
HAL Id: cea-02928059
https://cea.hal.science/cea-02928059

Submitted on 2 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuration mixing of angular momentum projected
self-consistent mean-field states for neutron-deficient Pb

isotopes
M. Bender, P. Bonche, T. Duguet, P.-H. Heenen

To cite this version:
M. Bender, P. Bonche, T. Duguet, P.-H. Heenen. Configuration mixing of angular momentum pro-
jected self-consistent mean-field states for neutron-deficient Pb isotopes. Physical Review C, 2004, 69
(6), pp.064303. �10.1103/PhysRevC.69.064303�. �cea-02928059�

https://cea.hal.science/cea-02928059
https://hal.archives-ouvertes.fr


ar
X

iv
:n

uc
l-

th
/0

31
10

90
v1

  2
5 

N
ov

 2
00

3

Configuration Mixing of

Angular Momentum Projected Self-Consistent Mean-Field States

for Neutron-Deficient Pb Isotopes

M. Bender,1 P. Bonche,2 T. Duguet,3 and P.-H. Heenen1
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We study the low-lying collective excitation spectra of the neutron-deficient lead isotopes
182−194Pb by performing a configuration mixing of angular-momentum and particle-number pro-
jected self-consistent mean-field states. The same Skyrme interaction SLy6 is used supplemented
by a density-dependent zero-range pairing force. This study supports the interpretation of spectra
made on the grounds of more schematic models in terms of coexisting spherical, oblate, prolate and
superdeformed prolate structures. The model qualitatively reproduces the variation of the spectra
with neutron number. Our results for E0 and E2 transition probabilities are compared with the
few existing experimental data. Finally, we predict the presence of superdeformed bands at low
excitation energy in the most neutron-deficient isotopes.

PACS numbers: 21.60.Jz, 21.10.Pc, 27.70.+q, 27.80.+w

I. INTRODUCTION

The neutron-deficient lead isotopes have been the sub-
ject of intense experimental studies for nearly 20 years
[1]. This continuous interest is mainly motivated by their
rich excitation spectra which strongly depend on the neu-
tron number. First evidence for low-lying 0+ states in
192−198Pb was obtained from β+-decay and electron cap-
ture of adjacent Bi isotopes [2, 3]. At least one low-lying
excited 0+ state has now been observed in all even-even
Pb isotopes between 182Pb and 194Pb at excitation en-
ergies below 1 MeV. In particular, 186Pb [4] is a unique
example of a fermion system where the two lowest ex-
cited states are 0+ levels with energies below 700 keV.
The collective rotational bands built on top of these iso-
meric states suggest that they are associated with sizable
deformations.

The ground state of Pb isotopes is known to be spheri-
cal down to 182Pb [5]. The excited 0+ states have been in-
terpreted within two different frameworks, the mean-field
and the shell models. The apparently different mecha-
nisms leading to these states within the two approaches
have been shown to be complementary views of the same
phenomenon [6]. Both models can explain the experi-
mental data qualitatively.

In a mean-field approach, the spectra of the Pb iso-
topes are understood as reflecting several competing min-
ima in an axial quadrupole energy landscape, correspond-
ing to spherical, oblate and prolate deformations. The
very name “shape coexistence phenomenon” comes from
this mean-field description [6, 7]. It is present in most
nuclei around the Pb isotopes [1] and has been found
also in other regions of the mass table [6]. First cal-
culations based on phenomenological mean fields have
predicted the existence of several competing minima in
the deformation energy surface of neutron-deficient Pb

isotopes [8, 9, 10] and a transition from oblate to pro-
late isomers [11]. More recently, several variants of the
self-consistent mean-field approach have confirmed these
results [12, 13, 14, 15]. However, in the neutron-deficient
Pb region, shape coexistence cannot be completely de-
scribed at the level of mean-field models. The minima
obtained as a function of the quadrupole moment are of-
ten rather shallow and it is not clear a priori whether
they will survive dynamical effects such as quadrupole
vibrations.

In a shell model picture, the excited 0+ states are gen-
erated by np-nh proton excitations across the Z = 82
shell gap, from the 3s1/2 level to the 1h9/2. The ex-
citation energies are lowered by a residual quadrupole-
quadrupole interaction. From this point of view, the
mean-field oblate minimum is associated with a proton
2p-2h configuration and the prolate one with proton 4p-
4h intruder states [16]. Many-particle many-hole excita-
tions cannot be easily handled in full-scale shell-model
calculations, in particular for the large model space re-
quired for the description of heavy open-shell nuclei.
They are, therefore, treated with the help of algebraic
models [17, 18].

A third, purely phenomenological, approach has also
been used to interpret the experimental findings: the
shape-mixing picture [2]. In this model, the physically
observed states are the result of the interaction between
several configurations. They are thus a superposition
of spherical, oblate and prolate configurations, the rel-
ative weights in the mixing being determined by a fit
to the experimental data. Systematic two-level mixing
calculations for 190−200Pb have been presented in Ref.
[19]. A simple two-level mixing model has been applied
to the analysis of the α-decay hindrance factors in Ref.
[20]. Three level mixing has been performed in Ref. [21]
for 188Pb. Let us also recall that, in such models, the
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strength of monopole transitions is related to the value
of the interaction matrix elements between the unper-
turbed configurations [22].
The aim of this paper is to provide a unified view of

mean-field and shape mixing approaches. The method
that we use has been presented in Ref. [23] and applied
to the study of shape coexistence in 16O in Ref. [24].
Results for 186Pb have already been published in Ref.
[25]. As a starting point, the method uses self-consistent
mean-field wave functions generated as a function of the
axial quadrupole moment. Particle number and angular
momentum are restored by projecting these wave func-
tions on the correct numbers of neutrons and protons and
on spin. Finally, a mixing of the projected wave func-
tions corresponding to different quadrupole moments is
performed with a discretized version of the generator co-
ordinate method. One of the appealing features of our
method is that its only phenomenological ingredient is
the effective nucleon-nucleon interaction which has been
adjusted once and for all on generic nuclear properties.
Another attractive aspect is the direct determination of
electric transition probabilities between any pair of states
in the laboratory frame.
There have already been studies of the Pb isotopes

along similar lines. Tajima et al. [12] and Chasman et

al. [14] have used a very similar framework, but without
any symmetry restoration. Mixing of microscopic self-
consistent mean-field wave functions has been approxi-
mated by Libert et al. [13] and Fleischer et al. [26] using a
macroscopic Bohr Hamiltonian. Let us also mention that
Fossion et al. [18] have performed three-configuration
mixing calculations within the IBM formalism.

