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Ab initio many-body perturbation theory within the GW approximation is a Green’s function
formalism widely used in the calculation of quasiparticle excitation energies of solids. In what
has become an increasingly standard approach, Kohn-Sham eigenenergies, generated from a DFT
calculation with a strategically-chosen exchange correlation functional “starting point”, are used
to construct G and W , and then perturbatively corrected by the resultant GW self-energy. In
practice, there are several ways to construct the GW self-energy, and these can lead to variations
in predicted quasiparticle energies. For example, for ZnO and TiO2, reported GW fundamental
gaps can vary by more than 1 eV. In this work, we address the convergence and key approximations
in contemporary G0W0 calculations, including frequency-integration schemes and the treatment of
the Coulomb divergence in the exact-exchange term. We study several systems, and compare three
different GW codes: BerkeleyGW, Abinit and Yambo. We demonstrate, for the first time, that
the same quasiparticle energies for systems in the condensed phase can be obtained with different
codes, and we provide a comprehensive assessment of implementations of the GW approximation.

I. INTRODUCTION

Quantitative prediction of charged single-particle ex-
citations in otherwise interacting many-particle systems
such as solids is a key component of the design and
discovery of materials and the fundamental understand-
ing of matter at the atomistic level. A rigorous for-
malism for computing such particle-like excitations is
many-body perturbation theory, in which electron ad-
dition/removal energies are solutions to an effective non-
Hermitian single-particle Hamiltonian with a non-local
energy-dependent potential, or self-energy operator Σ. In
the so-called GW method,1 the self-energy Σ is approx-
imated, to lowest order in the screened Coulomb inter-
action W , as iGW , where G is the one-electron Green’s
function. In a standard approach, G and W are con-
structed from a (either regular or generalized2) Kohn-
Sham (KS) eigensystem, computed via density functional
theory (DFT), and the KS eigenvalues are corrected per-
turbatively with a one-shot G0W0 self-energy, where the
subscript indicates that G and W are not updated self-

consistently. By accounting for the screening of the crys-
tal environment, GW is naturally applicable to solids and
has proven quite effective in predicting quasiparticle en-
ergies of a wide range of crystals.3–8 However, because of
the complexity, computational cost, and the number of
convergence parameters involved, numerical approxima-
tions are required in GW calculations, and varying al-
gorithms in different codes can sometimes yield distinct
results.

Crystalline silicon is probably the most-studied test-
bed solid for GW . Having high crystal symmetry and
containing only sp-bonded orbitals, silicon is a relatively-
simple system, for which GW within standard approxi-
mations yields accurate quasiparticle energies and siz-
able self-energy corrections.3,4 Transition metals (TMs)
and transition metal oxides (TMOs), with localized d
or f electrons, present a bigger numerical challenge for
GW . When dealing with TMs, care should be taken
in the technical details and approximations used within
GW . For instance, the convergence criteria,9 and the
choice of frequency-integration scheme10–14 and pseu-
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dopotentials15 can yield substantially different results.
Several GW works for rutile TiO2 have reported gaps
ranging from 3.1 to 4.8 eV,11,16–20 while for ZnO gaps
published so far range from 2.6 to 4.5 eV.9,12,15,21–24

Thanks to advances in computational resources and algo-
rithms, recent works have explored convergence beyond
past limits,9,12,15,21,22,24 and accurate pseudopotentials
specific for GW have been proposed,15,25 a general agree-
ment on the GW quasiparticle energies with different
codes has yet to be perceived as being achieved for the
difficult cases. The growing popularity of GW , the multi-
ple dedicated codes used for GW , and the existing chal-
lenges and discrepancies encountered when performing
GW on increasingly chemically complex systems, such
as TMs and TMOs, make it imperative to have repro-
ducibility of predictions from different GW codes.

In this work, we report the results of a detailed compar-
ison of three different plane-wave-based GW codes, and
we find that predictions from these codes can agree very
well, under given similarly physically sound approxima-
tions. For purposes of assessment, we study the represen-
tative solids Si, Au, TiO2, and ZnO with the open-source
GW codes Abinit (ABI)26, BerkeleyGW (BGW),27

and Yambo (YMB).28 Our benchmark calculations pro-
vide a framework for users and developers to document
the precision of new applications and methodological im-
provements, and provides standards for the reproducibil-
ity of GW calculations.

II. THE GW METHOD IN PRACTICE

The GW method is an interacting Green’s function for-
malism which accounts for the response of the system to
addition or removal of a single electron in an interacting
N -electrons system, via a non-Hermitian, non-local, and
frequency-dependent self-energy operator

Σ(r, r′;ω) =
i

2π

∫
dω′ eiω

′ηG(r, r′;ω + ω′)W (r, r′;ω′),

(1)
where η is a positive infinitesimal and the bare Coulomb
potential v and the inverse of the dielectric matrix ε−1

are used to construct the screened Coulomb potential

W (r, r′;ω) =

∫
dr′′ε−1(r, r′′;ω)v(r′′, r′). (2)

In the so-called one-shot GW , also known as G0W0,
the quasiparticle energies EQP are solved perturbatively
from a mean-field Kohn-Sham (KS) starting point; that
is, G0 and W0 are constructed from the KS mean-field.
In this approach, which implicitly assumes the KS wave-
functions ψKS are close to the QP wavefunctions ψQP,
the QP energy of the ith state is given by3,4

EQP
i = EKS

i + 〈ψKS
i |Σ(EQP

i )− Vxc|ψKS
i 〉 (3)

where Vxc is the KS exchange-correlation potential, and

Σ is evaluated at the QP energy EQP
i . A common ap-

proximation is to linearize Σ in the QP energy with a
first-order Taylor expansion around EKS

i , such that

EQP
i = EKS

i + Zi 〈ψKS
i |Σ(EKS

i )− Vxc|ψKS
i 〉, (4)

with the renormalization factor

Zi =

[
1− 〈ψKS

i |
∂Σ(ω)

∂ω

∣∣∣∣
ω=EKS

i

|ψKSi 〉
]−1

. (5)

As discussed later, the standard linearlization scheme
should be used with care as it can lead to relatively large
deviations (up to 0.2 eV in ZnO) in predicted QP ener-
gies.

