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An accurate prediction of atomic diffusion in Fe alloys is challenging due to thermal magnetic
excitations and magnetic transitions. We propose an efficient approach to address these properties
via Monte Carlo simulation, using ab-initio based effective interaction models. The temperature
evolution of self- and Cu diffusion coefficients in α-iron are successfully predicted, particularly the
diffusion acceleration around the Curie point, which requires a quantum treatment of spins. We
point out a dominance of magnetic disorder over chemical effects on diffusion in the very dilute
systems.

PACS numbers:

Atomic diffusion plays a central role dictating the ki-
netics of numerous physical processes in solids, such
as surface and interfacial segregation, precipitation and
phase transitions. Iron based alloys, being the basis of
steels, are certainly one of the most studied systems from
both theoretical and experimental points of view. Exper-
imental data for solute and solvent diffusion in iron al-
loys are usually known at rather high temperatures only
(above 750K)[1–14], whereas a quantitative modeling of
the diffusion coefficients as functions of temperature in
these systems is not obvious, since the effects of thermal
magnetic excitations and magnetic order-disorder transi-
tions need to be properly described.

Even the simplest case of self-diffusion in body-
centered-cubic (bcc) iron via the vacancy mechanism is
still the focus of various recent modelling efforts [15–
19]. To the best of our knowledge, there were very few
theoretical studies on solute diffusion in iron across the
Curie point [15, 16, 18]. To address these properties at a
thermal-vacancy regime, vacancy formation and migra-
tion free energies should be determined, as the diffusion
of Fe and most substitutional solutes in iron is ruled by
first nearest neighbor (1nn) atom-vacancy exchanges.

Density functional theory (DFT) calculations pro-
vide an accurate estimation of the vacancy properties
in the ground-state ferromagnetic (FM) bcc iron [15–
17, 20, 21]. But, theoretical determination of these prop-
erties at increased temperatures, when magnetic excita-
tions emerge, becomes non-trivial [22–25]. So far, many
previous studies have estimated the temperature evolu-
tion of the diffusion activation energy Q(T ) using the
Ruch model [26], with that, the diffusion coefficients

D(T ) = D0exp(
−Q(T )
kBT ) can be obtained.

At a given temperature, Q(T ) is actually the magnetic
free energy of activation, which includes the contributions
from both the vacancy formation and the various atom-
vacancy exchange barriers. In the case of self-diffusion, it

can be written as a sum of the vacancy formation and the
vacancy-atom exchange magnetic free energy (Q(T ) =
Gf

mag + Gm
mag). These values are called ”magnetic” free

energies because only the magnetic entropy is included.
The Ruch model [26] proposes:

Q(T ) = QPM (1 + αS2) (1)

whereQPM is the activation enthalpy of a perfect para-
magnetic (PM) state, where no more magnetic correla-
tion is present. S is the magnetic order parameter (the
reduced magnetization) and α is a scalar. Note that to
apply the Ruch model, the temperature dependence of
S, and either QPM or the α parameter should be known,
in addition to QFM (the activation enthalpy of the ideal
FM state). An example of such application of the Ruch
model can be found in Ref. [27].

For a perfect PM state, the vacancy formation and
migration enthalpies, and therefore QPM were often es-
timated via DFT, by adopting for instance the disordered
local moment (DLM) approach within a collinear approx-
imation [17, 23], or via an expansion on a set of spin spi-
rals [16, 22]. In any case, the magnetic short-range order
(MSRO) was generally not considered. Such PM states
are therefore expected only at extremely high tempera-
tures. The temperature dependence S for a pure or a
dilute system can be easily provided by experiments or
simple Ising or Heisenberg models. It is however more
difficult to obtain for concentrated alloys with any mi-
crostructure.

Concerning intrinsic approximations of the Ruch
model[26], it is derived from the Ising model, and due
to a mean field approximation, the MSRO effect is ab-
sent. Therefore, Q(T ) = QPM immediately above the
Curie point.