II. FRAMEWORK

The starting point of our method is a set of HF+BCS
wave functions |q〉 generated by self-consistent mean-field
calculations with a constraint on a collective coordinate
q. In the language of the nuclear shell model, such mean-
field states incorporate particle-particle (pairing) correla-
tions as well as many-particle-many-hole correlations by
allowing for the deformation of the nucleus in the intrin-
sic frame. As a consequence, however, such mean-field
states break several symmetries of the exact many-body
states. The symmetry violation causes some difficulties,
for instance when relating the mean-field results to spec-
troscopic data obtained in the laboratory frame. Eigen-
states of the angular momentum and the particle number
operators are obtained by restoration of rotational and
particle-number symmetry on each intrinsic wave func-
tion |q〉:

|JMq〉 = 1

NJMq

∑

K

gJK P̂ J
MK P̂ZP̂N |q〉, (1)

where NJMq is a normalization factor; P̂ J
MK , P̂N , P̂Z are

projectors onto the angular momentum J with projec-
tion M along the laboratory z-axis and K in the intrinsic

z-axis, neutron number N and proton number Z, respec-
tively. Here, we impose axial symmetry and time-reversal
invariance on the intrinsic states |q〉. Therefore, K can
only be 0 and one can omit the coefficients gJK = δK0

as well as the sum over K. A variational configuration
mixing on the collective variable q is performed for each
J-value separately:

|JMk〉 =
∑

q

fJ,k(q)|JMq〉. (2)

The weight functions fJ,k(q) are determined by requiring
that the expectation value of the energy

EJ,k =
〈JMk|Ĥ|JMk〉
〈JMk|JMk〉 , (3)

is stationary with respect to an arbitrary variation
δf∗

J,k(q). This prescription leads to the discretized Hill-

Wheeler equation [27]. Collective wave functions in the
basis of the intrinsic states are then obtained from the
set of weight functions fJ,k(q) by a basis transformation
[12]. In the |JMk〉 wave functions, the weight of each
mean-field state |q〉 is given by:

gJ,k(q) = 〈JMk|JMq〉. (4)

Since the collective states |JMk〉 have good angular mo-
mentum, their quadrupole moments and transition prob-
abilities can be determined directly in the laboratory
frame without further approximation. As the full model
space of occupied single-particle states is used, no effec-
tive charge needs to be introduced. The formulae used
to evaluate the overlap and Hamiltonian matrix elements
have been presented in Ref. [23].
The same effective interaction is used to generate the

mean-field wave functions and to carry out the con-
figuration mixing calculations. We have chosen the
Skyrme interaction SLy6 in the mean-field channel [28]
and a density-dependent zero-range pairing force with a
strength of −1250 MeV fm3 for neutrons and protons in
connection with a soft cutoff at 5 MeV above and below
the Fermi energy as defined in Ref. [29]. A model that
combines these extensions of the mean-field approach
represents a powerful tool. From a numerical point of
view, it is still simple enough to be applied up to super-
heavy nuclei using the full model space of single-particle
states with the proper coupling to the continuum. Cor-
relations corresponding to collective modes can be incor-
porated step by step into the modeling and this helps to
identify the relevant degrees of freedom. The method has
the advantage that results can be interpreted within the
intuitive picture of intrinsic shapes and shells of single-
particle states that is usually offered by mean-field mod-
els.
The model has already been successfully applied to the

description of coexisting structures in 16O [24] and 32S,
36,8Ar, and 40Ca [30]. Results for 186Pb obtained with
this model have already been presented in Ref. [25].
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FIG. 1: Particle-number projected deformation energy curves
for 182−188Pb (upper panel) and 188−194Pb (lower panel). The
curve for 188Pb is shown in both panels.

III. RESULTS

A. Potential landscapes

The potential energy and other properties are plot-
ted as a function of a dimensionless quadrupole deforma-
tion parameter approximately independent of the nuclear
mass:

β2 =

√

5

16π

4πQ20

3R2A
, (5)

where Q20 is the expectation value of the operator

Qλ,µ = rλ Yλ,µ (6)

for λ = 2 and µ = 0.
The particle-number projected potential energy curves

are displayed in Fig. 1. For all neutron numbers, the
ground state is found to be spherical with a similar cur-
vature of the energy curve around the spherical point.
There is a well defined, slightly deformed, oblate min-
imum for all isotopes. Its excitation energy increases
while the depth of the well decreases when going down
in neutron number from 188Pb to 182Pb. On the prolate
side, an inflexion point in the 192−194Pb curves becomes
a well-deformed minimum for β2 varying from 0.30 for
190Pb to 0.35 for 182Pb. The deformation energy curves

also present a deep minimum at superdeformed shapes for
194−192Pb which becomes shallower in 190Pb, and disap-
pears for the lighter isotopes. For the three lightest iso-
topes, there is an additional minimum at still larger de-
formations, with a maximal depth of 1.5 MeV for 184Pb.