A source of deviation among GW results with different
codes is the numerical integration scheme used to eval-
uate the frequency depencence of Σ in Eq. (1).10–13 A
common practice to reduce computational cost is to ap-
proximate the dielectric function with a single-pole via a
generalized plasmon-pole model (PPM). For each set of
momentum components (q,G,G′), the inverse dielectric
function ε−1 in this approximation takes the form

Im ε−1G,G′(q, ω) = AG,G′(q)× (6)
[
δ
(
ω − ω̃G,G′(q)

)
− δ
(
ω + ω̃G,G′(q)

)]

Re ε−1G,G′(q, ω) = 1− AGG′(q) ω̃2
GG′(q)

ω2 − ω̃2
G,G′(q)

, (7)

where the matrices AGG′(q) and ω̃GG′(q) are to be de-
termined.4 In the Hybertsen-Louie (HL) approach, the
PPM parameters are determined from sum rules and
by evaluating the dielectric function at ω = 0.4 In the
Godby-Needs (GN) scheme, the parameters are set by
calculating ε−1 at two frequencies: ω = 0 and an imag-
inary frequency close to the plasma frequency.29 Both
Abinit and Yambo use the PPM-GN scheme as default;
BerkeleyGW uses a PPM-HL version modified to deal
with non-centrosymmetric systems.27,30 When calculat-
ing ε(q,q′;ω = 0) to find the PPM-HL parameters from
Eq. (7), it may happen that the dielectric function can-
not be satisfactorily approximated by a single-pole model
for certain (q,G,G′) leading to imaginary frequencies
ωG,G′(q). Such modes, referred to here as unfulfilled
PPM modes ωunf., are neglected in the original version of
the PPM-HL.4 Other treatments of the unfulfilled modes
are also possible. For example, these frequencies can be
given an arbitrary value of ωunf. = 1 Ha, which was the
default behavior in Abinit and Yambo.

Beyond PPMs, it is increasingly standard for GW
codes to use full-frequency (FF) methods, in which the
frequency convolution in Eq. (1) is evaluated numeri-
cally. A straightforward integration method on the real
axis (FF-RA) is available in codes such as Yambo and
BerkeleyGW. However, such an integration of Σ in
Eq. (1) presents numerical challenges since G and W
possess poles close to the real axis. To avoid this diffi-
culty, in the full-frequency contour-deformation (FF-CD)
method, the integration contour in Eq. (1) is deformed
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into the complex plane, into a region where the inte-
grand is smooth; the alternative integration path must
be supplemented with the residues from the poles of G,
as explained in detail in Refs. 5, 31, and 32. The FF-CD
method is available in Abinit and has been recently im-
plemented into BerkeleyGW.33,34 For other FF meth-
ods we refer the reader to Refs. 20, 35, and 36.

The self-energy is usually split into a frequency-
independent exchange part Σx and a correlation part Σc,
so that Σ(r, r′;ω) = Σx(r, r′) + Σc(r, r

′;ω),37 where the
matrix element of Σx between two Bloch states reads:

〈ik|Σx|jk〉 = −
∑

q,G

v(q + G)Fijk(q + G) (8)

and

Fijk(q + G) =
∑

v∈occ.
Mivk(q + G)M∗jvk(q + G). (9)

Here, Mivk = 〈ik|ei(q+G)·r|vk− q〉 are matrix elements
for states i and v at k-point k. The expression for Σc is
given in Ref. 12.

The exchange term, also present in the evaluation
of Fock exchange for hybrid functionals in DFT, fea-
tures a divergence in the Coulomb potential v(q + G) =
4πe2/|q+G|2 as q→ 0 for G = 0. Several schemes have
been proposed to treat the divergence of the Coulomb
term.27,28,38–46 For instance, in the spherical-cutoff tech-
nique, the Coulomb interaction is attenuated beyond Rc
and v(0) is replaced with 2πe2R2

c , where the sphere of ra-
dius Rc has volume equal to that of the unit cell times the
number of k-points.44 In Abinit by default the Coulomb
singularity is approached by an auxiliary-function inte-
gration method detailed in Ref. 43. Other codes avoid the
Coulomb singularity by replacing the value of q → 0 in
Eq. (8) by an integral around q ' 0.27,28,47 This method
is applicable to any q point in the BZ by assuming,

〈ik|Σx|jk〉 = −
∑

q,G

∫

Rq+G

dq′

Ω(Rq+G)
v(q + q′ + G)

× Fijk(q + G), (10)

where the integral is performed over the BZ region Rq+G,
which is associated with a volume Ω(Rq+G), and cen-
tered around each q + G point. This method gives the
effect of a larger sampling of points around q assuming
that F(q + G) is constant over that region.

In the “random integration method” (RIM) imple-
mented in Yambo28 and “Monte Carlo averaging” (MC
average) technique used in BerkeleyGW27 the inte-
gral is evaluated using a stochastic scheme. In both
codes a stochastic scheme is also used to evaluate ev-
ery term of the form

∫
dnqf(q)v(q) in Σc, as the scheme

can straightforwardly account for integration of arbitrary
potentials in regions Rq+G with arbitrary boundaries.
Moreover, with the MC averaging scheme, the analyti-
cal behavior of W (q→ 0) is also appropriately adjusted
depending on whether the system behaves like a metal,

semiconductor, or displays a graphene-like linearly van-
ishing density of states; it is also adjusted based on the
dimensionality of the system, as discussed in Ref. 27.
These stochastic integration methods have shown success
in accurately computing the Coulomb singularity and in
improving the convergence of Σ with respect to k-point
sampling.27,28 To facilitate a complete comparison, we
also implemented the MC averaging method into Abinit
for the present work, as will be discussed below.

Aside from the physical model employed for the dielec-
tric matrix and the treatment of the Coulomb divergence,
we emphasize that several parameters must be converged
in order to achieve meaningful GW results. Both the cal-
culation of ε and Σc involve unrestricted sums over bands
that are truncated up to Neps. and Nsig., respectively.
Additionally, the codes discussed here use plane-wave ba-
sis sets; the number of plane-wave basis functions, NPW,
used to evaluate ε and Σ, is expanded up to an energy-
cutoff εcut. These three parametersNeps., Nsig., andNPW

are interdependent, and their convergence needs to be ad-
dressed simultaneously.9,12 Here, we extrapolate the GW
QP gaps (energy eigenvalue differences) to the complete
basis set (CBS) limit with a function of the form34

f(Neps.,NPW, Nsig.) =(
a1
Neps.

+ b1

)(
a2
NPW

+ b2

)(
a3
Nsig.

+ b3

)
,

(11)

where a1, a2, a3, b1, b2, and b3 are constants to be de-
termined. Other important convergence parameters and
considerations include the k-point sampling of the Bril-
louin zone, pseudopotential choice, basis used to describe
the wavefunctions, and in the case of full-frequency calcu-
lations, the frequency sampling on the real and imaginary
axis.

