contribution arising from the three-body force and those coming

from the redefinition of the two-body force and the rearrangement term is

also proposed. This calculation shows that the equivalence between the two

is once again obtained thanks to the choice of the mixed density in the

effective interaction.

4.3 Generalization to Multi-Body Forces.

The formal equivalence between a three-body force and a two-body one

depending linearly of the mixed density has been shown in the context of

configuration mixing calculations. However, most of nowadays phenomeno-

logical interactions depend on the density through a non-linear function ρσ

with 0 < σ ≤ 1 (e.g. 1/6 for the Skyrme force SLy4 [19]). Even if such a

dependence certainly accounts for several physical effects, we can interpret

it as coming from the renormalization of multi-body forces effects. In or-

der to do that, ρσ is written in terms of a power series around the nuclear

saturation density ρsat:

ρσ = ρσsat
∑

n

a(σ)n

(

ρ− ρsat
ρsat

)n

, (44)

≈ ρσsat

K
∑

k=0

b
(σ)
k

(

ρ

ρsat

)k

. (45)

The domain of validity of the expansion 44 is ]0, 2ρsat[. We rearrange it

as a function of the successive integer powers of ρ. Doing so, each coefficient

of ρk is in principle divergent as no expansion exists for ρσ around 0 when

σ 6∈ N. Thus, we approximate Eq. 44 by cutting the sum at some order

n = K. In this way, we obtain a good approximation of ρσ on the domain

[ǫ(K), ρsat]
‖ and can reorder the finite number of term as a function of ρk.

This gives the formal expansion 45.

‖ǫ(K) −→ 0 for K −→ ∞.
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In the following, we use such an expansion to interpret the full density

dependence ρσ as coming from multi-body forces in the nuclear Hamiltonian

H(K); the linear term of Eq. 45 being related to the three-body force, the

squared term to the four-body force etc. . . Starting from such an hypothesis,

one can show, using the same technique as in the previous sections for the

three-body force, that the two-body force:

V
(K)(β,α)
eff (~r, ~R) = V (2)(~r) + v(~r) ρσsat

K−2
∑

k=1

b
(σ)
k

(

ρ(β,α)(~r1, ~r2)

ρsat

)k

,(46)

allows to formally reproduce the energy of a correlated state for a Hamilto-

nian having two, three, four, . . . K-body forces. The non-antisymmetrized

matrix elements v
(”p”)
il...jk... of the corresponding effective “p-body” interaction

are defined from the term with k = p − 2 in Eq. 46 in the same spirit and

with the same limitations as vilnjkm in section 4.1. Finally, this calculation

motivates a term proportional to [ρ
(β,α)
0 (~R)]σ as approximately renormaliz-

ing multi-body forces effects, the crucial point being again the use of the

mixed density.

Finally, let us mention that identical calculations mixing non-orthogonal

HFB quasi-particle states instead of Slater determinants would have led

to the same conclusion for the density-dependence induced in the particle-

particle channel as soon as the terms up to second order only in the pairing

tensor are kept in the energy.

4.4 Quasi-Particle Type Configuration Mixing.

Two different cases occur when a mixing of individual excitations is consid-

ered to include small amplitude correlations and diabatic effects in the trial

state.

First, each particle-hole state |Φα
i 〉 is calculated self-consistently through

the minimization of its energy. In this case, the |Φα
i 〉 are fixed non-orthogonal
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product wave-functions and the variation is performed with respect to fk ∗
i .

The situation is identical to the GCM and the same conclusions as regard

the renormalization of multi-body forces effects hold.

Second, particle-hole states are calculated perturbatively with respect

to each ground-state Slater-determinant |Φα
0 〉. In this case the individual

excitations |Φα
i 〉 referring to a given vacuum are orthogonal and the above

calculations do not hold since the generalized Wick theorem cannot be used.

