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A bifurcating system subject to multiplicative noise can exhibit on–off intermittency close to the
instability threshold. For a canonical system, we discuss the dependence of this intermittency on
the Power Spectrum Density (PSD) of the noise. Our study is based on the calculation of the
Probability Density Function (PDF) of the unstable variable. We derive analytical results for some
particular types of noises and interpret them in the framework of on-off intermittency. Besides,
we perform a cumulant expansion [1] for a random noise with arbitrary power spectrum density
and show that the intermittent regime is controlled by the ratio between the departure from the
threshold and the value of the PSD of the noise at zero frequency. Our results are in agreement
with numerical simulations performed with two types of random perturbations: colored Gaussian
noise and deterministic fluctuations of a chaotic variable. Extensions of this study to another, more
complex, system are presented and the underlying mechanisms are discussed.

PACS numbers: 05.40.-a, 05.45.-a, 91.25.-r

I. INTRODUCTION

Most patterns observed in nature are created by instabilities that occur in an uncontrolled noisy environment:
Convection in the atmospheric layers and in the mantle are subject to inhomogeneous and fluctuating heat flux; sand
dunes are formed under winds with fluctuating directions and strengths. The fluctuations usually affect the control
parameters driving the instabilities, such as the Rayleigh number which is proportional to the imposed temperature
gradient in natural convection. Thus, these fluctuations act multiplicatively on the unstable modes. In the same
spirit, the evolution of global quantities, averaged under small turbulent scales, can be represented by a nonlinear
equation with fluctuating global transport coefficients that reflect the small scales complexity. For instance, it has
been shown that the temporal evolution of the total heat flux in rotating convection can be described by a non–linear
equation with a multiplicative noise [2]. The dynamo instability that describes the growth of the magnetic field of
the stars and some planets because of the motion of conducting fluids in their cores, is usually analyzed in similar
terms: the magnetic field is expected to grow at large scale, forced by a turbulent flow. Here again, the parameters
controlling the growth rate of the field are fluctuating [3].
Since the theoretical predictions of Stratonovich [4], and the experimental works of Kawaboto, Kabashima and

Tsuchiya [5], it is well known that a multiplicative noise may modify an instability process. These early investigations
motivated numerous studies on the effect of multiplicative noise on an instability threshold. It can be shown in many
cases that the noise induces a drift for the instability threshold (see for instance [6, 7, 11, 12, 13]). Besides, T. Yamada
et al [8] have shown that multiplicative noise can lead to a new type of intermittency, called On–Off Intermittency,
in which quiet and laminar (off) phases randomly follow bursting (on) phases. This intermittency has been identified
in experiments in various fields: electronics, electro-hydrodynamic convection in nematics, gas discharge plasmas and
spin-wave instabilities [9].
Most of the theoretical works considered only the effects of a delta–correlated Gaussian white noise or an Ornstein–

Uhlenbeck noise with an exponentially decaying correlation function (see for instance the discussion in [7]). However,
with these types of noises that have at most one characteristic time scale, it is difficult to identify which part of
the Power Spectrum Density (PSD) of the random forcing really affects the dynamics. On the contrary, the noise
in natural environment and also in experimental situations is far from being a white random process. Therefore,
we believe that the influence of the noise PSD on an on-off intermittent dynamics deserves to be investigated more
precisely.
To motivate further reading of this article, we show in fig.1 the temporal traces of an unstable variable subject

to two different multiplicative noises. Both noises have the same standard deviation but different power density
spectra. More precisely, in fig.1a, the PSD of the noise has a higher value at zero frequency than in fig.1b. It is
clear that the intermittent regime is suppressed if the low frequencies of the noise are reduced even if the standard
deviation of the noise is kept constant. To understand this fact, we study in Section 2 a canonical system and
calculate the PDF of the dynamical variable with different methods: exact results for some special types of noises
and a perturbative expansion valid for a small noise amplitude. In Section 3, we compare the predictions of this
expansion with numerical simulations. We also study the relation between the low frequencies of the noise PSD and
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the statistics of the duration of the laminar phases in the intermittent regime (Section 4). In Section 5, we present
numerical simulations of a bifurcating system of second order in time. We finally give a physical explanation for the
relevance of the noise spectrum at zero frequency for on-off intermittency (Section 6).
Some of the results of this article were published in our letter [10]. We give here details on the derivation of

these results (Section 2 and 3). Besides new systems are investigated (Section 2.3 and 5) and a new aspect of the
phenomenon is highlighted (Section 4).