III. TECHNICAL DETAILS

In what follows, we compare GW calculations for sev-
eral materials using three codes implementing the same
approaches. For all materials considered, we fix the lat-
tice parameters to the experimental values. These are,
for Si in the diamond structure, fcc Au, rutile TiO2, and
wurtzite ZnO, respectively, 5.43 Å, 4.08 Å, (a = 4.60,
c = 2.9) Å, and (a = 3.25, c = 5.20) Å. We use norm-
conserving Fritz-Haber Institute pseudopotentials with 6,
4, 12 and 20 valence electrons for O, Si, Ti and Zn, re-
spectively. For Au, we use Optimized Norm-Conversving
Vanderbilt Pseudoptentials (ONCVP)48 with 19 valence
electrons. We use a Perdew-Burke-Ernzerhof (PBE)49

starting point for GW , except for ZnO in which the Lo-
cal Density Approximation (LDA) is used for the sake
of comparison to previous works. Our DFT calculations
use a k-point mesh and a plane-wave energy-cutoff which
ensure that the total energies are converged within 50
meV per unit cell. The k-point mesh is consistent with
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that for GW calculations, see below; we use a plane-
wave energy cutoff to represent wavefunctions of 40, 88,
300 and 300 Ry for silicon, gold, TiO2 and ZnO, respec-
tively. The GW parameters are carefully set to converge
quasiparticle energies to 0.1 eV; for silicon, we use a Γ-
centered Monhorst-Pack grid of 12 × 12 × 12 k-points,
εcut = 20 Ry and 300 unoccupied states; for gold, we use
a mesh of 16×16×16 k-points, εcut = 32 Ry, and 400 un-
occupied states; for rutile TiO2, we use a shifted k-grid of
6× 6× 10 k-points and the number of unoccupied states
and εcut value were extrapolated to the CBS, as detailed
in the supplemental materials (SI); and for wurtzite ZnO,
we use a shifted k-grid of 8×8×5 k-points, and the unoc-
cupied states and εcut are also extrapolated to the CBS.
We summarize in Table I of the Supplementary Informa-
tion (SI) all convergence parameters used for tables and
figures in this manuscript.

IV. RESULTS AND DISCUSSION

A. Silicon

Σ
x ik
,i

=
V
B
M

Nk

36241284

-12.5

-12.6

-12.7

-12.8

Abinit aux. func.
Yambo RIM all BZ
Yambo RIM q ≃ 0

BGW MC avg. all BZ
BGW MC avg. q ≃ 0

Σ
x ik
,i

=
C
B
M

-5.7

-5.8

-5.9

FIG. 1. Convergence of the matrix elements of Σx for the
VBM and CBM at the Γ point for silicon, with respect to
the number of k-points Nk ×Nk ×Nk. In the different codes,
several techniques are used to treat the Coulomb singularity
(see text).

We calculate the GW quasiparticle corrections to the
bandstructure of bulk silicon, a typical system for GW
calculations. We use a common pseudopotential for all
GW calculations, as defined in Section III. The effect of
the pseudopotential approximation for silicon is discussed

in Ref. 50.
We first study the accuracy of common approximations

to treat the Coulomb divergence, which influences the
rate of convergence with respect to k-points. In Fig. 1,
we show the convergence of the matrix elements of Σx for
the valence band maximum (VBM) and conduction band
minimum (CBM) at Γ. We consider different techniques
to treat the Coulomb singularity, in particular the MC
average in BerkeleyGW for only q = G = 0 (black
lines, default up to version 1.1 of BerkeleyGW) and
for all G vectors and q-points in the BZ (blue lines, de-
fault starting from version 1.2); the RIM for q = 0 only
(brown lines) and all BZ (orange line) in Yambo and
the auxiliary-function treatment43 in Abinit (pink lines).
As expected, both the convergence rate with respect to
k-points and the converged number of k-points can differ
with the choice of method to treat the Coulomb singu-
larity. In this case the RIM and MC average approaches
converge fastest, with a grid of 8 × 8 × 8 k-points be-
ing sufficient to converge the Σx matrix elements for the
VBM and CBM within 0.05 eV.

In Table I, we show converged G0W0@PBE QP ener-
gies for bulk silicon using two different frequency integra-
tion schemes and different GW codes. In fact, we find the
same QP energies within 0.05 eV for all codes considered
here. With respect to the frequency-integration schemes,
we find that the PPM in the GN or HL fashions provide a
gap for Si within 0.1 eV with respect to the full frequency
(FF-CD) reference. Importantly, for a given frequency-
integration scheme, the QP energies obtained with the
different codes considered here agree within a tolerance
better than 0.05 eV, demonstrating that the same GW
corrections can be found with different codes.

We highlight that the VBM, CBM, and gap energies
calculated with BerkeleyGW and Abinit with FF-CD
agree with the energies obtained with Yambo and FF-
RA. This result serves as a numerical verification of the
equivalence between the implemented FF-CD and FF-
RA integration schemes, which was demonstrated exactly
only for the electron gas.31

B. Gold

We now revisit the G0W0 corrections to the scalar-
relativistic band structure of bulk gold, a relatively dif-
ficult case for GW due to convergence issues, the non-
negligible influence of semicore orbitals on the band
structure, and relativistic effects.51,52 In what follows,
we neglect spin-orbit interactions. We first converge the
number of bands and εcut, as detailed in the SI; 400
unoccupied states and εcut = 32 Ry ensures a conver-
gence of 0.15 eV in the QP gaps between occupied and
unoccupied bands across the Brillouin zone in a rela-
tively large window of energies up to ∼ 15 eV above the
Fermi level. Secondly, we uniformly increase the k-point
mesh up to 16 × 16 × 16. We observe differences in k-
point convergence rate that can be traced to the specific
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QP energies of silicon (eV)
PPM-GN PPM-HL FF-CD FF-RA

ABI BGW YMB ABI BGW ABI BGW YMB
VBM -0.64 -0.64 -0.64 -0.95 -0.95 -0.74 -0.79 -0.72
CBM 0.52 0.53 0.52 0.29 0.28 0.48 0.49 0.49
Gap 1.16 1.17 1.16 1.24 1.24 1.22 1.28 1.21

TABLE I. VBM, CBM and fundamental energy-gap of silicon calculated within GW with several codes using different frequency-
integration schemes. Band energies are shown with respect to the DFT VBM.

VBM at Γ

Σ
ik

(e
V
)

18161412108642

-23.0

-23.2

-23.4

ABINITYamboBGW

CBM at Γ

Σ
ik

(e
V
)

-11.2

-11.4

-11.6

FIG. 2. Convergence of the GW self-energy of gold. We
show Σik matrix elements for k = Γ and i =VBM/CBM. We
consider uniform k-point grids of Nk×Nk×Nk k points. The
codes used here implement particular sets of approximations
to treat metals (see text).

numerical methods used. BerkeleyGW uses a zero-
temperature formalism, and a long wavelength limit of
the head (G = G′ = 0 component) of the inverse dielec-
tric matrix is ε−100 (q → 0) ∼ q2 specific to metals. This in
turn modifies the MC averaging scheme, since the head
of the screened Coulomb potential W00(q) is now a fi-
nite and smooth function for q → 027. On the other
hand, Abinit and Yambo use finite-temperature occu-
pation factors, requiring a smearing parameter. Here we
use Gaussian smearing with a broadening of 0.010 Ry.

In Fig. 2, we show the matrix elements of Σ calcu-
lated with sets of k-points of increasing size; here we set
εcut = 32 Ry and N = 400. As mentioned, the rate
of convergence depends on the treatment of band oc-
cupations and the Coulomb singularity. While Abinit
and Yambo use partial occupations consistent with
the underlying DFT code, BerkeleyGW uses a zero-
temperature scheme where the bands are either fully-
occupied or fully-empty. Moreover, BerkeleyGW uses
a particular metal-screening scheme to treat ε(q → 0) as
described in Ref. 27. With these different approaches, as
expected, the self-energy can converge at different rates
with respect to the k-point sampling (see Fig. 2). Impor-
tantly, when using a relatively-dense mesh of 16×16×16

k-points, the codes considered here agree within 0.1 eV in
the predicted self-energy of the VBM/CBM at Γ, demon-
strating that for metals the codes predict the same QP
energies when convergence is reached.