For such a configuration mixing, and whatever the variational parameters

are, we were not able to obtain any formal equivalence between a particular

two-body density-dependent interaction and a three-body one.

5 Skyrme Force Beyond the Mean-Field.

Given the results obtained in the previous sections, we propose a simple

extension of the Skyrme force for configuration mixing calculations such as

the GCM and the projected mean-field method:

v
(β,α)
Skyrme(

~R,~r,
−→
k ,
←−
k′ ) = t0 (1 + x0Pσ) δ(~r)

+
1

2
t1 (1 + x1Pσ) (δ(~r)

−→
k

2
+
←−
k′

2
δ(~r))

+ t2 (1 + x2Pσ)
←−
k′ . δ(~r)

−→
k (47)

+
1

6
X t3 (1 + x3Pσ)

[ρβ0 (
~R)]σ + [ρα0 (

~R)]σ

2
δ(~r)

+
1

6
(1−X) t3 (1 + x3Pσ) [ρ

(β,α)
0 (~R)]σ δ(~r)

+ iW0 ( ~̂σ1 + ~̂σ2)
←−
k′ ∧ δ(~r)

−→
k .

In Eq. 47, X is an adjustable parameter expressing our lack of knowledge

about the relative weight of the two renormalized effects. The two types of

densities used coincide with the standard local mean-field density when going

back to a diagonal N -body matrix element. As they are considered with the
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same exponent σ, v
(β,α)
Skyrme reduces to the usual Skyrme force when going back

to the mean-field level. In other words, the proposed Skyrme interaction is

the simplest theoretically motivated extension for the calculation of non-

diagonal N -body matrix elements. Note that, since two-body correlations

are taken into account in Eq. 29, the term proportional to (1−X) in Eq. 47

should depend both on the mixed and the mean-field densities. However,

ladders diagrams in connection with the three-body interaction do not play

a significant role at and below the saturation density [36]. This is due to

the small probability at low density for two nucleons to get very close to

each other and feel the influence of a third in the same time. Not taking

these correlations into account should not be a strong limitation for finite

nuclei. Concerning the term proportional to X, its possible generalizations

have already been discussed in section 3.7.

Given the different origins of the two density-dependent terms, taking

identical analytical expressions for both is a restrictive and non motivated

choice. In particular, it would be reasonable to have different exponents.

The predominance of three-body over higher multi-body forces suggests an

exponent close to one for the associated term whereas a smaller exponent

would be appropriate to the resummation of two-body correlations. Simi-

larly, the spin dependence (1 + x3Pσ) should be different in the two terms.

However, such a differentiation asks for a redefinition of the Skyrme inter-

action at the mean-field level. Such a work is underway [69]. The essential

to retain is that going beyond the mean-field approximation distinguishes

the two origins of the density dependence by making two kinds of density

appear and opens a new degree of freedom in the interaction.

5.1 Extended Skyrme Functional.

Using the generalized Skyrme force 47, the approximate ground-state en-

ergy 3 takes the form:
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Emix
0 ≡

〈Ψ0 |H |Ψ0〉

〈Ψ0 |Ψ0〉
≡

∑

α,β f0 ∗
β f0

α〈Φ
β
0 |H

(β,α)
[

ρβ0 (
~R), ρα0 (

~R), ρ
(β,α)
0 (~R)

]

|Φα
0 〉

∑

α,β f0 ∗
β f0

α〈Φ
β
0 |Φ

α
0 〉

(48)

=
∑

α,β

f0 ∗
β f0

α

∫

d~R H(β,α)(~R) .

where H(β,α)(~R) is a functional of local densities only. It includes the local

scalar-isoscalar mean-field and mixed densities originating from the gener-

alized Skyrme force, and also the local mixed densities as coming from the

non-diagonal contractions in Eq. 48. Time-odd components of the force are

always switched on in the context of mixed vacua. It makes non-zero time-

odd local densities emerge in the energy functional such as the spin density,

the current density or the vector part of the kinetic energy density. The

explicit form of the Skyrme functional for configuration mixing calculations

is given in Ref. [20] and should be corrected in agreement with the newly

derived density dependence of the effective interaction.