Another approach used to determine the temperature
evolution of the diffusion properties is the spin-lattice
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dynamics [18, 28], employing empirical potentials and
Heisenberg-interaction terms. In particular, a recent
study of Wen et al. [18] reported a detailed investiga-
tion of self-diffusion in bcc iron. A major advantage
of such an approach consists in the natural inclusion of
the combined phonon-magnon effects. However, in prac-
tice an accurate potential is not obvious to parameter-
ize, especially for magnetic alloys with structural defects.
Furthermore, such spin-lattice dynamics simulations can
hardly reach very long time scales and large simulation
systems (typically a few tens of nanoseconds and 16000
atoms as in Ref. 18).

The present study aims at proposing an efficient and
quantitative modelling approach that enables a continu-
ous prediction of diffusion properties versus temperature,
including explicitly spin and atomic variables. A DFT-
based effective interaction model (EIM) coupled with on-
lattice Monte Carlo (MC) simulations is adopted. We
consider the case of self- and Cu diffusion in bcc iron
to illustrate the ability of the methodology to predict
diffusion properties, which can be transferred to other
magnetic metal alloys.

Some previous studies have already proposed EIMs
with both magnetic and chemical variables [22, 29–34],
but without considering defects and, therefore, not able
to study diffusion. On the other hand, more conventional
EIMs have been developped to study thermodynamic and
kinetic properties without explicitly including spin vari-
ables [35–38]. The present EIM (Eq. 2) consists in a
magnetic part with a Landau-Heisenberg form as in Ref.
[30, 32, 33, 39]. This allows to account for both longi-
tudinal and transversal excitations of spins. In addition,
the pairwise terms (Vij) capture chemical interactions be-
tween atoms.

H =

N∑
i

(AiM
2
i +BiM

4
i ) +

N∑
i

P∑
n

Zn∑
j

J
(n)
ij Mi ·Mj

+

N∑
i

P∑
n

Z∑
j

V
(n)
ij

(2)

where Zn is the coordination of the n-th neighbor shell
and Mi is the magnetic moment of the ith atom. Ai and

Bi are the magnetic on-site coefficients. J
(n)
ij and V

(n)
ij

denote respectively the magnetic exchange-coupling and
the chemical-interaction parameters for i and j atoms
being n-th nearest neighbors.

First, an EIM for pure iron in a bcc lattice is param-
eterized on DFT [40–51] data. Fitting the magnetic pa-
rameters using DFT consists in evaluating the energy
difference between systems with similar atomic configu-
rations but distinct magnetic configurations (See [52] for
details). We checked that the Curie temperature is cor-
rectly reproduced (TC = 1050 K, the experimental value

being 1044 K [53]). Then, to include the presence of a va-
cancy (EIMV ), the on-site A and B parameters are mod-
ified for atoms located at the first and second nearest-
neighbor (1nn and 2nn) sites of the vacancy, in order
to reproduce the change of their magnetic moment mag-
nitude, while, for simplicity, the Jij remain unchanged.
Vacancy formation energies for distinct magnetic spin
configurations around the vacancy predicted by DFT are
successfully captured by this simple model [52]. In or-
der to simulate the atomic migration, another pure-iron
derived EIMSP is also constructed to describe the en-
ergetics of an Fe atom at a saddle-point position. In
this case, the on-site and Jij parameters of the saddle
point atom and their 1nn and 2nn atoms are modified
based on DFT data. The atom-vacancy exchange barri-
ers are then determined by the energy calculated using
the EIMV and the EIMSP . Note that such way of barrier
determination was intensively applied in previous studies
using non-magnetic interaction models [35–37].

For Cu-diffusion in bcc iron, a Cu atom and a vacancy
should be included in the iron system. Similarly, an EIM
with all the atoms at lattice positions and another one
with an atom (Fe or Cu) at a saddle-point site are param-
eterized on DFT data on Cu-vacancy binding energies
and atom-vacancy exchange barriers with various spin
configurations. The numerical parameters of the various
EIMs are given in Ref. [52].