Exploratory studies performed by S. Ćwiok [31] indi-
cate that calculations performed with a zero-range vol-
ume pairing interaction with appropriate strengths re-
sult in oblate and prolate minima at energies close to the
experimental values. Comparing our results with those
presented in Ref. [26], one also has to conclude that the
form factor chosen for the pairing interaction has some
influence on the relative position of the minima in 186Pb.
However, since our aim is to determine the influence of
correlations beyond mean-field for interactions that have
been validated on a large set of data, we will limit our-
selves to the same form of pairing as used in previous
works.
For deformations between β2 = −0.3 to +0.4, the vari-

ation of energy does not exceed 2.5 MeV in 182−190Pb.
The barrier heights between the minima are slightly
larger than 2 MeV for the prolate and some superde-
formed minima. In contrast, the barrier heights between
spherical and oblate minima is always small. With such
a topology, most minima of the potential energy curves
cannot be unambiguously identified with physical states
and one can speculate whether these structures may be
washed out by the vibrational fluctuations associated
with quadrupole motion. As discussed on the basis of
phenomenological energy maps for neutron-deficient Pb
isotopes by Bengtsson and Nazarewicz [9], it is hard to
infer the effect of vibrational fluctuations only from the
topology of the potential landscape.
In principle, oblate and prolate minima found by a cal-

culation limited to axial deformation might be connected
by a path through triaxial quadrupole deformation. To
verify that this is not the case for the Pb isotopes, we
have calculated the two-dimensional energy maps for four
isotopes. They are displayed in Fig. 2. The triaxial de-
formation angle γ is defined by:

tan(γ) =
√
2
Q22

Q20
. (7)

The potential maps for 182Pb and 194Pb exhibit two min-
ima at small deformations, spherical and oblate for 194Pb
and spherical and prolate for 182Pb, while three stable
minima can be seen for the two other isotopes. The
barrier height between the prolate and oblate minima
is larger than 500 keV. In 190Pb, the prolate minimum is
slightly triaxial with γ ≈ 10o.
The energy curves obtained after projection on angu-

lar momentum J = 0 are shown in Fig. 3. As can be
seen, the conclusions drawn from Fig. 1 remain qualita-
tively valid. The spherical mean-field state is rotation-
ally invariant and, therefore, contributes to J = 0 only.
As found in previous studies of spherical nuclei with our
method, there are two minima at small deformations.
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FIG. 2: Particle-number projected deformation energy sur-
faces for the Pb isotopes as indicated. The contour lines are
separated by 0.5 MeV. Filled circles denote minima, open cir-
cles maxima of the potential landscape.

They do not represent distinct physical states, but, as

FIG. 3: Particle-number and angular momentum J = 0 pro-
jected deformation energy curves for 182−194Pb drawn in the
same manner as in Fig. 1. All curves are normalized to the
energy minimum.

will be clear after the configuration-mixing calculation,
the correlated spherical state. The depth of the oblate
well is affected by angular momentum projection, as the
barrier separating it from the spherical minimum is quite
low for all neutron numbers.

B. Single-particle spectrum

The minima obtained for specific deformations are as-
sociated with a shell effect due to a low level density
around the Fermi energies for both protons and neu-
trons. To visualize this effect, we show Nilsson plots of
the proton and neutron single-particle energies for 186Pb
in Fig. 4 and Fig. 5, respectively. Besides an overall offset
due to the change in proton-neutron asymmetry, the pro-
ton spectra are similar for other neutron numbers. These
curves are also quite close to those presented in Ref. [12],
where a different set of Skyrme and pairing parameters
was used.
The spherical gap (β2 = 0) dominates the proton spec-

trum, There is also a spherical neutron subshell closure at
N = 100 between the 2f7/2− and 1i13/2+ levels. Several
additional, smaller gaps are visible at various deforma-
tions; let us first focus on the oblate side.

A large proton shell gap is present for an oblate de-
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FIG. 4: Proton eigenvalues of the single-particle Hamilto-
nian for 186Pb. Solid lines denote states with positive parity,
dotted lines states with negative parity. The Fermi energy is
plotted with a dashed line.

formation β2 ≈ −0.2. Comparing the level ordering at
this deformation with that at sphericity indicates that
the 3s1/2+ levels have been pushed up from below the
Fermi energy and have crossed two down-sloping 1h9/2−

levels. The deformation at which the first level crossing
occurs depends predominantly on the size of the spher-
ical Z = 82 gap: the larger the gap, the larger the de-
formation of the oblate minimum, as this crossing corre-
sponds to the position of the barrier between the oblate
and the spherical energy minima. In a shell model pic-
ture [16, 17], this oblate state is described by a 2p-2h
excitation from the 3s1/2+ level to the 1h9/2− one.
The size of the oblate proton gap is mainly determined

by the splitting of the 1h9/2− state with deformation,
which can be expected to be force independent. It de-
pends also on the energy difference between the 1h9/2−

and the 1i13/2+ levels, which has to be large enough so
that the 1i13/2+ states diving down with oblate defor-
mation stay above the oblate 2p-2h gap. That the level
closest to the Fermi level is a 1h9/2− state is supported
by the fact that in adjacent even-odd Tl and Bi nuclei,
states built on the proton 1h9/2− orbital above and the
3s1/2+ orbital below the Z = 82 gap have been observed
at excitation energies of only a few hundred keV [32].
This interpretation of the oblate states is also consis-

tent with the observation of 11− high-spin isomers for
188−198Pb[1]. These isomers are interpreted as broken-
pair proton (3s−2

1/21h9/21i13/2)11− states. The values of

their g factor and of their spectroscopic quadrupole mo-
ment have been measured in 194−196Pb [33] and are con-
sistent with excitations built on top of the excited 0+

oblate states. They have been successfully described in
this way by Smirnova et al. [34].
The level ordering shown in Fig. 4 is thus corrobo-

rated by several experimental data and gives a coherent
picture of the oblate minimum. The situation is less ev-
ident for the neutrons. As can be seen from Fig. 5, the
levels which are responsible for the oblate neutron gap