The second equality in Eq. 48 is a matter of definition only since the

r.h.s. cannot be re-factorized into the l.h.s., that is, as the mean value of

a two-body operator in the state |Ψ0〉. To make the meaningful effective

interaction appear explicitly, the correlated energy had to be fully expanded

in terms of the mixed product states. As discussed in Ref. [39], this expresses

the fact that the energy obtained from an effective force is more to be seen

as a functional of (local) densities than as the mean value of a two-body

Hamiltonian in a definite state. This is in fact already true at the mean-

field level. Note however that the functional as considered here does not aim

at renormalizing all correlations since it is defined at some precise order of a

perturbative expansion. It keeps, at least formally, a link with the original

bare force.

In order to obtain the energy as given by Eq. 48, we have interpreted the
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Skyrme force as coming from an expansion in the range of the effective in-

teraction. For Negele [49], this force should rather be interpreted as a result

of density matrices expansions in the energy density H(β,α)(~R,~r) obtained

using a finite range G
(β,α)
LDA interaction as given by Eq. 21. In this context,

the Skyrme force would result from an additional average over the occu-

pied states and its parameters would contain a combination of informations

about both the initial effective two-body interaction G(β,α) and two Fermi

seas. Within this interpretation, the extended Skyrme force would provide

the energy functional with coefficients themselves depending on local mixed

density-matrices.

6 Application: Symmetry Restoration.

It is worth illustrating the previous result in the particular case of symme-

try restoration. More specifically, we consider the restoration of angular

momentum from an axially symmetric product state and extrapolate the

use of the generalized Skyrme force to spin I 6= 0∗∗. The projected energy

on spin I and spin projection M = 0 for an even-even nucleus is given by:

E n=0
I0 =

∑n
α=−n f I0

α 〈Φ
0
0|
[

t + v
(0,α)
Skyrme

]

R(α) |Φ0
0〉

∑n
α=−n f I0

α 〈Φ
0
0|R(α) |Φ0

0〉
, (49)

where the coefficients of the mixing are:

f I0
α =

2I + 1

2n
sin(πα/n) dI ∗00 (πα/n) , (50)

with dIM0 the Wigner function for the quantum numbers (I,M,K = 0) [68].

The rotation operator for an angle πα/n around the y axis orthogonal to

the symmetry axis is:

∗∗This extrapolation concerns not only the fact that additional local densities should

be considered for I 6= 0 as discussed in section 3.2, but also the fact that the underlying

perturbative expansion has been written for the ground-state only [39].
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R(α) = eiπαJy/n . (51)

In Eq. 49, v
(0,α)
Skyrme depends on the mean-field densities ρ00(

~R) and ρα0 (
~R)

of the product state |Φ0
0〉 and the rotated one |Φα

0 〉 = R(α) |Φ0
0〉 as well as

their mixed density ρ
(0,α)
0 (~R). For the derived prescription to be reliable for

symmetry restoration, two properties have to be satisfied:

• As for a bare Hamiltonian invariant under rotation, the projected en-

ergy 49 has to be independent of the orientation axis in the laboratory

frame††.

• The correlated energy 49 has to be real‡‡.

In the present context, the first property is immediately satisfied. In-

deed, the commutation of the projector P̂I0 with the bare Hamiltonian was

done in the expression of the actual ground-state energy before any resum-

mation and troncation took place in the perturbative expansion [39] and

before the multi-body forces renormalization was performed. This is why

the rotation matrix R(α) only appears on the r.h.s. of v
(0,α)
Skyrme in Eq. 49.

Thus, 〈Φ0
0|H

(0,α)R(α) |Φ0
0〉 only depends on the relative angle between the

two involved product states. The projected energy is independent of the

choice of the axis with respect to which angles are measured in the labora-

tory frame. The second property is demonstrated in appendix D.