In Table II we show that the matrix elements of Σ for
bands around the Fermi level calculated with the differ-
ent codes. The scalar-relativistic DFT band structure
and the Brillouin zone are shown in the SI. The GW
corrections agree within 0.05 eV, corroborating that at
convergence different codes give the same QP energies.

GW -PPM self-energy for gold (eV)
Abinit BerkeleyGW Yambo

Γ12 -23.33 -23.35 -23.29
X5 -24.25 -24.20 -24.20
X4′ -12.98 -13.08 -12.97

TABLE II. Absolute GW self-energy for gold at high-
symmetry k points, obtained from a scalar-relativistic PBE
DFT calculation. Calculations were performed with three dif-
ferent codes and with the PPM-GN.

C. Rutile TiO2

Rutile has been the subject of several GW stud-
ies, and the reported G0W0 gaps range from 3.1 to
4.8 eV11,16–20,24. Part of the reported disagreement
comes from the treatment of the frequency dependence
of Σ. As detailed in Ref. 11, the fundamental gap cal-
culated with certain PPMs can deviate considerably (by
up to 1.1 eV) from a full-frequency reference. The sen-
sitivity of the TiO2 gap to the manner in which the fre-
quency dependence of Σ is treated makes rutile an inter-
esting case to investigate the effect and accuracy of PPM
and FF methods. As mentioned previously, we use FHI-
type pseudopotentials including semicore states consis-
tently in all calculations performed with different codes.
Although the choice of pseudopotentials for GW is not
studied in this work, we found that our results for ru-
tile are somewhat modified (by less than 0.1 eV) relative
to those obtained with other PPs, such as Gaussian53

and pseudo-dojo-v0.225 PPs (see Appendix A for more
details).

We first examine the G0W0@PBE QP energies of
rutile TiO2 obtained from different codes, frequency-
integration schemes, and in the case of PPMs, choices
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Rutile: (unconverged) QP energies obtained with a spherical-cutoff method (eV)

PPM-GN PPM-HL∗ PPM-HL† FF-CD FF-RA
BGW Abinit Yambo BGW Abinit BGW Abinit BGW Abinit Yambo

VBM 1.66 1.66 1.66 1.53 1.58 1.27 1.32 1.59 1.59 1.59
CBM 5.47 5.47 5.47 5.62 5.58 5.98 5.94 5.45 5.45 5.43
Gap 3.81 3.81 3.81 4.09 4.00 4.71 4.62 3.86 3.86 3.84

TABLE III. QP energies for rutile within a spherical-cutoff technique. This comparison is performed with small convergence
parameters: a 6 × 6 × 10 k-point grid and εcut = 20 Ry. The actual QP energies of rutile are shown in Table. IV. We use
different codes and frequency-integration schemes (see text) For PPM-HL, unfulfilled PPM modes (ωunf.) are either ∗ set to
1 hartree or † neglected.

Rutile TiO2 QP bandgap (eV)
Code Potential Freq. Eg Ref.
Yambo NC-PP PPM-GN 3.2 This work
Abinit NC-PP PPM-GN 3.2 This work
BGW NC-PP PPM-GN 3.2 This work
BGW NC-PP FF-CD 3.3 This work
BGW NC-PP PPM-HL 3.1 19
Tombo AE PPM-HL 4.0 20, 24
Yambo NC-PP PPM-GN 3.6 17
SaX NC-PP PPM-GN 3.4 18

AE 4.8 16
Yambo NC-PP FF-CD 3.3 11
Tombo AE FF∗ 3.3 20, 24

TABLE IV. We show the fundamental energy-gap of ru-
tile calculated with G0W0 using different set of approxima-
tions within different codes, such as the frequency-integration
scheme, basis set and pseudopotentials/all-electron. ∗ FF
method in the complex plane20.

for ωunf., as shown in Table III. The PPM-GN predicts
the VBM, CBM, and gap of rutile within 0.1 eV of the
FF reference. The accurate performance of the PPM-GN
has been observed consistently for other systems, includ-
ing other transition metal oxides10,12,13.

We now examine the PPM-HL and in particular the ef-
fect of the different choices for ωunf.. Interestingly, when
the terms with unfulfilled PPM modes are set to 1-Ha,
the PPM-HL yields results within 0.1 eV of the PPM-
GN and FF approaches, and when neglecting components
with ωunf. the results tend to deviate by up to 0.8 eV from
the FF reference. This clearly indicates that the perfor-
mance of PPMs for rutile is highly sensitive to the treat-
ment of unfulfilled PPM modes. For rutile, ωunf. make up
an alarming proportion of the dielectric function (∼54%
of the matrix elements), which suggests the need for a
full-frequency treatment of ε, in agreement with Ref. 11.
The fraction of unfulfilled PPM modes is therefore an im-
portant indicator of whether a full frequency approach is
required.

We now compare the G0W0 self-energy calculated with
different codes in Table III. When using the PPM-HL,
the self-energy can deviate by up to 0.1 eV for the dif-
ferent codes used here, due to different variants of the
PPM-HL being implemented; while Abinit implements

ZnO QP energies (unconverged) (eV)
PPM-GN FF-CD FF-RA

BGW Abinit Yambo BGW Abinit Yambo
VBM 4.26 4.29 4.26 4.27 4.26 4.26
CBM 8.43 8.43 8.43 8.40 8.42 8.41
Gap 4.17 4.14 4.18 4.14 4.15 4.15

TABLE V. GW quasiparticle energies of ZnO within a
spherical-cutoff technique. The three GW codes, Abinit,
Yambo and BGW, agree for the calculated QP energies. This
comparison is performed with under-converged parameters: a
5× 5× 4 k-point grid and εcut = 30 Ry.

the original version of PPM-HL in Ref. 4, BerkeleyGW
uses a modified version of the PPM to deal with non-
centrosymmetric systems as detailed in Ref. 27. Assess-
ing these small variations in the PPM is beyond the scope
of this work. When using the PPM-GN or FF meth-
ods, the agreement is better than 20 meV, similar to the
silicon case. Importantly, we find that the quasiparti-
cle energies predicted by the different codes agree within
0.1 eV when using the same treatment of the frequency-
dependence.

To converge the GW gap of rutile we extrapolate the
interdependent GW parameters (εcut, Nsig. and Neps.) to
the CBS limit, as described above and in the SI. The
converged bandgap is 3.3 eV for the different codes used
here; this result also agrees with previous full-frequency
calculations of Refs. 11, 20, and 24, as reported in Ta-
ble IV.