II. ANALYTICAL PREDICTIONS

A. Case of a Gaussian white noise

We consider the simple system proposed in [8] to describe on–off intermittency :

Ẋ = (a+ ζ(t))X −X3 , (1)

where ζ is a random process with zero mean. This equation describes the evolution of a variable X with instantaneous
departure from onset a+ζ(t) and cubic nonlinearity. Without noise (ζ = 0), equation (1) has the fixed points : X = 0
and X = ±√

a for a > 0. The former one is stable for negative a and the latter are stable for positive a.
Let ζ(t) be a Gaussian white noise with 〈ζ(t)ζ(t′)〉s = Dδ(t − t′) where 〈〉s is the average on the realizations of

the noise. The Langevin equation (1) is interpreted as a Stratonovich equation. The stationary Probability Density
Function of X can be calculated from the Fokker–Planck equation [6] and is given by

P (X) = C|X | 2aD −1e−
X2

D , (2)

for a > 0; P (X) = δ(X) if a ≤ 0. Here, C is a normalization constant.
Several features can be noticed. For positive a, there are two different behaviors. When 2a > D, the most probable

values are Xmp = ±
√

a−D/2 but when 2a ≤ D the most probable values vanish and P (X) diverges as X → 0. For
a small departure from threshold, i.e., 2a/D ≪ 1, P (X) is dominated by a decreasing power law over a large range of
X and all moments of X grow linearly with a. Indeed, equation (2) implies that 〈X2n〉 = DnΠn−1

j=0 (a/D + j) which

leads to 〈X2n〉 ≃ aDn−1(n− 1)! when 2a/D is small.
As pointed out in [8], the form of the PDF for small X is related to the on–off intermittent character of the variable

X : The occurrence of laminar phases are responsible for the divergence of the PDF at X = 0.

B. Expansion for a colored noise

White noise, with all frequencies having the same weight, does not allow to discriminate which frequencies play a
role in the occurrence of on-off intermittency. However, as it clearly appears in fig.1, two non-white noises with the
same standard deviation but different spectral densities at zero frequency, lead to dynamics that are qualitatively
different. Indeed, if the value of the noise PSD at zero frequency is reduced, the laminar phases around zero, that
characterize on–off intermittency, can even be suppressed.
To analyze quantitatively this phenomenon, we apply the cumulant expansion to equation (1). The resulting

equation for the PDF of X is of the Fokker-Planck type and, in the case under study, is given by

∂tP = ∂x

((

(1 +
S −M

a
)X3 − (a+ S)X

)

P

)

+ ∂x2

((

SX2 +
M − S

a
X4

)

P

)

. (3)

The derivation of this equation is presented in Appendix. The two coefficients that appear in this effective Fokker-
Planck equation depend on the noise as follows

S =

∫

∞

0

〈ζ(0)ζ(τ)〉sdτ ,

M =

∫

∞

0

〈ζ(0)ζ(τ)〉se−2aτdτ . (4)

The parameter S is given by the integral of the autocorrelation function of the noise and is equal to half of the PSD
of the noise at zero frequency by virtue of the Wiener–Khintchine theorem. The parameter M is also related to the
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FIG. 1: Temporal traces of the dynamical variable X(t) solution of equation (1) with a noise of autocorrelation function given
by (14). In both cases, a = 0.00125, α2 = 0.005. In figure (a), η = Ω = 0.25 i.e., a/S = 0.3927; in figure (b), η = Ω = 2.5 i.e.,
a/S = 3.9270.

integral of the autocorrelation function but with a reduced weight of its long-time values. The steady state solution
of equation (3) for the generic case S 6= 0 and S 6= M is given by

P (X) = C|X | aS −1|1 + (M − S)X2

S a
|−(1+ a M

2S (M−S)
) , (5)

where C is a normalization constant. Note that this expansion is valid when the product of the time correlation of
the noise with its amplitude is small [1, 14].
The behavior of the PDF for small X is a power law with exponent a/S − 1. Consequently, the criterion for on-off

intermittency, in the sense that the PDF of the variable diverges for small X , is

S > a . (6)

In other words, the variable is on-off intermittent when the value of the noise spectrum at zero frequency is greater
than twice the departure from onset.
We also notice from the power law form of the PDF that all the moments < X2n > grow linearly with the departure

from onset a, in the limit of small a. As in the case of a Gaussian white noise, this behavior is related to the form of
the PDF in the vicinity of the unstable fixed point and thus to the occurrence of on-off intermittency.