The prescription derived from the extended perturbation theory satisfies

the minimal mathematical properties necessary to be used for symmetry

restoration.

††It is not necessary for H(0,α) = t + v
(0,α)
Skyrme to be invariant under rotation.

‡‡It is not necessary for H(0,α) to be Hermitian.
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7 Conclusions.

In this paper, we have analyzed the density-dependence of phenomenological

effective two-body forces for calculations beyond the mean-field approxima-

tion. Up to now, two prescriptions have been used in the GCM and the

projected mean-field method without being supported by strong theoretical

arguments. They correspond to the local mixed density [4, 5] and the lo-

cal correlated density [25]. Similar results have been obtained with both in

calculations dealing with projection on particle numbers [25].

However, it is not clear whether other configuration mixing calculations

such as projection on angular momentum for high spin states, projection on

parity or GCM calculations for various collective coordinates involving ex-

tended nuclear shapes would give comparable results for both prescriptions.

This remark is also relevant for physical properties involving exotic densities

such as halos or neutron skins or for shape coexistence in nuclei. As a con-

sequence, it appeared important to revisit this question. Instead of letting a

quantitative agreement with experimental data decide which density should

be used in this context, we have tried to come back to the origins of the

density dependence of effective two-body forces.

First we have dealt with the Brueckner ladders summation which ac-

counts for two-body correlations induced by the NN interaction in the pres-

ence of other nucleons. It is known to bring about a density dependence in

the effective two-body force used together with a mean-field wave function.

Developing an extended Brueckner-Goldstone scheme, we derived an effec-

tive force accounting for these correlations within the framework of mixed

non-orthogonal Slater-determinants.

Discussing the foundations of a local approximation for the Brueckner

matrix, we have explained why such a local expression has not been derived

explicitly. As the imperfections and unnecessary complications of the for-

mal derivation can be smoothed out through the use of phenomenological
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forces fitted to the data, we have taken the validity of such a local density

approximation as an ansatz. We have deduced the corresponding functional

of local mean-field densities by making it match the standard Skyrme or

Gogny density-dependent term at the mean-field level.

Second, we have analyzed the density dependence stemming from the

possible renormalization of multi-body forces in the nuclear Hamiltonian.

We have shown the formal equivalence between a three-body force and a

two-body force depending linearly on the density for configuration mixing

calculations, as soon as the mixed density is used. This result holds for the

equations of motion obtained from the minimization of the energy, what-

ever the variational parameters are. The role of the rearrangement terms

has been emphasized. Then, showing that a density dependence of the form

ρσ with a non integer value of σ, as used in Skyrme and Gogny phenomeno-

logical forces, can originate from the renormalization of multi-body force

effects, we have generalized the result obtained for a three-body force.

Finally, two kinds of density dependence ought to be used depending

on whether they deal with the renormalization of two-body correlations in-

duced by the strong-repulsive core and the tensor part of the bare nucleon-

nucleon interaction, or with the renormalization of multi-body force effects.

One common feature of these two prescriptions is their dependence on the

N -body matrix element in which they are inserted when expressing the ap-

proximate energy in terms of the mixed product states. They both coincide

with the mean-field matter density when returning to the mean-field approx-

imation. This shows how going beyond the mean field may open degrees of

freedom in the effective force which are not fixed at the mean-field level.

Using these results, we have proposed a theoretically grounded extension

of the Skyrme force for configuration mixing calculations. Explaining in de-

tail all the approximations performed on the way to this definition, we have

discussed its possible generalizations. GCM and projected mean-field calcu-

lations testing presently proposed as well as existing prescriptions are now
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underway. Corresponding results are the aim of a forthcoming publication.
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A GCM and Dependence on ρΨ.