The lattice vibrational effects (vibrational entropies
and attempt frequencies) are not intrinsically accounted
in the present EIM-Monte Carlo set-up but calculated
separately by DFT [52]. The magnon-phonon effects [54]
are therefore not considered.

The tracer diffusion coefficients can be expressed with
the Einstein’s formula[55–57] with < r2 > and t being
the mean square displacement of the tracers and the cor-
responding physical time:

D∗ =
< r2 >

6t
(3)

For the self-diffusion case, it can also be written in
terms of the vacancy concentration and the migration
barrier at a given T [58, 59] as:

DFe∗
Fe = a2f0Cvν0 exp(

−Gm
mag

kBT
) (4)

where a is the lattice constant, f0 is the self-diffusion
correlation factor (0.727 for a bcc lattice [60]), Cv is the
equilibrium vacancy concentration, ν0 is the attempt fre-
quency, Gm

mag is the magnetic free energy barrier for the
vacancy-Fe exchange (vacancy migration), and kB and T
are respectively the Boltzmann factor and the absolute

temperature. Here Cv = exp(−Gf

kBT ), with Gf being the
vacancy formation free energy. Both magnetic and vi-
brational entropies are considered in this study, and the
latter is calculated via DFT at the FM state.
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Similarly, the solute (Cu) tracer diffusion coefficient in
Fe at the dilute limit can be written [58, 59] as:

DCu∗
Fe = a2C1nn

v f2ν2 exp(
−Gm,Cu

mag

kBT
) (5)

where C1nn
v is the equilibrium vacancy concentration

at a 1nn site of the solute, ν2 is the vacancy-Cu exchange
attempt frequency, f2 is the solute diffusion correlation
factor and Gm,Cu

mag is the magnetic free energy barrier for
the vacancy-solute exchange.

We propose a Monte Carlo method which allows to de-
termine the vacancy formation magnetic free energy as a
function of temperature. Two separate Fe subsystems are
considered with the first one frozen at the FM state, while
the magnetic configuration of the second one is allowed to
evolve according to temperature. The vacancy is allowed
to visit each site of the two systems via the Metropolis al-
gorithm. Then, based on the relative number of visits to
the two systems and the vacancy formation energy at the
FM state, which is known, the magnetic free energy of
vacancy formation versus temperature can be obtained
(More details in Ref. 52). Note that, as mentioned in
Ref. [18, 61, 62], a quantum treatment of spins is nec-
essary for a correct prediction of the magnetic entropy,
at low temperatures. We therefore adopted the Bose-
Einstein statistics in our spin-MC simulations [52] up to
the Curie point, following the quasi-harmonic approach
of Ref. 61, 63.

Then, the Fe and Cu diffusion coefficients are obtained
by directly simulating the tracer diffusion experiments
with MC simulations [64, 65]. We compute the mean
square displacement of the tracers (< r2 >) and the phys-
ical time at each temperature (eq. 3).

The physical time t is re-scaled in order to consider the
equilibrium vacancy concentration instead of the actual
vacancy concentration of the simulation (the diffusion co-
efficient is multiplied by the factor Cv/CMC). [35, 36]

During these MC simulations, at each T , we start per-
forming 5 · 108 spin Metropolis MC steps to reach the
equilibrium magnetic state, then 600 spin steps are per-
formed after each atomic MC step, consisting in a 1nn
atom-vacancy exchange based on a time residence algo-
rithm. For simplicity, we assume the typical time spent
for one atom-vacancy exchange is sufficiently short, so
that all the atomic spins remain frozen while going from
the initial to the saddle-point state. However, we have
determined that considering another assumption has a
negligible effect on the results. Indeed, similar simula-
tions were performed assuming the opposite, being that
the spin-variation time is much shorter than the lifetime
of both the initial and the saddle-point states, and very
close migration barrier were obtained [52]. This test sug-
gests that these properties are not sensitive to the de-
tailed way of implementing the characteristic time of spin

variations, and contribute to support the validity of our
results.