D. Wurtzite Zinc Oxide

Historically, ZnO has been a challenging and con-
troversial system for GW . For ZnO, the GW result
is strongly affected by the slow convergence of the Σc
term9. Convergence issues are further aggravated when
using PPMs12, although these PPM-related issues may
be partially remedied as illustrated in Ref. 23. Here
we only show results with FF methods and the PPM-
GN (validated against FF references12). For more on
the PPM approximation for ZnO, we refer the reader to
Refs. 12–14, and 23. Other discrepancies in the GW gap



7

linearization

a)
⌃ii(E)� V ii

xc + EKS
i

Nb for Σ

200015001000

2.7

2.6

2.5

2.4

B
an

d
ga

p
(e
V
)

8⇥8⇥5 k (linearized)

5⇥5⇥4 k (linearized)

5⇥5⇥4 k (actual)

8⇥8⇥5 k(actual)

b)

E (eV)

5.55.04.54.03.53.0

4.0

3.8

3.6

3.4

3.2

3.0

EKS
i

EQP
i

�
Z⌃ii[E

KS
i ]

�

EQP
i

⇣
⌃ii[E

QP
i ]

⌘

Q
P

en
er
gy

(e
V
)

Energy (eV)

EQP

Nsig.

FIG. 3. Linearized vs. actual QP energies for ZnO. a) QP
energy for the VBM at the Γ point. We show the actual self-

energy, EQP
i (Σ[EQP

i ]), and the linearized self-energy evalu-
ated at the KS energy. b) QP bandgap of ZnO. Two shifted
k-point grids of 5× 5× 4 and 8× 8× 5 points are used. The
linearized and actual solutions disagree by more than 0.2 eV
for the coarser grid, and agree better than 50 meV for the
finer grid of 8 × 8 × 5 points. Here we use unconverged GW
parameters, as explained in the text.

of ZnO arise from the use of incomplete basis-sets and
different pseudopotentials, such as projector-augmented
waves15. Due to these issues, the reported G0W0@LDA
gaps with different approximations and codes range from
2.3 – 4.5 eV (see Table VI).

We start by showing that the different codes used here
agree on the gap of ZnO, for a given pseudopotential.
Again, although pseudopotential issues are not discussed
here, we find that our results are insensitive (within
0.1 eV) to the choice of PPs tested in this work, as dis-
cussed in Appendix A. In Table V, we show undercon-
verged QP energies for ZnO calculated using a spherical-
cutoff scheme within G0W0@LDA. All ZnO results in Ta-
ble V are computed at the same number of bands, dielec-

1/NPW for ϵ−1 and Σ

B
a
n
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g
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p
(e
V
)

0.00080.00060.00040.00020.0000

2.8

2.7

2.6

2.76 eV

✏cut =

50 Ry

40 Ry

60 Ry
70 Ry

80 Ry
90 Ry

100 Ry

FIG. 4. Convergence of the bandgap of ZnO with respect to
the plane-wave basis-set size. The bandgap converges linearly
with respect to 1/NPW.

ZnO QP bandgap (eV)
Code Potential Freq. Eg Ref.
BGW NC-PP PPM-HL 3.4 9
Abinit NC-PP PPM-HL 3.6 12, 13
Tombo AE PPM-HL 4.5 24
Abinit NC-PP PPM-HL 2.8 14
BGW NC-PP PPM-HL∗ 3.0 23
Abinit NC-PP PPM-GN 2.3 12, 13
Abinit NC-PP PPM-GN 2.6 22

AE FF+ 2.4 54
Abinit NC-PP FF-CD 2.4 12, 13
Vasp PAW FF-RA 2.5 55

AE FF-CD 2.8 21
Vasp NC-PAW FF-RA 2.8 15

Tombo AE FF† 2.8 24
BGW NC-PP FF-CD 2.8 This work

TABLE VI. Fundamental bandgap of ZnO within
G0W0@LDA. The converged gap is extrapolated to the
CBS, as detailed in the text. The reported bandgaps
using different codes and techniques are shown for compar-
ison. * semicore electrons were excluded to calculate the
ground-state density required to fit the PPM-HL parameters,
see Ref. 23. † FF integration in the complex plane. +
Frequency integration method based on the random-phase
approximation54,56.

tric matrix cutoffs, and k-point grid for the purposes of
comparison. However, these parameters are undercon-
verged.) We use the GN method, FF-CD method with
Abinit and BerkeleyGW, and the FF-RA method
with Yambo. We set εcut = 30 Ry, a Coulomb cutoff
radius of 19.7177 Bohr, a plasma frequency of 38.82 eV
(for PPM-GN), a Γ-centered homogeneous grid of 5×5×4
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k-points and 34 bands, and show that the unconverged
GW gap of ZnO calculated with the different codes is
consistent within 0.1 eV.

Linearizing the self-energy to the QP energy, especially
when using coarse k-grids, can be inaccurate. An il-
lustration of the difference between the linearized and
graphically-solved QP energies is given in Fig. 3a. For
the VBM, the linearized and graphical solutions can differ
by ∼ 0.2 eV; for an unconverged set of GW parameters
(5×5×4 k grid, εcut = 40 Ry and Neps. = Nsig. = 2000),

we find EQP
i (Σ[EQP

i ]) = 3.7 eV and EQP
i

(
ZΣ[EKS]

)
=

3.9 eV, where EKS
i = 5.3 eV. In Fig. 3b we show the QP

bandgap as a function of the number of bands used to
evaluate Σ. We use shifted grids of 5×5×4 and 8×8×5
k-point grids, Neps. = 2000 and εcut = 40 Ry. Within the
coarser grid the actual (blue dots) and linearized (cyan
dots) solutions can disagree by more than 0.1 eV due to
features in Σ(ω), as shown in Fig. 3 (a). These features
are smoothed out when using a finer grid, reducing the
discrepancy associated with linearization.

Having demonstrated good agreement between differ-
ent codes for ZnO QP energies, we then proceed to con-
verge the gap of ZnO only with BerkeleyGW, exclud-
ing the other codes due to our limits on computational
resources. To accelerate the convergence with respect
to k-points, we use a shifted grid, a common practice
well-documented in the past57. Using the finest grid of
k-points (that is the 8 × 8 × 5 grid), we proceed to con-
verge the Neps., Nsig. and εcut by extrapolating to the
CBS limit (see SI). As shown in Fig. 4, the bandgap
converges linearly with respect to N−1PW and a relatively
high εcut > 80 Ry is needed to assure convergence within
0.05 eV. At convergence, we find the G0W0@LDA gap of
ZnO is 2.8 eV, in agreement with recent calculations, as
shown in Table VI.