In order to reproduce the effect of a three-body force, we incorporate the

non-local correlated density:

ρΨk(~r1, ~r2) =
∑

α,β

fk ∗
β fk

α ρ
(β,α)
0 (~r1, ~r2) (52)

into the two-body force defined by Eq. 35 and get the effective interaction:

V
(3)
eff (~r,

~R) = V (2)(~r) + v(~r) ρΨk(~r1, ~r2) . (53)

Using this density dependence, one gets a non-zero rearrangement term

by varying the correlated energy 〈Ψk|H
(3)
eff |Ψk〉/〈Ψk|Ψk〉 with respect to

fk ∗
β . This is different from the result obtained with the mixed density. The

variation leads to the following equations of motion:

∑

α

fk
α





∑

i,j

tij ρ
(β,α)
ji +

1

2

∑

i,j,k,l

V
(2)
iljk ρ

(β,α)
ji ρ

(β,α)
kl

(54)

+
1

6

∑

i,j,k,l,m,n

vilnjkm ρ
(β,α)
ji ρ

(β,α)
kl

∑

q

fk
q

(

ρ(β,q)mn

〈Φβ
0 |Φ

q
0〉

〈Ψk|Ψk〉

+
∑

p

f∗
p ρ

(p,q)
mn

〈Φp
0|Φ

q
0〉

〈Ψk|Ψk〉

)]

〈Φβ
0 |Φ

α
0 〉
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= Emix
k

∑

α

fk
α 〈Φ

β
0 |Φ

α
0 〉 .

In order to reproduce Eq. 34 the term between parenthesis in Eq. 54

should be equal to ρ
(β,α)
mn . This means that ρΨ + ∂ρΨ/∂fk ∗

β should be equal

to ρ(β,α) for all (β, α). However, it be the case in general. Therefore, the

use of the correlated density in the effective two-body force generates redun-

dant terms. The above consideration suggests that it should be avoided in

configuration mixing calculations.

B Projection and Three-Body Force.

B.1 Equation of Motion.

The equations of motion defined by Eq. 43 take the explicit form:

∑

β,α

f IM ∗
β f IM

α





∑

i,j

tij

(

ρ
(β,α)
u′u ρ

(β,α)
ji − ρ

(β,α)
u′i ρ

(β,α)
ju

)

+
1

2

∑

i,j,k,l

V
(2)
iljk

(

ρ
(β,α)
u′u ρ

(β,α)
ji ρ

(β,α)
kl − ρ

(β,α)
u′l ρ

(β,α)
ji ρ

(β,α)
ku − ρ

(β,α)
u′i ρ

(β,α)
kl ρ

(β,α)
ju

)

(55)

+
1

6

∑

i,j,k,l,m,n

V
(3)
ilnjkm

(

ρ
(β,α)
u′u ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mn − ρ

(β,α)
u′l ρ

(β,α)
ji ρ

(β,α)
ku ρ(β,α)mn

−ρ
(β,α)
u′n ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mu − ρ

(β,α)
u′i ρ

(β,α)
ju ρ

(β,α)
kl ρ(β,α)mn

) ]

〈Φβ
0 |Φ

α
0 〉

= Emix
k

∑

β,α

f IM ∗
β f IM

α ρ
(β,α)
u′u 〈 Φ

β
0 |Φ

α
0 〉 ,

for all (u, u′).
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B.2 Rearrangement Term.

For the density-dependent Hamiltonian H
(3)(β,α)
eff , Eq. 43 must be modified

in order to include the rearrangement term originating from the variation

of the two-body interaction with respect to the individual wave-functions.