C. An exactly solvable case: the dichotomous Poisson process

It is also possible to calculate the PDF of X , solution of equation (1), in the case where the noise is a dichotomous
Poisson process. This problem was studied in [15]. We sum it up here and then discuss the consequences on the on-off
intermittent regime.
The noise has only two possible values ±∆ and during a time dt switches from one value to the other with a

probability λdt. We thus obtain

< ζ(t)ζ(0) >s= ∆2e−2λt . (7)

Let P+(x, t) and P−(x, t) be the probabilities for the variable X to attain the value x at time t when the noise is ∆
and −∆, respectively. These probabilities follow the equations

∂P+

∂t
= − ∂

∂x

(

((a+∆)x − x3)P+

)

− λ(P+ − P−) ,

∂P−

∂t
= − ∂

∂x

(

((a−∆)x − x3)P−

)

− λ(P− − P+) . (8)
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We consider the case where a is positive so that the fixed point X = 0 is unstable. For intermittency to be possible,
it is necessary that ∆ > a so that the effective growth rate a+ ζ(t) can be negative. In that case, the stationary PDF
of X is given by

P (X) = P+(X) + P−(X)

= C|X |
2aλ

∆2
−a2 −1|X2 − (a+∆)| λ

2(a+∆)
−1

×|X2 +∆− a|− λ
2(∆−a)

−1 , (9)

where C is a normalization constant. The PDF of X diverges at small X and therefore X is on-off intermittent if

2aλ

∆2 − a2
< 1 . (10)

From equation (7) we calculate the parameter S :

S =

∫

∞

0

< ζ(t)ζ(0) >s dt = ∆2/(2λ) , (11)

and write the criteria for on-off intermittency as

S ≥ a

1− a2

∆2

. (12)

We emphasize that this result is valid for any noise amplitude and correlation time as long as ∆ > a > 0. When the
product of ∆2 with the time correlation λ−1 of the noise is small, we have S ≪ 1 and the criterion (6) is recovered.
At higher noise amplitudes, we have an explicit expression for the onset of on-off intermittency. Here again, if the
parameter S is lowered and the noise standard deviation ∆2 is fixed, on-off intermittency disappears.

III. NUMERICAL STUDIES

A. Stochastic colored noise

We verify numerically the predicted expression for the PDF, given in equation (5). To wit, we use a colored noise
with two characteristic frequencies, Ω and η. This noise is generated from the following dynamics [16] :

Ȧ = −4πηA− 4π2(Ω2 + η2)ζ + (4π)3/2
√

η(Ω2 + η2)/2αξ ,

ζ̇ = A , (13)

where ξ is a Gaussian white noise with 〈ξ(t) ξ(t′)〉s = δ(t − t′). This equation leads to the following autocorrelation
function

〈ζ(t) ζ(t + τ)〉s = α2 exp(−2πη|τ |)
(

cos(2πΩτ) +
η

Ω
sin(2πΩ|τ |)

)

, (14)

where α2 is the noise variance and tc = (2πη)−1 is its correlation time. In this case, we obtain [17]

S = α2η/
[

π(η2 +Ω2)
]

,

M = α2(η + a/(2 π))/
[

π
(

(η + a/π)2 +Ω2
)]

. (15)

Therefore by varying η and Ω, we can tune independently a/S and α(2πη)−1. The Gaussian white noise is recovered in
the limit η → ∞ with α2/η = D. The equations (1) and (13) are solved numerically using a fourth-order Runge-Kutta
scheme and an Euler implicit method, respectively. Note from equation (1) that X conserves its sign throughout its
evolution. In the following, we consider only positive initial values for X(t = 0) without lack of generality.
In figure 1, we plot some temporal traces of X . Both curves were obtained for the same values of the noise variance

