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HFB calculationswith a microscopic pairing interaction

T. Duguet and P. Bonche
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TService de Physique Théorique, CEA Saclay, 91191 Gif suteY®edex, France

Abstract. Hartree-Fock-Bogolyubov (HFB) calculations making useaakcently proposed microscopic effective pairing
interaction are presented. The interaction was shown todepe the pairing properties provided by the reali8\id 8 force
very accurately in infinite matter. Although finite-rangettlanon-local, it makes 3D HFB calculations in coordinatecgpa
tractable. As a first application, basic pairing propertiesalcium isotopes in their ground-state are studied. Byaring
the results with those obtained using a standard DensipeBdent Delta Interaction, the crucial isovector charaatehe
microscopic interaction is highlighted.

1. INTRODUCTION

The structure of the nucleus and the properties of extendeldar systems strongly depend on their possible superfluid
nature. In finite nuclei, pairing constitutes the main pathe residual interaction and has a strong influence on most
of low-energy properties of the system [1]. In extendedesyst such as neutron stars, pairing is a decisive ingredient
of dynamical and thermal evolutions [2, 3]. Despite its magde, the present knowledge of the pairing force and the
nature of pairing correlations in nuclei, that is, the wayo@er pairs are formed in the nuclear medium out of the
strong nucleon-nucleomMN) force, is quite poor. Properties such as the range of tleetfe pairing interaction, its
link to the bare force, its possible surface character inefinuclei and its density dependence (in particular is@mrect
still have to be clarified [4, 5, 6, 7].

Regarding self-consistent mean-field calculations ofdiniticlei, only phenomenological forces such as the Gogny
force [8] or (Density-Dependent) Delta Interactions ((IDD)[5, 6, 9, 10] have been used in the pairing channel so
far. One exception exists however [11], where the Bardeeop€r-Schrieffer (BCS) gap equation was solved in the
Hartree-Fock (HF) basis f°Snusing realisticAv18 bare force [12]. It required the treatment of single-ipkrstates
up to 800 MeV! Although successful in describing low-enengiclear structure over tHamownmass table [1], the
Gogny force and DDDI lack a clear link to the bare nucleonkeaic (N N) interactiorf. This feature strongly limits the
reliability of their analytical structure such as their pitde density dependence. Also, their direct fit to nuclesad
through mean-field calculations makes probable the re-alization of beyond-mean-field effects. This is a significan
limitation if one wants to go explicitly beyond that level approximation. Finally, their fits performed onto very
limited sets of nuclei around stability make their extraget use toward the drip-lines unsafe. For instance, while
such phenomenological forces all provide similar and reabte pairing properties around stability, the predicted
location of the two-neutron drip-line can differ by up to #eventy mass units depending on the force used [16].

To improve on that situation, a microscopic effective iatgion explicitly linked to the baré&N force, and
equivalent to it at the mean-field level, was proposed régéatireat pairing correlations in thkS channel [15].
BCS pairing properties provided in infinite matter BY18 were reproduced very accurately. These properties dealt
not only with the gap at the Fermi surface as a function of idgrmut also with the momentum dependence of the gap
at fixed density [15].

Inthe present paper, we discuss the first results of 3D HF®Itations using that force and we focus on the isovector
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2 Even if some significant differences remains, one can afgatettie Gogny force behaves almost like a bare force if$endD, channels,
especially when the D1S [13] parameterization is used [3}, 1
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and low-density properties of the interaction. In sectipm@ briefly outline the formalism and the characteristics of
the new pairing force. Results obtained along the calcimtofsEic chain are discussed in section 3. They are compared
to those obtained using a standard surface peaked DDDI aard-aange approximation to the new microscopic force.
Conclusions are given in section 4.

2. FORMALISM

To treat pairing, one needs to specify the many-body tecknigsed and the appropriate interaction to insert into
the calculation at the chosen level of approximation. Thtedadepends both on the situation and on the system.
In the present case, we concentrate on a (self-consistegdpfield description of finite nuclei using the HFB
method. Eventually, calculations beyond the mean-field@itee performed. Typically, correlations associated with
symmetry restorations (Projected Mean Field Method) amgelamplitude motion (Generator Coordinate Method)
are considered [17, 18, 19]. Thus, one has to identify thecgjate vertices to be used coherently at each level of
approximation.