The equations of motion become:

∑

β,α

f IM ∗
β f IM

α



〈Φβ
0 | c

†
u cu′ H

(3)(β,α)
eff |Φα

0 〉+ 2 〈Φβ
0 |

∂V
(3)(β,α)
eff (~r, ~R)

∂ρ(β,α)(~r1, ~r2)

∂ρ(β,α)(~r1, ~r2)

∂ZI
uu′

|Φα
0 〉





= Emix
k 〈Ψk | c

†
u cu′ |Ψk〉 .(56)

The calculation of the rearrangement term requires the evaluation of:

∂ρ(β,α)(~r1, ~r2)

∂ZI
uu′

=
1

2

[

〈Φβ
0 | c

†
u cu′ ρ̂(~r1, ~r2) |Φ

α
0 〉

〈Φβ
0 |Φ

α
0 〉

−
〈Φβ

0 | c
†
u cu′ |Φα

0 〉 〈Φ
β
0 | ρ̂(~r1, ~r2) |Φ

α
0 〉

〈Φβ
0 |Φ

α
0 〉

2

]

= −
1

2

∑

i,j

ϕ∗
I(~r2, ζ

′
z, s

′
z, t

′)ϕJ (~r1, ζz, sz, t) ρ
(β,α)
u′i ρ

(β,α)
ju . (57)

We sum the contribution from the density-dependent part of V
(3)(β,α)
eff in

the first term of Eq. 56 together with the rearrangement term, and obtain

the total contribution:

1

4

∑

β,α

f IM ∗
β f IM

α

∑

i,j,k,l

〈ϕi ϕl | v(~r1 − ~r2) ρ(β,α)(~r1, ~r2) |ϕk ϕj〉 〈Φ
β
0 | c

†
u cu′ c†i c

†
l ck cj |Φ

α
0 〉

+
1

2

∑

β,α

f IM ∗
β f IM

α

∑

i,j,k,l

〈ϕi ϕl | v(~r1 − ~r2)
∂ρ(β,α)(~r1, ~r2)

∂ZI
uu′

|ϕk ϕj〉 〈Φ
β
0 | c

†
i c

†
l ck cj |Φ

α
0 〉

=
1

6

∑

β,α

f IM ∗
β f IM

α

∑

i,j,k,l,n,m

vilnjkm

(

ρ
(β,α)
u′u ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mn − ρ

(β,α)
u′l ρ

(β,α)
ji ρ

(β,α)
ku ρ(β,α)mn

(58)
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−ρ
(β,α)
u′i ρ

(β,α)
ju ρ

(β,α)
kl ρ(β,α)mn

)

〈Φβ
0 |Φ

α
0 〉

−
1

6

∑

β,α

f IM ∗
β f IM

α

∑

i,j,k,l,n,m

vilnjkm ρ
(β,α)
u′n ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mu 〈Φ

β
0 |Φ

α
0 〉

=
1

6

∑

β,α

f IM ∗
β f IM

α

∑

i,j,k,l,n,m

vilnjkm

(

ρ
(β,α)
u′u ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mn − ρ

(β,α)
u′l ρ

(β,α)
ji ρ

(β,α)
ku ρ(β,α)mn

−ρ
(β,α)
u′n ρ

(β,α)
ji ρ

(β,α)
kl ρ(β,α)mu − ρ

(β,α)
u′i ρ

(β,α)
ju ρ

(β,α)
kl ρ(β,α)mn

)

〈Φβ
0 |Φ

α
0 〉 .

where v takes the form v(~r1 − ~r2, ~p, ~̂σ1, ~̂σ2, ~̂τ1.~̂τ2) and where its matrix ele-

ments vilnjkm are defined through Eq. 38.

The comparison with Eq. 55 shows that the same formal contributions

to the equations of motion as the one coming from a three-body force are

obtained as soon as vilnjkm is able to reproduce V
(3)
ilnjkm. The rearrangement

term is essential as it gives a term with a combination of indices which cannot

be obtained through the redefinition of the two-body force only.

C Projection and Dependence on ρΨ.

In Ref. [23], Valor and collaborators gave an argument in favor of the corre-

lated density. They argued that once the correlated energy is developed in

terms of product functions as given by Eq. 3, the introduction of a depen-

dence of the effective Hamiltonian Heff on the mixing angles (α, β) as it is

the case when using the mixed density for instance prevents from extracting

the mean energy of the correlated state with good quantum numbers. It

seems to favor of ρΨk which is independent of the mixing angles.