Finally, we compare our G0W0 bandgaps with the
corresponding electronic gaps measured in photoemis-
sion experiments. Here we use full-frequency G0W0 ap-
proaches (FF-CD or FF-RA). Note that when comparing
to experiment the lattice-renormalization effect should
also be included58,59, e.g., the measured/calculated zero-
point renormalization (ZPR) of silicon is 62–64 meV, 150
meV for TiO2 and 156–164 meV for ZnO60,61. Our cal-
culated indirect gap of 1.21–1.28 eV for silicon (with-
out renormalization) is therefore in good agreement with
the experimental gap of 1.17 eV62. Our result is also
in agreement with the seminal work of Ref. 4. As men-
tioned above, since we neglect spin-orbit effects in this
work, we do not compare the GW bandstructure of gold
to experiment. Our calculated gap of 3.3 eV of rutile
TiO2 is also in good agreement with the experimental
gap of 3.3 ± 0.5 eV63,64. On the other hand, our GW
gap of ZnO of 2.8 eV substantially underestimates the
reported experimental gap of ∼ 3.6 eV65,66. This well-
known shortcoming of standard G0W0 for ZnO is due to a
deficient LDA starting point55, and indicates the need for
a more accurate starting point or self-consistent schemes.
This work reaches a consensus on the value of the G0W0

band-gaps of prototype systems, and hence facilitates fu-
ture work studying beyond-standard GW schemes to im-
prove the accuracy of GW when using a poor mean-field
starting point.

V. CONCLUSIONS

In this work, we have revisited the GW approximation
for prototype systems with three representative plane-
wave-based codes: Yambo, Abinit and BerkeleyGW.
Within certain choices of approximations and a given set
pseudopotentials, the converged GW QP energies calcu-
lated with the different codes agree within 0.1 eV, ad-
dressing long-standing controversies on the GW results
for difficult systems such as ZnO and rutile.

More specifically, we have studied the validity of ap-
proximations within one-shot G0W0 which can give rise
to disagreement in GW results between different codes,
in particular the treatment of the Coulomb divergence,
convergence, plasmon-pole model approximations, and
scheme for capturing the full frequency dependence of Σ.
We have benchmarked different techniques to treat the
Coulomb divergence, and identified several effective tech-
niques, in particular an auxiliary-function method used
in Abinit, the RIM in Yambo and the MC average in
BerkeleyGW. The latter was implemented in Abinit
in this work. We have provided new insights into the
details of PPMs and their effect on GW results, such as
the treatment of unfulfilled PPM modes, which for some
systems can lead to large deviations (> 0.5 eV) from
FF references. We have shown that specific PPM tech-
niques, when treated at the same level in the different
codes, provide results in complete agreement indepen-
dently of the code. Beyond the PPM approximation we
have also shown that the FF-CD method implemented
in BerkeleyGW provides results in agreement with FF
implementations in Abinit and Yambo. We highlight
that QP energies predicted with the FF-CD method (in
the complex plane) agree quantitatively with real-axis
FF references, a numerical proof of the validity of the
FF-CD.

In summary, our work provides a framework for users
and developers to validate and document the precision of
new applications and methodological improvements re-
lating to GW codes.
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Appendix A: The choice of pseudopotential for GW

In this appendix, we study the variation of the bandgap
with respect to the choice of pseudopotential for TiO2 and
ZnO. We emphasize that the validation of pseudopoten-
tials for GW requires all-electron references and is be-
yond the scope of the present manuscript. In Table VII
we show the G0W0 direct gap of rutile calculated with
different choices of pseudopotentials. We use a DFT-
PBE starting point from Abinit and consider norm-
conserving PPs of the Fritz Haber Institute (FHI)68,
Optimized Norm-Conserving Vanderbilt (ONCV)48 and
Hartwigsen-Goedecker-Hutter (HGH)53 kinds. The con-
figuration of choice for Ti is [Ne]3s23p63d24s2 (includ-
ing semicore states), and [He]2s22p6 for O. We only use
PPs available in the literature (see Table VII). Note that
the HGH and PD PPs contain non-local core correc-
tions (NLCC), which are subtracted from Σ when cal-
culating the QP energies. In the table, we show the en-

ergy cutoff required to converge the DFT total energy
per atom to 0.01 eV and the PP radii, which can be
taken as a measure of the PP “hardness”. Here we use
BerkeleyGW to compute the G0W0 direct gap of ru-
tile using a set of under-converge parameters for GW :
Neps. = Nsig. = 2000, εcut = 20 Ry, the MC avg. tech-
nique and a Γ-centered homogeneous grid of 6×6×10 k-
points. Importantly, the GW gaps correponding to dif-
ferent PP types agree within 0.1 eV, indicating a small
dependence of the gap of rutile with the choice of PPs
used here.

We now study the sensitiveness of the GW results
with respect to the choice of pseudopotential for ZnO.
In Table VIII we show the QP gap of ZnO calculated
with G0W0@LDA using different PPs. The configura-
tion of choice for Zn is [Ne]3s23p63d104s2 (including semi-
core states), and [He]2s22p6 for O. As in the TiO2 case,
some of the HGH and PSP8 PPs considered here con-
tain NLCCs. We also show the minimum kinetic en-
ergy cutoff for the plane-wave expansion to converge the
DFT gap within 0.05 eV, and the corresponding DFT-
LDA and GW gaps. Here we use BerkeleyGW, the
FF-CD method with 20 imaginary frequencies, an uni-
form sampling of real frequencies spaced by 0.25 eV
from 0 to 6 eV, the modified static-reminder method of
Ref. 72 and unconverged GW parameters: εcut = 30 Ry,
Nsig. = Neps. = 500 . For ZnO the GW and DFT gaps
change little, by up to 0.14 and 0.1 eV respectively, with
the different choices of PPs. Therefore, the results for
ZnO and TiO2 presented in this manuscript are negligi-
bly affected by the choice of PPs.

Pseudopotentials for TiO2

PP PP radii Ecut. DFT gap GW gap
type (Bohr) (Ry) (eV) (eV)

FHIa Ti: s 1.48, p 1.62, d 1.70 60 1.78 3.12

HGHb Ti: s 0.34, p 0.24, d 0.24
280 1.88 3.23

O: s 0.22, p 0.21

PDc Ti: s 1.35, p 1.30, d 1.65
60 1.88 3.23

O: s 1.25, p 1.35

a FHI PPs: Ti is defined in the OPIUM-v3.8 user guide67 and O
is from the FHI98 library68,69.

b HGH PPs from Refs. 53 and 69.
c PD PPs from pseudo-dojo-v.225,70.

TABLE VII. Testing norm-conserving pseudopotentials for
rutile. For each PP type we show the radii per angular mo-
mentum (s, p or d), the plane-wave energy-cutoff (Ecut.) (see
text), and the corresponding DFT and GW gap of rutile. We
use G0W0 PPM-GN with a DFT-PBE starting point, at un-
converged GW parameters (see text).
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Pseudopotentials for ZnO
PP PP radii Ecut. DFT gap GW gap

type (Bohr) (Ry) (eV) (eV)

FHIa
Zn: s 0.80, p 0.80, d 0.80

300 0.67 2.76
O: s 1.20, p 1.20

RRKJb Zn: s 1.00, p 1.00, d 0.85
300 0.73 2.87

O: s 1.10, p 1.10

HGHc Zn: s 0.40, p 0.53, d 0.25
300 0.73 2.90

O: s 0.22, p 0.21

PDd Zn: s 1.35, p 1.65, d 1.85
60 0.78 2.82

O: s 1.25, p 1.35

PDe Zn: s 0.80, p 0.80, d 0.60
500 0.74 2.84

O: s 0.80, p 0.80

a FHI PPs from Ref. 12.
b RRKJ71 PPs from Ref. 23.
c HGH PPs from Refs. 53 and 69.
d PD PPs from pseudo-dojo-v.225,70.
e PD PPs generated with the ONCVP code48.