FIG. 5: Eigenvalues of the single-particle Hamiltonian ob-
tained for neutrons in 186Pb. Solid lines denote states with
positive parity, dotted lines states with negative parity. The
Fermi energy is plotted with a dashed line.

originate from the 1h9/2− and 1i13/2+ shells. Their first
crossings occur at deformations around β2 ≈ −0.2; only
two 1i13/2+ levels have energies lower than the Fermi en-

ergy at the oblate minimum of 186Pb. As we shall show
in the next sections, the energy of the predominantly
oblate 0+ state is overestimated for all isotopes by our
model. A possible cure to this deficiency could thus be to
slightly decrease the energy of the 1i13/2+ neutron level.
A larger occupation of these neutron states with large
mz values would increase the quadrupole interaction be-
tween neutrons and protons, the proton levels close to the
Fermi energy having also largemz values. This would de-
crease the energy of the oblate configuration and modify
its dependence on the neutron number. There are other
evidences that the 1i13/2+ energy is overestimated. On
the prolate side of deformations, levels from the spherical
proton 1i13/2+ and 1h9/2− shells come close to the Fermi
energy in the ground state of transactinides. An analy-
sis of the quasiparticle spectrum of 249Bk performed in
the cranked HFB approach using the Skyrme interaction
SLy4 in combination with the same pairing prescription
used here indicates that the 1i13/2+ state is predicted too
high above the 1h9/2− orbitaland should be lowered [35].
A similar conclusion emerges from the analysis of the
single-particle spectra in 208Pb, where most mean-field
models predict the proton 1i13/2+ shell too far above the
1h9/2− level [36, 37]. As we discussed above, however,
these single-particle energies are also constrained by the
properties of oblate states around 186Pb and the distance
between these levels may not be changed by more than
a few hundreds of keV.
The prolate minimum is not as nicely related to a de-

formed proton shell effect, as no large gap is obtained for
a deformation around β2 equal to 0.3. The relation of
this prolate configuration to a 4p-4h shell model config-
uration is therefore not evident. In contrast, there is a
small gap at the Fermi surface for β2 values around 0.35,
which corresponds to a 6p-6h configuration. A similar
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FIG. 6: Excited states in 182−194Pb. Only the lowest band structures are shown. For the superdformed bands, only the 0+

and 8+ levels are labeled.

result has been obtained with the potential models used
for microscopic-macroscopic calculations of Ref. [9].

As can be seen from Fig. 5, there are sizable neutron
gaps at prolate deformations, which can be associated
with structures in the potential energy curves, in par-
ticular at N = 102, N = 104 and N = 106 for β2 ≈ 0.4.
These can be expected to enhance the depth of the
prolate minimum in the potential landscape. Above
N = 106, the Fermi energy crosses a region of high level
density, which explains the disappearance of the prolate
minimum at neutron numbers above 190Pb. TheN = 102
and N = 110 gaps at larger deformations can be associ-
ated with the superdeformed minima in 184Pb and 192Pb
respectively.

C. Excitation spectra

The excitation spectra of 182−194Pb obtained after con-
figuration mixing are presented in Fig. 6. The bars rep-
resenting each state are plotted at a mean deformation
β̄J,k in the intrinsic frame defined as:

β̄J,k =

∫

dβ2 β2 g2J,k(β2), (8)

where β2 is related to the value of the constraint used
to generate the mean-field states (see eq. (5)). This av-
erage value does not correspond to any observable, but
is convenient to characterize the decomposition of each
collective state into its mean-field components The col-
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FIG. 7: Collective wave functions of spherical (solid lines),
oblate (dotted lines) and prolate (dashed lines) states for
182−194Pb.

lective wave functions for selected states are shown in
Fig. 7. The fully correlated ground state is dominated
by mean-field configurations close to sphericity for all
isotopes, in agreement with the data. In 190−194Pb, the
first excited 0+ levels are dominated by oblate mean-field
configurations. In 188Pb, a configuration dominated by
prolate mean-field states is nearly degenerate with the
oblate one; for lighter isotopes, it becomes the first ex-
cited state.

For several isotopes, a classification of most states into
rotational bands emerges quite naturally from the value
of the average deformation β̄J,k. The simplest case is
190Pb, where rotational bands above the oblate, prolate

and superdeformed configurations are easily identified in
Fig. 6. An exception are the two nearly-degenerated 6+

levels found at intermediate deformations between the
prolate and superdeformed bands which are very close
in energy and, thus, strongly mixed. There is also an
isolated 2+ state with β̄2,3 close to zero at 2.3 MeV ex-
citation energy. Such a state is present at a similar en-
ergy in all other Pb isotopes studied here. The situation
in 186Pb is nearly as simple, except for two additional
bands with average deformations between those of the
first prolate and the superdeformed states. In the two
lighter isotopes, the mean weight of oblate states in the
predominantly oblate band is moving toward larger de-
formations with increasing spin, while the prolate band
has a much more stable mean deformation. For 192Pb
and 194Pb there are many levels above 4 MeV excitation
energy that cannot be easily associated with a rotational
band. Figure 7 indicate that the collective wave functions
gJ,k are spread over a large range of deformed configura-
tions. For J = 0 and 2, this spreading extends on both
the prolate and oblate sides, while for J = 4, it is more
limited to the vicinity of either an oblate or a prolate
configuration. Unfortunately, it is difficult to represent
this spreading by the mixing of only two or three con-
figurations, as done in schematic models. A reduction of
the configuration mixing basis to an oblate, prolate and
spherical state leads to much too small a configuration
mixing. Of course, the classification in bands that we
have obtained from the β̄J,k valueshas to be confirmed
by the behavior of the calculated transition probabilities
between the various states.