While variational calculations are of no direct help in thespect, perturbative methods using Green'’s function
or Goldstone formalisms provide guides to do so. In pariciduch many-body theories show unambiguously that
the interaction to be used in the particle-particle (p-@rotel at lowest order in irreducible vertices is the bdi
force’. Atthe next order, the irreducible pairing vertex involvies so-called polarization diagrams. This situation is in
contrast to the particle-hole (p-h) channel where one may n@ regularize the repulsive core of the bare interaction
from the outset through the definition of an in-medium twakpwoertex like theG-matrix [20]. This stresses the fact
that the effective forces may differ in the two channels avarglevel of approximation.

The approximate ground-state enefgy™® of a nucleus is a functional of the one-body density map/jil‘x:

(D] c;r ¢j| ®) and pairing tensak] = (®| ¢ ¢j| ®), where| @) is the HFB staté For a general presentation of the HFB

formalism, we refer to Ref. [17f. Also, the two-basis methiseéd to solve the HFB problem iteratively is discussed in

Ref. [21]. Finally, a detailed presentation of the methoplligl to the new interaction will be soon available [22].
The pairing fieIdAiqj reads as:
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where, as already explaine‘fzrj,1 % js the bareNN force. In Ref. [15], theeffectivevertex was then introduced by
recasting the previous gap equation written in the canbbasis into afully equivalenexpression [15]:
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Wheregliq(O) is an off-shell in-medium two-body matrix summing p-p andh kadders in the superfluid phase.
In Eq. 2, the expression of the pairing tensor in its candrfman k- = Ah/2Eq was used, wher&f, = EZ =

)

A/ (h?n — 924+ A?nz, while h is the diagonal matrix element of the HF field in the canorteais angu? the chemical
potential. Identifying the two sides of Eq. 2, the effecidpagring vertex is naturally defined through its antisymrizen
matrix elements in the canonical basis of the Bogolyubavsf@ermation as:

iimm

3 This constitutes our motivation for the mean-field leveltiWhe G-matrix [20] in the p-h channel, such a mean-field theory isedy aims at
treating the nucleus as a system of indepengairs, including the correlations associated with the existeric@ooper bound-states in the medium.
4 The quantities are defined in an arbitrary basis and theiisesmntum numbegq (1/2 for neutrons and-1/2 for protons) is specified to make
clear that isospin mixing is considered neither in the p-<4mnctel nor in the p-p channel.

5 The canonical basis corresponds to the single-particlis bégonalizing the one-body density matp'ﬁ = piq dji = pi9 and putting the pairing
tensor in its canonical formﬂ = ngq P o plays in the canonical basis the role of the usual BCS ocimpatimber. Which state(:tﬂ are paired
is a by-product of the Bogolyubov transformation solutidth@ problem. States are not paired a priori as in the BCSoxppation.



In Ref. [15], 91%(](0) was calculated explicitly in infinite matter starting fronseparable form of the baf¢N
interaction in thé"Sy channel. It was studied in detail and shown to take a close fio coordinate space:

1-P, e Siq IP—ri[2/2a?
5 /df’ f [pq(T)] W 5 (4)

whereP; is the spin-exchange operaitpwhile a = v/0.52fm and A 'S — _840MeV. fi® denote the range and
the intensity of the force, respectively. No further adjusit is to be made in finite nuclei. The functiorfdjpqy(T)]
incorporates the density dependence offthe 2q component of the effective interaction [15]. The densityeledence
stems from the re-summation of p-p and h-h ladders in the unedThe effective vertex is thus finite ranged, non
local, total-momentum dependent and density deperdeloivever, the computing cost of corresponding 3D HFB
calculations is, through the two-basis method [21, 23]hefsame order as for a zero-range interaction.

By re-summing the effect of pairs scattered at high-enertgythe effective vertex, the latter is soft even if the bare
force has a hard core. Also, a smooth cut-gifilmerges naturally in the gap equation through its recass.ctit-off
further limits the necessity to use large basis sets as in[Rgfand makes zero-range approximations of the effective
vertex meaningful. The pairing problem is regularized inirailar way to what was proposed in Refs. [7, 24, 25]
using re-normalization techniques. It is worth noting ttreg derived cut-off differs from all ad-hoc ones used in
connection with usual DDDI. Thus, a zero-range (ZR) appr@tion providing identical gaps at the Fermi surface in
infinite matter was defined in Ref. [15]. The coefficients entgthe functionalf [py(T)] differ from the ones used in
the finite range case. Performing such an approximatiorralies of the range and of the density dependence of the
interaction could be disentangled [15]. In particular,sbeface-enhanced character of phenomenologically opdieni
DDDI [5, 6] was demonstrated and shown to be, to a large exdemay of re-normalizing the range of the interaction.
Also it was shown that usual DDDI miss the low-density bebaef the effective pairing force.