TABLE VIII. Sensitiveness of the GW gap of ZnO with re-
spect to the choice of PPs. Same as TiO2 in Table VII. We use
G0W0 FF-CD with a DFT-LDA starting point at unconverged
GW parameters (see text). Note that the GW gaps of ZnO
shown in this table agree with the converged gap (= 2.8 eV)
due to spurious cancellation of errors.
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50 R. Gómez-Abal, X. Li, M. Scheffler, and C. Ambrosch-

Draxl, Phys. Rev. Lett. 101, 106404 (2008).
51 T. Rangel, D. Kecik, P. E. Trevisanutto, G.-M. Rignanese,

H. Van Swygenhoven, and V. Olevano, Phys. Rev. B 86,
125125 (2012).

52 M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie,
Nat. Commun. 6, 7044 (2015).

53 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev.
B 58, 3641 (1998).

54 M. Usuda, N. Hamada, T. Kotani, and M. van Schilf-
gaarde, Phys. Rev. B 66, 125101 (2002).

55 L. Y. Lim, S. Lany, Y. J. Chang, E. Rotenberg, A. Zunger,
and M. F. Toney, Phys. Rev. B 86, 235113 (2012).

56 V. I. Anisimov, Strong Coulomb Correlations in Electronic
Structure Calculations (CRC Press, 2000) Frecuency inte-
gration method by F. Ayasetiawan.

57 F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett.
91, 056402 (2003).

58 S. Botti and M. A. L. Marques, Phys. Rev. Lett. 110,
226404 (2013).
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In this Supplemental Information we show convergence studies on the QP energies of silicon, gold,
TiO2 and zinc oxide. We show the technical parameters used in our GW calculations. We describe a
simple strategy to compare the results from different GW codes. Finally, we study the sensitiveness
of the GW gaps to the choice of pseudopotential.

I. TECHNICAL DETAILS

In Table I we summarize all parameters used in our
GW calculations for Tables and Figures in the main
manuscript.

II. STRATEGY TO VALIDATE CODES

Comparing the numerical accuracy of different GW
codes is a complex task due to the various approximations
used in the practice, such as the degree of convergence,
the treatment of the Coulomb singularity and frequency
dependence of Σ(ω) and the choice of pseudopotantials.
Nevertheless, we can isolate the different sources of dis-
crepancy following a simple strategy:

1. We start with exactly the same DFT input (wave-
functions and eigenvalues).

2. We avoid the Coulomb singularity by using the
spherical-cutoff scheme; and we use the same fre-
quency integration scheme, number of bands, and
k-points in BZ integrations.

3. We explore k-point convergence, which is sensitive
to the method used to treat the Coulomb singular-
ity (see above).

4. We converge εcut simultaneously with the number

of bands used to evaluate ε and Σ (Neps. and Nsig.

respectively).

Below, we describe in more detail our application of
this strategy to validate GW codes for bulk crystalline
Si, Au, TiO2, and ZnO.

In TABLE II, we show the GW corrections to the va-
lence band maximum (VBM) and conduction band mini-
mum (CBM) at the Γ point for bulk silicon. We show the
corrections calculated with/without the spherical-cutoff
technique and using the three different codes used here
Abinit, BerkeleyGW and Yambo. We set εcut =
20 Ry, a grid of 4× 4× 4 k-points and 10 empty states;
with these settings, the GW corrections are undercon-
verged but the level of accuracy is the same for the dif-
ferent codes, facilitating quantitative comparison. When
using the spherical-cutoff technique (see last two columns
in TABLE II), we obtain the same QP energies with dif-
ferent codes. This result shows that by disentangling the
sources of discrepancy with our simple strategy, we can
effectively compare output of different GW codes.

III. GOLD

Bulk gold is a more complex case for GW due to ap-
proximations to the metal dielectric and the partial band
occupations at the Fermi energy. As mentioned in the
manuscript, we study the GW corrections to the scalar
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k-point grid εcut Neps. Nsig. PP St. point Sph. cut. Ωp

Silicon
Table I of main manuscript
12× 12× 12, unshifted 40 Ry 300 300 FHIa PBE No 16.60 eV
Fig. 1 of main manuscript
4× 4× 4, unshifted 20 Ry 4 FHIa PBE Yes 16.60 eV
Gold
Table II of main manuscript
16× 16× 16, unshifted 32 Ry 400 400 PDb PBE No 38.88 eV
Rutile
Table III of main manuscript
6× 6× 10, unshifted 20 Ry 100 100 FHIc PBE Yes 32.56 eV
Table IV of main manuscript
6× 6× 10, unshifted extrapolated to CBS limitd FHIc PBE No 32.56 eV
Zinc Oxide
Table V of main manuscript
5× 5× 4, unshifted 30 Ry 34 34 FHIe LDA Yes 38.82 eV
Fig. 3a of main manuscript
5× 5× 4 40 Ry 2000 2000 FHIe LDA No
Fig. 3b of main manuscript
Several gridsf,g 40 Ry 2000 2000 FHIe LDA No
Fig. 4 of main manuscript
8× 8× 5, shiftedg extrapolated to CBS limith FHIe LDA No
Table VI of main manuscript
8× 8× 5, shiftedg extrapolated to CBS limith FHIe LDA No

a FHI98 PP1 from the ABINIT web site.
b PD PP from pseudo-dojo-v.22,3.
c FHI PPs: Ti is defined in the OPIUM-v3.8 user guide4 and O is from the FHI98 library1,5.
d Number of bands and εcut extrapolated to the complete basis set (CBS) limit, see Section IV.
e FHI PPs from Ref. 6.
f Shifted and unshifted grids of 5× 5× 4 and 8× 8× 5 k-points.
g Shifted grids are only used calculate the dielectric constant.
h Extrapolation to the CBS limit, read Section D of main manuscript.

TABLE I. Parameters used in our GW calculations. We report our choice of k-point grid, energy cutoff for the screening (εcut),
number of bands used to calculate the dielectric function (Neps.) and the GW self-energy (Nsig.), pseudopotential (PP), DFT
starting point (St. point), whether a spherical cutoff was used (Sph. cut.). Additionally, a plasma frequency (Ωp) is shown
when referring to PPM-GN calculations.
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FIG. 1. Scalar-relativistic bandstructre of gold calculated
with DFT-PBE. The Brillouin zone is shown as an inset.

relativistic bandstructure of gold, shown in FIG. 1. No-
tice that this should not be compared to experiment, as

the strong spin-orbit effects are neglected.