Our results concerning the lowest bands found in all
isotopes are summarized in Fig. 8 (upper part) and com-
pared to experimental data (lower part). Both for exper-
iment and theory, the bands are sorted as oblate, prolate
or spherical on the basis of their spectroscopic properties.

Experimental trends are qualitatively reproduced by
our calculation, although changes with neutron number
are too abrupt. Our calculation predicts nearly degen-
erate oblate and prolate 0+ excited states in 188Pb only,
while experimentally the two first excited 0+ states lie
within 100 keV in 184−188Pb. A systematic discrepancy
between theory and experiment is the position of the 2+

level interpreted as a vibration of the spherical ground
state. Its energy is larger than 2 MeV in our calculation
for all isotopes, a value to be compared with an exper-
imental energy around 1 MeV [38]. Looking back into
Fig. 7, a plausible reason for the better agreement ob-
tained for the prolate states than for the other levels may
lie in the behavior of the wave functions. For all isotopes,
the ground state 0+ wave functions have an extension on
the oblate side similar to the predominantly oblate wave
function. On the other hand, the amplitude of this wave
function is negligible for deformations close to that of
the maximum of the prolate wave function. Therefore,
the configurations close to sphericity should be expected
to be coupled more strongly to the oblate configurations
than to the prolate ones. Such a strong coupling pushes
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FIG. 8: Systematics of calculated (upper panel) and experi-
mental (lower panel) excited states in 182−194Pb.

the predominantly oblate 0+ states higher in energy than
the predominantly prolate ones. A similar explanation
can be invoked to account for the too high energy of
the vibrational 2+ level constructed on the ground state.
The wave function of this level extends on both prolate
and oblate sides up to the tails of the oblate and prolate
2+ wave functions. A possible way to reduce these large
overlapping regions of collective wave functions could be
the inclusion of triaxial deformation, which might lead to
a different spreading of wave functions in the γ direction.

Experimental prolate states are nicely described by
our calculations, although the increase of their excita-
tion energies with mass is slightly too fast for the heav-
iest isotopes. The simple picture of shape isomerism, as
suggested by the potential landscapes, is supported by
our calculations for oblate states, even after the inclusion
of dynamical correlations on top of the shallow minima.
This result is by far non trivial. However, the position of
these states is slightly too high in energy and the trend
with neutron number is not correct. In particular, the
excitation energy of the oblate isomer is not minimal at
mid-shell as it is experimentally. The minimum is shifted
by four mass units towards heavier systems. The same
situation is encountered in calculations using the Gogny
force [14].

There are very recent new experimental data for 188Pb

FIG. 9: Comparison between the calculated excitation ener-
gies and the available experimental data for low-lying states
in 188Pb. Data are taken from [38].

[38, 39]. In particular, this isotope is the one for which
there are the most extensive data on E0 and E2 tran-
sition probabilities. For this reason, we show a direct
comparison between theoretical and experimental spec-
tra for this nucleus in Fig. 9. The main discrepancies
with the data are for spins larger than 4 where the the-
oretical spectra are too spread. Experimentally, there is
no clear evidence that the two first excited 0+ levels are
predominantly prolate or oblate in character. Starting at
J = 2, the states may be sorted in two bands fitted by
a Harris expansion. This is also the case in our calcula-
tion. Experimentally, the lowest 2+ state is interpreted
as a member of the prolate band, while it belongs to the
oblate one in our calculation.

D. Correlation energies

From Fig. 6, one can extract the correlation energies
due to the restoration of the rotational symmetry and
the removal of axial quadrupole vibrations. Projection
on particle number is already included in the mean-field
energy curves. The magnitude of the correlation energy
due to this projection has been determined in a previous
study of Pb isotopes [40], and is around 1.0 MeV. The
ground states are found to be spherical, irrespective of
the nature of the correlations that are introduced. The
rotational energy has a value close to 2.5 MeV in all cases
and vibrational correlations bring an additional energy
gain of approximately 1.0 MeV. The total energy gain due
to these two correlations is rather stable for 182−194Pb
and is comprised between 3.5 and 4.5 MeV.
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FIG. 10: Systematics of the intrinsic deformation β
(s)
2 de-

rived from the absolute value of the spectroscopic quadrupole
moment of low-lying 2+ states in 182−194Pb. Circles denote
prolate, squares oblate levels.

E. Quadrupole deformation

1. Spectroscopic quadrupole moment

The spectroscopic quadrupole moment is given by:

Qc(Jk) =

√

16π

5
〈J,M = J, k|Q̂20|J,M = J, k〉

=

√

16π

5

〈JJ20|JJ〉√
2J + 1

×
∑

q,q′

f∗

J,k(q) fJ,k(q
′) 〈Jq||Q̂20||Jq′〉, (9)

where Q̂20 is the proton quadrupole operator. Although
directly accessible in a model-independent way in the lab-
oratory frame, the spectroscopic quadrupole moment has
the disadvantage that its value scales with mass and an-
gular momentum. It is then difficult to compare different
nuclei or different members of the same rotational band.
Using the static rotor model, one can define a dimen-
sionless quadrupole deformation in the intrinsic frame

β
(s)
2 (Jk) which is easier to visualize and to relate to the

deformation parameters introduced in most other mod-
els:

β
(s)
2 (Jk) =

√

5

16π

4πQ
(s)
2 (Jk)

3R2Z

Q
(s)
2 (Jk) = −2J + 3

J
Qc(Jk) (10)

with R = 1.2A1/3 and K = 0.
The absolute value of the deformation parameter β

(s)
2

derived from the spectroscopic quadrupole moment of
low-lying 2+ states is shown in Fig. 10. The βs

2 values
corresponding to higher-lying members of the prolate and
oblate rotational bands are in most cases quite similar to
those obtained for the 2+ state. In agreement with the
systematics of the deformed minima in the potential en-
ergy surfaces shown in Figs. 1 and 3, the deformation of