Let us exemplify the situation through the projection of an HFB wave-

function on good particle number [1]:

|ΨN 〉 = P̂N |Φ
0
0〉 ,
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(59)

P̂N =
1

2π

∫ π

−π
dα eiα(N̂−N) ,

where N̂ , N and α are respectively the particle number operator, the actual

number of particles and the mixing angle in gauge space. For simplicity, a

single kind of nucleons is considered here.

First, the energy of the correlated state |ΨN 〉 is developed in terms of

the mixed product states |Φα
0 〉 = eiαN̂ |Φ0

0〉:

Emix
N =

∫ π
−π dα e−iαN 〈Φ0

0 |Heff e
iαN̂ |Φ0

0〉
∫ π
−π dα e−iαN 〈Φ0

0 | e
iαN̂ |Φ0

0〉
, (60)

which clearly shows how the projection picks up the energy associated with

the component of |Φ0
0〉 having exactly N particles. Then, if one makes

Heff depend on α, the calculated energy will not be expressible as a mean

value 〈ΨN |Heff |ΨN 〉/〈ΨN |ΨN 〉 in the projected state having the good

quantum number N . This is correct but not pertinent here. In order to

understand why, one has to go back to the origin of Heff ’s effectiveness

characterized by its density dependence.

First, one has to be aware that the rational of any microscopic calculation

(variational or perturbative) is always to approximate the actual eigenstates

and eigenenergies of the system, the leading quantity being the energy. Thus,

coming back to our example, the ultimate goal is not to obtain the mean-

value of some effective Hamiltonian in the projected state but to reproduce

as closely as possible the eigenenergy:

〈Θ0 |H |Θ0〉

〈Θ0 |Θ0〉
, (61)

where H is the actual Hamiltonian of the system and |Θ0〉 the unknown

ground-state wave-function.

Within the projected mean-field method, this is done through an ap-

proximation as given by Eq. 60 where Heff is effective in order to remove
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the repulsive core of the bare nucleon-nucleon interaction and/or to renor-

malize multi-body forces effect. It has been shown in this context how Heff

should depend on α and why the corresponding energy Emix
N could not be

factorized into 〈ΨN |Heff |ΨN 〉/〈ΨN |ΨN 〉.

For instance, considering only the renormalization of multi-body forces

effects, the argument given in Ref. [23] omits that if one wants to reproduce

the projected energy 〈Ψ0 |H
(3) |Ψ0〉/〈Ψ0 |Ψ0〉 including multi-body forces,

itself approximating 〈Θ0 |H
(3) |Θ0〉/〈Θ0 |Θ0〉. Using an effective two-body

Hamiltonian H
(3)
eff to do so, it is necessary to make this latter depend on α.

Then, the impossibility to factorize the energy 60 does not contradict the

fact that |Ψ0〉 remains the corresponding approximate state of the system

from which other observables can be evaluated.

D v
(β,α)
Skyrme for Symmetry Restoration.

We have to check whether the projected ground-state energy 49 is real.

Thanks to the symmetric integration around 0 on the variable α in Eq. 49,

it is sufficient to prove that:

[

〈Φ0
0|H

(0,α)R(α) |Φ0
0〉
]∗

= 〈Φ0
0|H

(0,−α)R(−α) |Φ0
0〉 , (62)

is valid for the mixed Hamiltonian H(0,α) specified to the projection on

angular momentum. The same property is straightforward for the overlap

〈Φ0
0|R(α) |Φ0

0〉.