Both the finite-range microscopic force and its zero-ranggera@ximation depend on the densipy(T') of the
interacting particles rather than on the total matter dgnisis to be contrasted with usual DDDI which often take the
form:

gl%q (O) (rla r’27 F,?,, ?4) = A 1%

' (11 02 1o, 1) = A 257 (1 B | ey ) 80, ) 811 ) ®
(9

wherepp(F) denotes the total matter density (the local scalar-isasqedrt of the one-body density-matrix) whijse

is equal to (one-half) the saturation density for the swrfgalf-surface) type pairing force.

The role of the finite range, the isovector density-depeadand the low density behavior of the pairing force, as
well as the regularization scheme used together with coafgaroximations has to be addressed in detail. While we
briefly focus on the isovector properties of the interactiothe present communication, we refer to Ref. [22] for an
extensive study of all other issues.

3. RESULTS

We performed 3D HFB calculations of Ca ground-states fromtqurto neutron drip-lines [21]. Good particle-numbers
were approximately restored before variation through tipih-Nogami (LN) procedure [26]. Self-consistent block-
ing and time reversal symmetry breaking were included ircHieulations of odd isotopes. The Sly4 Skyrme force [27]
was used in the p-h channel. Each calculation was repeatssltimes using the microscopic finite range force defined
through Eq. 4, its zero range approximation and a standafdcsupeaked DDDI as given by Eq. 5 [10]. The latter
was adjusted together with a phenomenological cut-off defian active window+{5MeV) around the Fermi energy.
By keeping the force in the p-h channel fixed, we probe theexarsed in the pairing channel, including the self-
consistent coupling between the two channels. Of coursgepties of the force in the p-h channel have an impact
on the results. In that respect, it is worth noting that thesedered DDDI was adjusted on properties of (non-exotic)
nuclei using the SLy4 parameterization in the p-h chanr@| @nd thus, is consistent with the isoscalar effectiveanas

6 The force acting only in the relativ®wave, the projection on the spin singlet corresponds tanalsineous projection on the isospin triplet. The
T = 1 neutron-proton pairinglg = 0 component) is not considered here.

7 Although the effective vertex breaks total-momentum argliar-momentum conservation of the interacting pair, dbasdsospin symmetry, it
does so in such a way that the energy functional itself resnairariant under rotation in isospin and real spaces, dsaseinder translation [22].
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FIGURE 1. Left panel: one-neutron separation enefgyA) = E(N—1,Z) — E(N,Z) in Ca isotopes. Right Panel: two-neutron
separation energ$n (A) = E(N — 2,Z) — E(N, Z) for the same nuclei. Experimental [29] (diamonds) and thical values for
three different pairing forces are displayed.

m*/m= 0.7 predicted by the latter. The microscopic pairing forcesenajusted once for all without any reference
to finite nuclei with the property of not depending expligitin the effective mass appearing in the p-h channel [15].
However, according to our definition of the mean-field, thegidd be used at the HFB level together with a p-h vertex
providing an effective mass consistent witlsanatrix supplemented by a three-body force [28].

In Fig 1, calculated one and two-neutron separation eneggie compared to experiment [29]. Overall, the agree-
ment is (at least) of the same quality as the one obtained dtver calculations of the same type [7, 30]. There are
interesting differences which are beyond the scope of thegmt discussion. We rather concentrate on the effect of
the pairing force used in the region of unknown exotic nydlecause it is where its choice is of crucial importance.
As an example, its influence on the position of the two-neuthap-line is clearly seen on the right panel of Fig. 1.
While the usual DDDI predicts it to be located Mt= 44, the stability against two-neutron emission extendsoup t
N = 50 when the microscopic forces are used. Note that a differeftwo mass units in the predicted position of the
drip-line for such light semi-magic nuclei can translat®ia difference of ten mass units for lead isotopes [16].