FIG. 11: Systematics of the intrinsic deformation derived
from the reduced E2 transition probability between low-lying
2+ and 0+ states (lower panel) and low-lying 4+ and 2+ states
(upper panel) in 182−194Pb. For in-band transitions between

higher-lying states, β
(t)
2 values are similar to those obtained

for the 4+
→ 2+ transitions.

the prolate 2+ levels increases with decreasing neutron
number, while the deformation of the oblate 2+ state

stays fairly constant. The small values of |β(s)
2 | found

for the oblate 2+ states in 182−184Pb and the prolate 2+

states in 192−194Pb can be related to an increased spread-
ing of the corresponding wave function into the spherical
well due to the very small or even vanishing potential
barrier in these cases. The discontinuity in the system-

atics of β
(s)
2 for oblate and prolate states predicted for

188Pb is probably related to the increased mixing of all
low-lying states due to their near-degeneracy.

2. Reduced transition probabilities

The reduced E2 transition probability is determined
from

B(E2; J ′

k′ → Jk)

=
e2

2J ′ + 1

+J
∑

M=−J

+J′

∑

M ′=−J′

+2
∑

µ=−2

|〈JMk|Q̂2µ|J ′M ′k′〉|2
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=
e2

2J ′ + 1

∣

∣

∣

∣

∣

∣

∑

q,q′

f∗

J,k(q) fJ′,k′(q′) 〈Jq||Q̂2||J ′q′〉

∣

∣

∣

∣

∣

∣

2

. (11)

The B(E2) values are often given in Weisskopf units
(W.u.), where 1 W.u. is equal to 5.940 × 10−2 A4/3 e2

fm4. Again, the B(E2) value has the advantage that it
can be deduced in a model-independent way in the labo-
ratory frame, but also has the disadvantage that it scales
with mass and angular momentum. Using the static rotor
model, the B(E2) values are related to a dimensionless
deformation in the intrinsic frame

β
(t)
2 (J ′

k′ → Jk) =
4π

3R2Z

√

B(E2; J ′

k′ → Jk)

〈J ′ 0 2 0|J 0〉2e2 (12)

with R = 1.2A1/3. This transition quadrupole moment
reflects the intrinsic deformation of the states if, and only
if, both states involved have a similar structure. Differ-

ences between β
(t)
2 (J ′

k′ → Jk) and β
(s)
2 (J ′

k′) give a mea-
sure of the validity of the static rotor model for a given
band.
The β

(t)
2 values derived from the transition probabil-

ities between low-lying 4+, 2+ and 0+ states are pre-
sented in Fig. 11. The values calculated for in-band
transitions for higher J values are close to those for the

4+ → 2+ ones. Except for 184Pb, very similar β
(t)
2 values

are obtained for all transitions within the oblate band.
On the contrary, the deformation determined from the
2+pro → 0+pro transition is significantly smaller than that
calculated using the transition starting from the prolate
4+ state. This is due to a change of structure of the
collective wave functions with spin: the 0+ wave func-
tions are much more mixed than the wave functions cor-
responding to higher J-values. The particularly large β

(t)
2

value found for the 2+pro → 2+obl transition in 188Pb again
reflects the large mixing of these two nearly degenerate
states. From the right part of the figure, one sees that
the in-band transitions are in most cases approximately
one order of magnitude more intense than the out-of-
band ones. Comparing the deformations calculated from
the spectroscopic moments and shown in Fig. 10 to those
coming from the transition moments, Fig. 11, one sees
a close similarity, except for the oblate states in the two
lightest isotopes and in 188Pb. In these three cases, this
can be viewed as a confirmation that the states labeled
oblate result in fact from the mixing of a large range of
mean-field states and that these mixings vary with angu-
lar momentum. The existence of rather pure rotational

bands is confirmed for nuclei where both β
(t)
2 and β

(s)
2

have close values.
To the best of our knowledge, there are no experimen-

tal data for B(E2) values in neutron-deficient Pb iso-
topes, except the very recent measurements in 188Pb of
Dewald et al. [39]. The B(E2) value measured for the
4+1 → 2+1 transition is equal to 160 W.u. and that for
the 2+1 → gs transition is 5.3 W.u. These values are
in between those that we obtain for transitions start-
ing from the prolate and oblate 4+ and 2+ states. The

calculated B(E2) values for the 4+1 → 2+1 transition is
equal to 288 W.u. for the prolate band and 126 W.u.
for the oblate one, while the out-of-band transitions to
the ground state are 0.2 W.u. and 17.0 W.u. respectively.
This result probably reflects the fact that the calculation
underestimates the configuration mixing for the 2+ or the
4+ states. Dewald et al. have determined a β2 value of
0.20, significantly lower than the value obtained by most
theoretical estimates. However, β2 is not an observable
and its value depends on the model used to relate it to
the transition moments. The formula used in Ref. [39]
contains a term coming from hexadecapole deformations
which is usually not introduced. The determination of β2

from the experimental data and Eqn. (5) leads to a value
compatible with the commonly estimated β2 = 0.27.

F. Monopole transition moments

The E0 transition strength can be deduced from
conversion-electron measurements. The formulae which
relate decay rates and monopole strengths are a direct
transposition to our model of the formulae given in Ref.
[41].
The nuclear electric monopole decay rate T (E0) due

to conversion electrons is given by [42]:

T (E0) = 2.786 · 1020 ρ2E0

∆E

2J + 1

[

A(E0)K +A(E0)LI

+A(E0)LII
+ . . .