Via the same MC simulations, we also obtained the
magnetic free energy of vacancy migration (Gm

mag) in the
self-diffusion case, and the magnetic free energy barrier
for Cu-vacancy (Gm,Cu

mag ) and the distinct Fe-vacancy ex-
changes in the Cu diffusion case.

FIG. 1: Left panel: Magnetic free energy, enthalpy and en-
tropy of formation. Right panel: Magnetic free energy, en-
thalpy and entropy of migration.

Fig. 1 shows the obtained magnetic free energy for va-
cancy formation and migration in pure iron, comparing
results applying the Bose-Einstein distribution and the
Boltzmann statistics for spin-MC at low temperatures.
The difference between the two curves is significant, the
slope approaching to zero near T = 0 only with the for-
mer approach. Therefore the quantum statistics is neces-
sary to obtain a correct low temperature behavior of the
vacancy formation and migration entropies (Fig. 1), in
agreement with previous spin-lattice dynamics data [18].

The vacancy formation and migration energies at per-
fect FM and PM states are listed in Table I, together with
the resulting activation energies. At the low temperature
limit, we reproduce closely the DFT energies (see I). The
asymptotic PM energies are obtained at 2000 K. These
values for pure Fe are in good agreement with previous
DFT and available experiments values [16, 52, 66]

In the FM state, the values for iron and for Cu diffu-
sion are clearly different due to the Cu-vacancy attraction
(0.24 eV and 0.17 eV for respectively 1nn and 2nn dis-
tances). However, such differences become significantly
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smaller in the PM state, indicating the dominance of the
magnetic disorder over the chemical effect in the very
dilute Fe-Cu system.

FeFM FePM CuFM CuPM

Hf 2.20 1.99 2.04 1.99
Hm 0.69 0.43 0.55 0.39
Q 2.92 2.46 2.66 2.44

Q (exp.) 2.63-3.10a 2.48-2.92a 2.53b 2.43b

TABLE I: Values (in eV) of formation, migration and acti-
vation free energies for Fe and Cu diffusion in bcc iron at the
ferromagnetic and paramagnetic limits. The error-bars due
to the fitting are estimated to 0.05 eV. Diffusion pre-factors
for Fe and Cu diffusion are respectively 1.8 · 10−4(±9 · 10−5)
m2.s−1 and 6.7 · 10−5(±3 · 10−6) m2.s−1. (a) are obtained
from Refs. 1–5, 7, 8, 10, 66. (b) are obtained by an arrhenius
fitting of the diffusion data from Ref. 67.

FIG. 2: Upper-left panel: Self-diffusion coefficients of Fe ver-
sus T, with and without quantum effects and comparison with
experimental data obtained from [1–5, 7, 8, 10]. Bottom left
panel: Diffusion coefficients of Fe and Cu, compared with ex-
perimental results, obtained from [1–5, 7, 8, 10] for Fe and
[4, 14, 67] for Cu. Upper-right panel: Kinetic correlation
factors of Fe self-diffusion (f0) and Cu diffusion (f2). The
f2 kinetic correlation with the frozen FM state (see text) is
also displayed. Bottom right panel: Migration magnetic free
energies of various jumps.

As shown in Fig. 2, the present approach predicts
the self- and Cu-tracer diffusion coefficients as functions
of temperature, in excellent agreement with experimen-
tal studies [1–5, 7, 8, 10–14]. Especially, the sudden de-
viation from Arrhenius law near the Curie temperature
is consistently predicted without any additional assump-
tion. The change of slope (activation energy, Q) between

the ferromagnetic and the paramagnetic regimes is also
successfully predicted.