α2 and departure from threshold a. In fig.1a, we have taken S > a; in fig.1b, the chosen value of S is ten times smaller
so that the ratio a/S becomes larger than unity. In the latter case, intermittency is clearly suppressed, illustrating
the fact that no intermittency occurs when the PDF P (X) does not diverge at X = 0.
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FIG. 2: PDF of the solutions of equation (1) for the colored noise given by (14) . The symbols (×) and (+) correspond,
respectively, to the parameters used in figures 1a and 1b. The full lines are the corresponding theoretical approximations given
by (5). The inset emphasizes the good agreement of the predicted power law in log–log axes.
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FIG. 3: Boundary of the intermittent domain above the threshold a ≥ 0 in the (S, a)–plane. The open triangles (△) show
the intermittent domain where the most probable value Xmax of the PDF of X is null. The open circles (◦) show the non–
intermittent domain where the most probable value Xmax is different from 0. The full squares (�) indicate the values of the
parameters for which Xmax differs from 0 for the first time in our simulations performed using increasing values of a. The
straight line S = a is the expected boundary predicted by equation (5). The stars (∗) in the inset show the most probable
value Xmax, as obtained from the numerical simulations of equation (1); the full line in the inset is the theoretical expression

Xmax =
p

a(a− S)/(a+ 3(M − S)) (a > S), which is derived from equation (5).

In figure 2, we show that the two PDFs corresponding to the temporal traces of figures 1a and 1b are very well
described by equation (5). We remark that for small values of X , the PDF behaves as a negative power law when
a/S < 1, as expected in the intermittent regime.
In figure 3, the intermittent domain and the non–intermittent domain are delimited in the (S, a)–plane. Intermit-

tency disappears when the most probable value, Xmax, becomes non-zero. The behavior of Xmax as a function of
a for S = 0.27 is shown in the inset of fig.3. For noises with different spectrum, we increase a and determine when
on-off intermittency disappears. We observe that the line S = a does indeed separate the two regimes. Note that the
expansion leading to equation (6) is valid when ατc ≪ 1, this condition is fulfilled in the simulations we present.



6

B. Deterministic and chaotic fluctuations as a noise

Up to now, the only fluctuating parameters we have considered are stochastic processes. However, it is tempting
to test the prediction of equation (5) in the case of a deterministic but chaotic fluctuating parameter. The noise is
calculated from the chaotic solution of the Lorenz system [21]. We thus solve

U̇ = −σ(U − Y ) , Ẏ = rU − Y − UZ , Ż = UY − bZ , (16)

and define ζ as

ζ = α
(1 − µ)Un + µU̇n

c
, (17)

where c2 =< ((1− µ)Un + µU̇n)
2 >, Un = U−<U>√

<(U−<U>)2>
and U̇n = U̇−<U̇>√

<(U̇−<U̇>)2>
. Averages are now understood as

long time averages. The role of c is to insure that α is the amplitude of the noise, i.e.,
√

< ζ2 > = α. The parameter

µ is tuned between zero and one in order to change the value of the spectrum at zero-frequency. Indeed U̇ being the
derivative of U , its power spectrum at low frequencies is smaller than that of U . Increasing µ increases the magnitude
of U̇ and thus reduces the spectrum of the noise at low frequencies (and accordingly the value of S).
The equations (1, 16) are solved with matlab using the same methods as in section 3.1. We choose r = 25, σ = 10

and b = 8/3. The solution of equation (16) is then chaotic and we plot in figures 4 and 5 some time series of X and
ζ. On-off intermittency disappears when µ increases and thus, accordingly, S decreases. This effect is coherent with
our former interpretation of the role of the zero frequency noise spectrum. Indeed we have a/S = 0.332 for fig. 5a
and a/S = 5.64 for fig. 5d. We also compute numerically the PDF of X and compare it with the expression given
by (5). The results are plotted in fig. 6. There again, for small values of the noise amplitude, the agreement between
the prediction and the numerical results is very good.