Let us first look at the different densities under rotation. We introduce

the unitary 3 ∗ 3 matrix R(α) which rotates an eigenvector of the position

operator:

R(α) |~r 〉 ≡ |R(α)~r 〉 , (63)

or a vector operator, such as the vector position operator:
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R†(α)~r R(α) = R(α)~r . (64)

The local scalar-isoscalar part of the mixed density specified to the pro-

jection is:

ρ
(β,α)
0 (~r) =

〈Φ0
0 |R

†(β) ρ̂0(~r)R(α) |Φ0
0〉

〈Φ0
0 |R

†(β)R(α) |Φ0
0〉

. (65)

This quantity is a matrix element between two N -body states where ~r is

an external variable. As an operator function of the vector position operator

~r, its behavior under rotation is, thanks to Eq. 64:

R†(α) ρ
(β,α)
0 (~r)R(α) = ρ

(β,α)
0 (R(α)~r) . (66)

As an operator function of the positions ~ri of the nucleons, the trans-

formation under rotation of the local scalar-isoscalar part of the one-body

density operator can be written as:

R†(α) ρ̂0(~r)R(α) =
N
∑

i=1

δ(~r−R(α)~ri) =
N
∑

i=1

δ(R†(α)~r−~ri) = ρ̂0(R
†(α)~r) .

(67)

Following Eq. 66, one can write:

R†(γ) ρ
(β,α)
0 (~r) = R†(γ) ρ

(β,α)
0 (~r)R(γ)R†(γ) = ρ

(β,α)
0 (R(γ)~r)R(−γ) ,

(68)

which, thanks to Eq. 65 and 67, can be recast as :

R†(γ) ρ
(β,α)
0 (~r) =

〈Φ0
0 |R

†(β) ρ̂0(R(γ)~r)R(α) |Φ0
0〉

〈Φ0
0 |R

†(β)R(α) |Φ0
0〉

R(−γ)

=
〈Φ0

0 |R
†(β)R(γ) ρ̂0(~r)R

†(γ)R(α) |Φ0
0〉

〈Φ0
0 |R

†(β)R(γ)R†(γ)R(α) |Φ0
0〉

R(−γ)(69)
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= ρ
(β−γ,α−γ)
0 (~r)R(−γ) .

We also need to calculate the complex conjugate of the local scalar-

isoscalar part of the mixed density:

(

ρ
(β,α)
0 (~r)

)∗
=
〈Φ0

0 |R
†(α) ρ̂0(~r)R(β) |Φ0

0〉

〈Φ0
0 |R

†(α)R(β) |Φ0
0〉

(70)

= ρ
(α,β)
0 (~r) ,

as well as the structure of the effective Hamiltonian deduced from Eq. 47:

H(0,α) =
X

2

(

H
[

ρ00(
~R)
]

+ H
[

ρα0 (
~R)
])

+ (1−X)H
[

ρ
(0,α)
0 (~R)

]

, (71)

where H is the mean-field (Skyrme) Hamiltonian. Finally, we can now prove

the identity 62:

[

〈Φ0
0|H

(0,α)R(α)|Φ0
0〉
]∗

= 〈Φ0
0 |R

†(α)

{

X

2

(

H
[

(ρ00(
~R))∗

]

+H
[

(ρα0 (
~R))∗

])

+(1−X)H
[

(ρ
(0,α)
0 (~R))∗

]

}

|Φ0
0〉

= 〈Φ0
0 |R

†(α)

{

X

2

(

H
[

ρ00(~R)
]

+H
[

ρα0 (~R)
])

+(1−X)H
[

ρ
(α,0)
0 (~R)

]

}

|Φ0
0〉

(72)

= 〈Φ0
0 |

{

X

2

(

H
[

ρ−α
0 (~R)

]

+H
[

ρ00(
~R)
])

+(1−X)H
[

ρ
(0,−α)
0 (~R)

]

}

R(−α)|Φ0
0〉

= 〈Φ0
0|H

(0,−α)R(−α)|Φ0
0〉 ,

where we have applied Eq. 70 and 69 to the three densities involved. The

extension to triaxially deformed product states poses no difficulty.
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