]

(13)

where T (E0) is in s−1 and the transition energy ∆E in
MeV. The electronic coefficients A(E0)i, where i repre-
sents the decay channel, i.e. one of the electronic shells
K, LI , LII , . . . , have been tabulated by Hager and
Selzer [43].
The nuclear matrix element entering this decay rate is

the strength:

ρ2E0(Jk′ → Jk) =

∣

∣

∣

∣

M(E0; Jk′ → Jk)

R2

∣

∣

∣

∣

2

(14)

where M(E0; Jk′ → Jk) = 〈JMk|r2p|JMk′〉 and R is

1.2A1/3 fm.
The values calculated for the transitions between pro-

late, oblate and spherical 0+ states are shown in Fig.
12. Their systematics reflects the change of the potential
landscapes that can be seen in Fig. 3. In most cases, the
larger the energy difference between the spherical and
the deformed minima, the smaller the value of ρ2E0. The
ρ2E0 values are quite small for transitions between pro-
late and oblate states, except for 188Pb where the two
states are very close in energy and the oblate and prolate
configurations are strongly mixed.
Experimental values for the monopole strength for the

(0+2 → 0+) transitions in 190−194Pb are given in Ref. [44]:
ρ2E0 ≥ 6 × 10−3 for 190Pb, ρ2E0 = (1.7 ± 0.2) × 10−3 for
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FIG. 12: Monopole strength ρ2E0 for the transitions be-
tween low-lying 0+ states. Available experimental data for
the 0+

2 → 0+
1 transition in 190−194Pb are largely overestimated

(see text).

192Pb, and ρ2E0 = (1.0 ± 0.2)× 10−3 for 194Pb. Assum-
ing that the observed 0+2 states can be identified with
our oblate 0+ levels, our calculations overestimate these
values by more than one order of magnitude for 192Pb
and 194Pb. Interestingly, transitions from the prolate 0+

states to the ground state have the correct order magni-
tude.
If one estimates the mixing of configurations by the

phenomenological formula used in Ref. [44]:

ρ2E0 = a2 b2
(

3Z

4π

)2

β4, (15)

where a and b (with a2 = 1− b2) are the amplitudes of
the spherical and oblate states in the physical wave func-
tions, one obtains a mixing of around 10% in our calcu-
lation, 20 to 30 times larger than the value deduced from
the experimental data. Even though Eqn. (15) gives an
extremely simple and approximate picture of the configu-
ration, it confirms that our calculation probably predicts
a much too large mixing between the spherical and oblate
configurations.
Ratios of E0 and E2 transition probabilities for 188Pb

have been experimentally determined by Dracoulis et al.
[38]. These data are for transitions between states of the
oblate and prolate bands with the same angular momen-
tum. For J = 2, they obtain a ratio equal to 2.6, to be
compared with 9.2 in our calculation, 2.2 for J = 4, 1.2
for J = 6 and 0.3 for J = 8, to be compared with our
calculated values of 0.27, 0.005 and 0.002, respectively.
Using a simple band-mixing model adjusted using the

experimental data, Dracoulis et al. [38] have determined
the widths of all the E0 and E2 transitions depopulat-
ing the oblate band. Our model also allows to determine
these widths, without any additional assumptions. The
widths of the dominant E2 transitions differ by at most
an order of magnitude; differences are larger for E0 tran-
sitions, where our calculated values are lower by a factor
varying from 10 for J = 2 to 500 for J = 6. In the model

of Dracoulis et al., all states result from the mixing of a
prolate and an oblate configuration only, while the mix-
ing is much more complicated in our calculation. The
lower value for the E0 width that we obtain is proba-
bly related to larger differences in structure between the
oblate and prolate bands in the present calculation than
in schematic models. The quadrupole transitions are in
better agreement with the data. The widths that can be
calculated from the data of Dewald et al. [39] agree with
our computed values within a factor 2.

IV. SUPERDEFORMED STRUCTURES

Superdeformed bands have been extensively studied
utilizing the cranked HFB method (see Ref. [45] and ref-
erences therein). In this approach, the variation of the
moment of inertia of a rotational band is studied up to
high spins by means of mean-field states optimized for
each angular momentum with an appropriate cranking
constraint. The variational space of the CHFB method
is larger than in the present calculations due to the break-
ing of time-reversal invariance. As long as rotation takes
place in a potential well which does not vary too much
with rotation, the cranking approximation is rather well
justified. Because of this feature, it is also well suited to
describe the moment of inertia of SD bands.
To challenge CHFB calculations, our method requires

to project cranked HFB states on angular momentum;
such a generalization is underway. Nevertheless, we
have extended our calculations to deformations at which
superdeformed rotational bands have been observed in
192−196Pb. Figure 6 shows the spectra obtained in the SD
well after symmetry restorations and configuration mix-
ing. Compared to experiment, and to our previous CHFB
calculation [46], the SD spectra are too compressed and
the moments of inertia too large. As the interaction that
we used in Ref. [46] was the SLy4 Skyrme parameteri-
zation, we checked that the SLy6 parameterization used
here leads to similar rotational bands when used in CHFB
calculations and that agreement with the experimental
data is equally good. Without cranking, our results for
SD spectra cannot provide an accurate quantitative com-
parison with experiment. However, our present method
is very well adapted to determine the excitation energy
of the SD well. As a matter of fact, it can be viewed as
a generalization of the method that we have already ap-
plied to the same problem [47] as correlations due to the
restoration of angular momentum are included. Looking
at Fig. 6, one sees that bands are very well localized in
the superdeformed well for 190−194Pb. Quadrupole defor-
mations are slightly larger than in our cranking studies,
with typical values of β2 around 0.70, compared to 0.67
in CHFB for SLy4 and SLy6.
Transitions linking the SD bands to the normal-

deformed well are known in 194Pb [48, 49] and, recently,
in 192Pb [50]. From these transitions one can estimate
the “experimental” position of the 0+ bandheads in these
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FIG. 13: Excitation energy of the 0+ bandheands of the
superdeformed rotational bands in 182−194Pb.