The self-diffusion coefficients obtained with purely
classical statistics are also shown for a comparison. It
reveals that using the Boltzmann distribution at low T
in the spin-MC simulations significantly underestimates
the local acceleration of diffusion around the Curie point.

Fig. 2 also shows that the kinetic correlation factor
f2 for Cu diffusion increases with temperature up to an
asymptotic limit of 0.73, which is the f0 value in pure bcc
iron. To clarify the role of magnetic disorder on the f2,
we have performed similar MC simulations for Cu diffu-
sion, but imposing a perfect FM order for all atomic-MC
temperatures. The results show that the kinetic corre-
lation factor of Cu diffusion increases more slowly when
magnetic disorder is absent, This comparison together
with the smaller difference between different barriers at
the PM than at the FM state (Table I and Fig. 2) suggest
the dominance of the magnetic disorder over the chem-
ical interaction effect in this very dilute Fe-Cu system.
Indeed, the magnetic free energy of binding between a
vacancy and a Cu atom at 1nn decays from 0.24 eV in
the FM state (consistently with our DFT results) to 0.09
eV in the PM state.

FIG. 3: Activation, formation and migration free energies
compared with the Ruch model.

It is worth noting that if applying the Ruch model
using the currently obtained QPM and QFM and S(T ),
we obtain very similar diffusion coefficients. For a closer
comparison between results from our method and by us-
ing the Ruch model for an interpolation, Fig. 3 shows
the respective data for the activation free energy, and
the magnetic free energy of vacancy formation and mi-
gration. As can be seen, both methods give very close val-
ues, especially above the Curie temperature. The largest
differences occur between the formation free energies at
T < TC . In any case, the discrepancies are smaller than
10 %. This good agreement between our approach and
the Ruch model shows that the effects of magnetic short
range order on vacancy properties are rather limited. In
the case of Cu solute diffusion, the Ruch model also pro-
vides very close results. [52]

These comparisons suggest that the simple Ruch model
allows a very good description of the temperature evo-
lution of activation, formation and migration free ener-
gies in a ferromagnetic system. However, it should be
noted that the Ruch interpolation requires an accurate
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knowledge of the asymptotic (FM and PM) energetic val-
ues, and the temperature evolution of the magnetization.
They are generally not obvious to obtain both experi-
mentally or from ab initio calculations, especially for al-
loys beyond the dilute limit. Also, if estimating the PM
energies for highly itinerant magnetic systems, such as
fcc Ni or bcc Cr via DFT, local-magnetism constraints
should be applied, which can be extremely time consum-
ing [23, 68].

In summary, we propose an approach to efficiently pre-
dict atomic diffusion properties in iron, by performing
on-lattice Monte Carlo simulations using effective inter-
action models parameterized on DFT data. These EIMs
contain explicitly both chemical and magnetic variables,
and the presence of a vacancy.

This approach naturally accounts for the interplay be-
tween magnetic and chemical degrees of freedom.

It is shown to successfully predict the temperature evo-
lution of vacancy formation and migration magnetic free
energies, and the tracer diffusion coefficients of Fe and
Cu in bcc iron, across the Curie temperature. This ap-
proach is also ready to address the diffusion as a func-
tion of solute concentrations, and in the presence of non-
equilibrium vacancies. The same approach is fully trans-
ferable to other magnetic metal systems.

At variance with the DFT-Ruch method, the current
approach predicts properties for all temperatures regard-
less of the magnetic state. The crucial issue is to ac-
curately parameterize the EIMs. On the other hand,
it allows to reach to a calculation time of several or-
ders of magnitudes longer than the spin-lattice dynamics.
Therefore, it is also promising to address more complex
kinetic processes than the atomic diffusion, such as the
ordering, precipitation or segregation.

This work was partly supported by the French-German
ANR-DFG MAGIKID project. Ab-initio calculations
were performed using DARI-GENCI resources under the
A0070906020 project and the CINECA-MARCONI su-
percomputer within the SISTEEL project.
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