Average neutron and proton pairing gaps calculated withitthee pairing forces are plotted in Fig 2 along the Ca
isotopic chaifi. We see non-trivial differences between the predictionthefphenomenological DDDI and of the
microscopic forces. We refer to Ref. [22] for a detailed di&sion. Here we simply stress the different isovector trend
of those predictions. While the magnitude of the neutrorsgap of the same order for nuclei around the stability line,
the phenomenological DDDI provides much too strong paiimnigeutron rich nuclei as anticipated in Ref. [15]. The
overshoot of simple DI by usual DDDI near the drip-line wasoadentified [16] and often thought to be a result of
the surface-peaked character of the I8ttar fact, in both cases, the primary cause of the overshabeismproper
isovector character of usual surface-enhanced DDDI assmbivith their dependence on the total (isoscalar) defisity
Indeed, such a DDDI, when adjusted on nuclei having verylaimieutron and proton densities, will provide stronger
(weaker) pairing in a region of neutron rich matter than aédandependent of the density or depending on the neutron
(proton) density. This situation is also illustrated in tight panel of Fig. 2. While the LN prescription is responesib
for the non-zero value of the proton gapZat 20, the latter should not evolve much with neutron numbewéier,
< AP(A) > presents an artificial slope when using the DDDI whose odgies precisely along the line of the previous
argument. When repeating the calculation without LN, thetqm gap even switches on artificially fbr < 24 in the

8 Values appear for odd and even particle numbers. For oditleanumbers, no blocking was considered here as such HE@sstanstitute the
proper reference on top of which the blocking as to be evéiptparformed to describe the final odd state [31]. The avergaps are not compared
with experiment because we do not want to discuss here hgvatieerelated to odd-even mass differences [32].

9 The way each interaction couples to the continuum also pagale. Usually, pairing correlations are diminished byrarsg coupling to the
continuum. The way the continuum is treated numericallg @ifluences the results near the drip-line [33].

10 1t is proved here not to be related to the range of the intemacThe gaps obtained with the finite range force do not difgnificantly from
those obtained with its zero-range approximation.
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FIGURE 2. Neutron (left panel) and proton (right panel ) average pgigaps< A9(A) >= ¥, A K,?ﬁ/ Sh K,?ﬁ calculated along
the Ca isotopic chain with three different pairing forces.
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FIGURE 3. Neutron pairing gap at the (neutron) Fermi surface as aifumof the neutron density. Left panel: symmetric nuclear
matter. Right panel: pure neutron matter. The results oétaivith the three pairing forces used in the present papezanpared

to the results derived from the realistic AVINDN force [12]. To make the theoretical comparison clear, giisgare calculated with
free kinetic energies as single-particle energies.

case of the DDDI.

In order to confirm that interpretation, the BCS neutron gapeFermi surface in symmetric nuclear matter and in
pure neutron matter is plotted in Fig. 3 as a function of thetroe Fermi momenturky. Because we use free kinetic
energies as single-particle energi®§ k2 ) obtained from AV18 or from the density-dependent microscgrces are
the same in symmetric matter and in pure neutron matter. ®otther end, while the DDDI adjusted on stable nuclei
reproduces rather well the gap in symmetric matter, it gfiypovershoots it in neutron rich matter. This is due to its
dependence on the total density and cannot be related heng surface effect. Furthemore, beyond mean-field effects
in the bulk one could eventually incorporate will alwaysdéa a decrease &" (ki) in infinite neutron matter [34].

As a last point, we discuss the low-density behavior of thgmgaforce. It was shown in Ref. [15] that the intensity
of the effective microscopic force strongly rises at low signdue to the very large scattering length of Kl
interaction in the!S channel. The influence of this strong attraction can be sednei right panel of Fig. 1 where
nuclei are stabilized beyond the sub-sine: 40 and the two-neutron drip-line pushed back by ten mass.undeed,
the gaps obtained from the microscopic force resist thliemtise decreasing trend near the drip-line because of the
increasing importance of low densities. Such an effect tssmen for the (still too strong) gaps calculated from the
DDDI. Strong low-density dependence of DDDI were simulgteéénomenologically in Ref. [6] and shown to bring



about pathologies. This highlights the fact that such aithedependence should be used in connection with the
corresponding microscopically derived cut-off.

4. CONCLUSIONS

We presented results of the first (3D) HFB calculations pgeném in finite nuclei using a recently proposed micro-
scopic effective pairing interaction. The isoscalar arayéstor density-dependences derived ab-initio provide th
pairing force with a strong predictive power when extrapedaoward the drip-lines. We concentrated here on that
aspect by studying basic pairing properties of calciumoiges in their ground-state. By comparing the results with
those obtained from a standard Density-Dependent Dekaddation, the crucial isovector character of the microgzop
interaction was highlighted.

In the near future, more systematic HFB calculations wilpbesented to identify the role of the baél force in
building pairing in finite nuclei. Through comparisons witkperiment, an indirect measure of missing correlations in
the p-p channel will be realized. Local theories of pairing tae challenged by probing the importance of the finite
range of the force, especially when describing low-enexgyted states. Later, the use of the microscopic force will
be extended to beyond mean-field calculations.
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