FIG. 14: Deformation of the SD states. squares: β
(s)
2 of the

2+ states, circles: β
(t)
2 (6+

→ 4+) (for 190−194Pb, they lie on
top of each other).

two nuclei. Calculated excitation energies of 2.5 MeV for
192Pb and 3.4 MeV for 194Pb, are below the extrapo-
lated experimental values of 4.425 MeV for 192Pb and
4.878 MeV for 194Pb. We have repeated the same cal-
culation with the SLy4 interaction used in a systematic
study of the excitation energies of SD bands [51] and ob-
tained 4.7 MeV for 194Pb. This value is in much better
agreement with the data. This difference between both
interactions gives a measure of the uncertainty related to
the choice of the effective interaction.

A detailed analysis shows that the excitation energy of
the SD band is substantially modified by the correlations.
For 194Pb for instance, the excitation energy of the su-
perdeformed minimum in the potential energy surface is
lowered by angular momentum projection from 3.9 MeV
to 3.0 MeV, see Figs. 1 and 3. But after configuration
mixing, the superdeformed 0+ state is pushed up again to
3.41 MeV. As can be seen in Fig. 6, quadrupole vibrations
lower the SD state even further than the projection, but
this effect is larger for the ground state, so the SD band-
heads are actually pushed toward larger excitation en-
ergy. For 192Pb, angular momentum projection reduces
the excitation energy from 3.0 MeV to 2.0 MeV, while

the quadrupole correlations increase it back to 2.53 MeV.
In the same way, using the SLy4 interaction, the exci-
tation energy of the SD band in 194Pb is first reduced
from 5.2 MeV to 4.3 MeV and then increased back to
4.71 MeV by the GCM. A similar reduction of the ex-
citation energy of SD bandheads in spherical nuclei was
obtained for 16O [24] and 40Ca [30]. In those light nu-
clei, the absolute change of the excitation energy is more
pronounced.
No stable states are obtained in the SD well of 188Pb.

For lighter isotopes, well-defined states are obtained
again at large deformation. They form nice rotational
bands for 184Pb and 182Pb. Their excitation energies are
quite small, below 3 MeV, see Fig. 6, even if one takes
the uncertainty due to the interaction into account. Their
quadrupole moment is also significantly larger than for
the known SD bands, leading to very strong B(E2) tran-
sition probabilities within the bands.

V. DISCUSSION AND SUMMARY

The main aim of this paper was to determine whether
it is possible to describe the coexistence of several low
lying 0+ states in neutron-deficient Pb isotopes by in-
troducing correlations. In this respect, our results are
very positive. The evolution of the Pb spectra with neu-
tron number is qualitatively well reproduced. The direct
link between symmetry restored wave functions and in-
trinsic mean-field configurations allows to assign a pre-
dominantly oblate structure to the first excited 0+ state
in the heaviest Pb isotopes and a predominantly prolate
one in the lightest ones. This result was not evident from
a-priori analyses of the mean-field deformation energy
curves. In several cases, the deformed minima are located
in a well not expected to be sufficiently deep to guarantee
the localization of a quantum state. Our results, obtained
from a purely quantum mechanical method based on an
effective interaction as the sole phenomenological ingre-
dient, do support the intuitive shape coexistence picture.
More detailed comparisons with the data show some

discrepancies. While the energies of the predominantly
prolate states reproduce the experimental data qualita-
tively, the energies of the oblate ones are systematically
overestimated and the spreading of the rotational bands
is too large. There could be different origins for these dis-
crepancies. First, the lack of triaxial deformations could
induce an overestimation of the energy of the oblate con-
figuration. Their introduction should increase the cou-
pling between prolate and oblate states which seems to
be too weak when looking into E0 transition probabili-
ties in 188Pb. Second, mean-field states are generated by
static calculations. This is not satisfactory from a varia-
tional point of view. As is well known, the projection of
cranked states obtained for Jx = J is better variationally
and is expected to decrease the spreading of the bands.
Such an extension of our method is by far not trivial, but
is presently underway.
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Finally, the effective interactions have not been con-
structed to go beyond a mean-field approach. In princi-
ple, they should be readjusted, at least to account for the
extra binding energies due to rotational and vibrational
correlations. Furthermore, our results could be affected
by considering other generalizations of the density depen-
dence of the Skyrme force when calculating non-diagonal
matrix elements, as suggested by Duguet and Bonche
[53, 54]. Such an investigation is presently underway.
Even at the mean-field level, deficiencies of the Skyrme
interactions have been put into evidence. The analysis
of the single-particle spectra in 208Pb and 249Bk matches
up with the conclusion drawn here from the neutron-
number dependence of the oblate configuration that the
proton 1i13/2+ shell is calculated too high in excitation
energy, above the 1h9/2− level. This is a feature common
to many effective interactions which should be taken into
account in a new fit of a force.
One of the major interests of our method is the deter-

mination of transition probabilities directly in the labora-
tory system, without relying on ad hoc approximations.
Unfortunately, the experimental data are very limited.
The example of 188Pb has shown how instructive the
comparison between theory and experiment for E0 and
E2 transition probabilities can be. Experimental data
for other isotopes are highly desirable.
Finally, we have extended our calculations up to

quadrupole deformations associated with superdeformed
bands. As expected, for the isotopes in which these
bands are known, the excitation energies are in reason-
able agreement with experiment, but the moments of in-
ertia are too large and not as good as in our previous
cranking calculations. While the disappearance of SD
structures is confirmed in 188−190Pb, still more deformed
configurations are predicted in the lightest isotopes. The
experimental confirmation of this prediction is certainly a
difficult experimental challenge, but would be an exciting
result.
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M. Girod, and S. Hilaire, Phys. Rev. C 65, 024309 (2002).

[38] G. D. Dracoulis, G. J. Lane, A. P. Byrne, A. M. Baxter,
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