We first converge the number of bands and planewaves
used for the dielectric function and Σ, using a fixed k-
point sampling of 8× 8× 8 k-points, the PPM-GN, and
the Abinit code. The linear extrapolation to an infi-
nite number of bands and planewaves is done in a two-
step procedure. First, for a fixed εcut, we extrapolate
the number of bands N for Σ and ε to N → ∞ (see
FIG. 2). Second, the resulting gaps are linearly extrapo-
lated to the complete basis set limit (CBS) (see the inset).
The choice of linear extrapolation is motivated by recent
work7, and here the fit is satisfactory with a standard
deviation of < 0.005 eV. We find an extrapolated gap at
X (X5 → X1) of 5.59 eV. Setting this gap as the ref-
erence, we find that the set of parameters εcut = 32 Ry
and N = 400 are sufficient to converge the gap within
< 0.1 eV.
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Unconverged GW corrections for silicon at Γ in eV
Valence band maximum

No cutoff Spherical cutoff
Σx Σc Σx Σc

BerkeleyGW -12.746 2.030 -13.049 0.969
Abinit -13.057 2.178 -13.049 0.969
Yambo -12.630 1.975 -13.050 0.969

Conduction band minimum
No cutoff Spherical cutoff

Σx Σc Σx Σc

BerkeleyGW -5.640 -2.946 -5.709 -1.984
Abinit -5.640 -3.094 -5.709 -1.984
Yambo -5.640 -2.890 -5.709 -1.984

TABLE II. GW corrections to the VBM/CBM of silicon with
low convergence parameters (read text). The unconverged
GW corrections are identical for different codes when using
the spherical-cutoff technique (last two columns), illustrating
how to cheaply evaluate the numerical accuracy of GW codes.

1/NPW

8 Ry

Gold

1/N

∆
E

X
(e
V
)

0.0080.0060.0040.0020

5.6

5.4

0.010

5.6

5.4

16 Ry

24 Ry

32 Ry

✏cut = 39 Ry

FIG. 2. Energy bandgap ∆EX , defined in FIG. 1, of gold.
The bandgap for different values of εcut and bands N (for
both Σc and ε) is linearly extrapolated to N → ∞ (blue
lines). Inset: the resulting gaps are then extrapolated to the
CBS limit (NPW →∞).

IV. TiO2

For rutile TiO2, we first study the convergence of Σ
with respect to the number of bands and cutoff used for
the GW sums. In FIG. 4, we show Σx

ik matrix elements
as a function of the k-point mesh. Consistent with the
silicon case (see main manuscript), some methods, such
as the Yambo analytic method (brown lines) and the
BerkeleyGW MC avg. on q ' 0 (black lines) can ex-
hibit a slow convergence rate. Importantly, with a mesh
of 6×6×10 k-points or denser, when using the RIM (or-

VBM at Γ

Σ
ik

(e
V
)

18161412108642

-23.0

-23.2

-23.4

ABINITYamboBGW

CBM at Γ

Σ
ik

(e
V
)

-11.2

-11.4

-11.6

FIG. 3. Convergence of the GW self-energy of gold. We
show Σik matrix elements for k = Γ and i =VBM/CBM. We
consider uniform k-point grids of Nk×Nk×Nk k points. The
codes used here implement particular sets of approximations
to treat metals (read text).

Nk

VBM

Σ
x ik

(e
V
)

12×12×20
10×10×16

8×8×12
6×6×10

-24.9

-25.0

-25.1

-25.2

ABINIT aux. func.
YAMBO RIM all BZ

YAMBO Analyt.
BGW MC avg. all BZ
BGW MC avg. q ≃ 0

CBM

Σ
x ik

(e
V
)

-12.0

-12.1

-12.2

FIG. 4. Convergence of the Σx
ik matrix elements with respect

to the k-point mesh for rutile. Shown are the matrix ele-
ments for the Γ point and the VBM/CBM. Several codes and
methods are considered (read text).

ange lines) or MC average (blue lines) over the entire BZ,
or the auxiliary function of Carrier (pink lines), all codes
converge Σx

ik for the VBM/CBM within < 0.1 eV. More-
over, in TABLE III and IV of the main manuscript, we
show that the GW codes used in this work agree within
0.1 eV in the predicted gap of rutile.

We now converge the GW parameters with Berke-
leyGW. In FIG. 5, we show the gap of rutile for given
values of εcut and Nsig., fixing Neps. to 2000 (blue dots).
For each value of εcut, we linearly extrapolate the gaps
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1/Nb for Σc

∆
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g
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✏cut = 40 Ry
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FIG. 5. Fundamental bandgap ∆Eg of rutile. The bandgap
for different values of εcut and Nsig. is extrapolated to the
limit of an infinite number of bands (blue lines). Here we fix
Neps. = 2000. Inset: the resulting gaps are then extrapolated
to the limit of an infinite number of plane-waves NPW in the
basis set.

with 1/Nsig. to Nsig. → ∞ (blue lines). The result-
ing gaps are then used to further extrapolate the gap
to the CBS limit with 1/NPW; a linear extrapolation
results in a gap of 3.26 ± 50 meV, and the accuracy
is increased with a quadratic extrapolation resulting in
∆Eg = 3.27 ± 10 meV (see the inset). With this pro-
cedure, or alternatively by extrapolating simultaneously
the parameters (εcut, Neps., and Nsig.) via Eqn. 7 of the
main text,

f(Neps.,NPW, Nsig.) =(
a1
Neps.

+ b1

)(
a2
NPW

+ b2

)(
a3
Nsig.

+ b3

)
, (1)

we obtain a converged GW gap of rutile of 3.3 eV.

V. ZnO

We show that the GW codes considered here can pre-
dict the same QP energies for ZnO within a given choice
of PPs and frequency-integration method. In TABLE V
of the main manuscript we show the VBM, CBM and
fundamental gap of ZnO calculated with different codes
and using a spherical-cutoff technique. As our aim is
to compare output of different codes, we reduce compu-
tational cost and use under-converged GW parameters:
εcut = 80 Ry, 5×5× 4 k-points and 34 bands to evaluate
Σ. As expected, we find a negligible deviation for the
PPM (GN) with respect to FF-integration, in agreement
with Refs. 6, 8, and 9. Remarkably, the QP energies
obtained with different codes agree within 0.03 eV.

Next, we converge the QP gap of ZnO with Berke-
leyGW. Here we use an LDA starting point, a shifted
grid of 8 × 8 × 5 k-points for ε and Σ, and FF-CD with
the same frequency grid as above. We then extrapolate
the fundamental gap of ZnO, similar to previous cases.
First, we calculate the gap for fixed values of εcut and
extrapolating to Nsig. → ∞ with 1/Nsig. (see FIG. 3 of
main text); here we set Neps. = 2000. Second, the gap
is extrapolated to an infinit basis-set size with 1/NPW

(see FIG. 4 of main text). The converged gap of ZnO
with this procedure is 2.76 eV. Alternatively, we can ex-
trapolate the GW parameters simultaneously via Eqn. 1,
where for ZnO we find a1 = −19.1213, a2 = −58.4158,
a3 = −96.9096, b1 = 1.3356, b2 = 1.4735 and b3 = 1.4127
(in eV). With this alternative procedure the extrapolated
bandgap is b1b2b3 = 2.78 eV, coinciding with the previ-
ously extrapolated gap (with a deviation of only 0.02 eV).
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