IV. STATISTICS OF THE DURATIONS OF THE LAMINAR PHASES

The intermittent regime can also be identified by the statistics of durations τ of the laminar phases close to zero
(see e.g., fig.1a). We discuss in this section numerical results for the durations of the laminar phases, obtained by
using the random process defined in equation (13).
In the close vicinity of the threshold, when a → 0+, a power law with an exponent −3/2 is expected for the PDF

of τ [19]. This is in agreement with fig.7 where we plot the PDF of τ for S = 0.159 and for various values of a.
The threshold under which X is considered to be in the laminar state is chosen arbitrarily to be fifty times smaller
than the noise intensity. However, we have verified that the PDF of τ does not depend strongly on this choice if the
threshold remains small enough compared to the maximum of the bursts.
We observe that the cut–off takes place at smaller values of τ when a is increased. More precisely fig.8 shows that

the PDF of τ can be fitted by

P (τ) ∝ τ−3/2. exp(−τ/θc) , (18)

where the characteristic time of the cut–off θc is proportional to S/a2. Indeed, the upper right inset shows that
log (P (τ)) + 3/2 log(τ) is linear with τ in agreement with (18). Moreover, the central curve shows that all the
characteristic times θc collapse on a single line if they are plotted as a function of a2/S.
This is in agreement with the exponential cut–off derived for white noise in [19, 20]. In the white noise case, the

PDF of τ follows equation (18) with θc proportional to D/a2 where D is the amplitude of the white noise. Our
numerical studies show that in the limit of small S this prediction remains valid for a non-white noise if S is taken as
the noise amplitude. Here again the noise power spectrum at zero frequency controls the value of θc. As discussed in
Part (VI.A), laminar phases occur when a random walk associated to the noise remains with the same sign for long
durations. For small S this property is controlled by the noise power spectrum at zero frequency.

V. NUMERICAL SIMULATIONS FOR A BIFURCATING SYSTEM OF SECOND ORDER IN TIME

The Duffing oscillator and the effect of a multiplicative noise on its dynamics have been widely studied. Once the
time is rescaled by the viscosity, the Duffing oscillator perturbed by a multiplicative noise can be written as

Ẍ + Ẋ = (a+ ξ)X −X3 . (19)
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FIG. 5: Function ζ(t) obtained from the solution of the Lorenz system through equation (17). (a): µ = 0, (b): µ = 0.5, (c):
µ = 0.65, (d): µ = 0.8. Note the difference in the horizontal scales t with figure 4.

Lücke and Schanck [11] used an expansion valid for a small noise amplitude and close to the deterministic threshold.
They showed that a small amount of multiplicative noise can stabilize the state X = 0 for positive a, whereas in
the deterministic case, X = 0 is stable only for negative values of a. They calculated the threshold shift induced
by the noise and found its expression as a function of the noise Power Density Spectrum. Their expansion leads to
the usual behavior for the moments 〈X2p〉 that are proportional to the departure from onset raised to the power p.
We emphasize that their analysis is correct only for noise with a vanishing PSD at zero frequency [18]. However, a
recent study [12] of the Duffing oscillator subject to Gaussian white noise or Ornstein-Uhlenbeck noise has predicted
an intermittent behavior and a linear scaling of the moments < X2p > of the unstable variable with the departure
from onset. In order to clarify this apparent contradiction between Refs. [11] and [12] and to investigate the effects of
the low frequency part of the noise spectrum on the Duffing oscillator, we study numerically equation (19) with the
colored noise defined by (13) for which the PSD is given by

S(ν) =
α2η(Ω2 + η2)

π[(Ω2 + η2 − ν2)2 + 2ν2η2]
. (20)
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Contrary to the case studied in Sections 2-4, the onset of instability is shifted by the noise. We thus have to take into
account the new threshold ac. For small noise amplitudes, this threshold is given by [11]

ac =

∫ +∞

−∞

S(ν)

ν2 + 1/(2π)2
dν , (21)

=
2α2(1 + 4πη)

1 + 4πη + 4π2(Ω2 + η2)
. (22)

This theoretical result agrees with the numerical data (figure 9), taking into account the uncertainty in the numerical
determination of the threshold.
Figure 10 shows the temporal trace ofX(t) above onset. It emphasizes the fact that S is still the pertinent parameter

controlling the intermittent regime for small noise, i.e., for α2 << 1. The same behavior is observed for the temporal
trace of the other dynamical variable Ẋ(t).

Besides, figure 11 shows that the statistical behavior of the variable E = X2 + Ẋ2 is similar to that of the variable
X2 in the first order system studied in Sections 2-4. Indeed, the PDFs of E divided by Eγ with γ = a−ac

2S − 1 collapse
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on a single exponential for various values of a. Notice that the departure from the onset in the presence of noise must
be taken into account. Therefore, when the amplitude of the noise is small, the PDF of the energy is controlled by
the ratio between the departure from onset (in the presence of noise) and the value of the noise spectrum at zero
frequency. When the amplitude of the noise is large, the PDF of the energy does not take the form suggested in fig.
11. However, even if the noise amplitude is large, on-off intermittency disappears when the value of S is lowered.
To conclude this part, we point out that the failure of the perturbative expansion [18] and the linear scaling of the

moments as a function of the departure from onset [12] are both a consequence of on-off intermittency that occurs
when the noise is sufficiently large at low frequencies.

VI. PHYSICAL INTERPRETATIONS AND SUMMARY

A. Role of the low frequencies of the noise

In the different systems we have studied, on-off intermittency is controlled by the zero frequency component of the
noise. Our interpretation of the phenomenon is the following. On-off intermittency occurs because of a competition
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FIG. 10: Temporal traces of the dynamical variable X(t), solution of equation (19). In all cases a − ac = 0.0754, α2 = 0.05
and the autocorrelation function of the noise is given by (14), but S is decreased from top to bottom.
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FIG. 11: Probability Density Function of E = X2 + Ẋ2 divided by Eγ with γ = a−ac
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The inset in log–log plot underlines the plateau where the power law dominates the PDF.

between the noise and a systematic drift due to the departure from onset. More precisely, as pointed out in [8] for
the case of equation (1), when X is close to the unstable manifold X = 0, the evolution of Y = logX is given by

Ẏ = a+ ζ(t). For positive a, Ẏ has a positive average but events in which Y has a decreasing behavior are possible

provided that I =
∫ T

0
ζ(t)dt/T remains smaller than −a over a long duration. In the long time limit, the main

contribution to the integral I is due to the zero frequency component of the noise. If this component is reduced then
occurrences of the inequality I ≤ −a become less and less probable and intermittency tends to be suppressed.

B. Linearity of the moments

We now want to explain why, close to the onset of instability, all the moments vary linearly with a, the departure
from onset. One can say that this is a direct consequence of the form of the PDFs that are power laws with exponents
close to −1, the difference from −1 being proportional to a (see equations (2), (5), (9)). However, we look here for
an explanation based on the dynamical properties of the trajectories X(t).
In the small a limit, the variable X spends long durations in the off-phase and, from time to time, it takes non-zero

values. A typical trajectory is sketched in fig. 12. Let Ti be the duration of the i-th on-phase and Te = T1 + T2 + ..
be the total time spent in the on-phases during the measurement time T .
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FIG. 12: Sketch of the intermittent regime with Ti the duration of the ith burst.
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FIG. 13: Total duration of the on–phase, Te, normalized by the total duration of the measurement, T , as a function of the
departure from the threshold, a, given for two values of the white noise intensity 〈ξ(t)ξ(t′)〉 = Dδ(t− t′).

During the on-phases the evolution of X can be described approximately by a random walk with a drift in terms of
the variable Y = logX ; besides, the effect of nonlinearities can be modeled by a wall that prevents Y from reaching
too high values. Let us call Cn the averaged value taken by Xn during an on-phase. Using the fact that the off-phases
have a negligible contribution to 〈Xn〉, we can write approximatively for a large measurement time T

〈Xn〉 = 1

T

∫ T

0

Xn(t′)dt′ ≃ Te

T
Cn . (23)

For large T , Te/T is the product of the averaged duration of an on-phase with the averaged frequency of occurrence
of an on-phase. Using the aforementioned analogy with a biased random walk limited by a wall, we conclude that
the averaged duration of an on-phase is finite when the drift a tends to zero. Moreover, the averaged frequency of
occurrence of an on-phase is proportional to a and therefore Te/T is also proportional to a. This scaling law is tested
numerically for equation (1) with Gaussian white noise. We plot in fig. 13 the quantity Te/T as a function of a : The
relation is linear when a/D is small.
Finally, Cn the averaged value of the n-th moment of X during the on-phase can be calculated in the case of a

Gaussian white noise using eq. (5); Cn tends to a non-zero constant when a tends to zero. This fact can be understood
using the analogy with the biased random walk limited by a wall: the typical trajectories restricted between the onset
of the on-phase and the wall do not depend on a for vanishing a.
To summarize, when a is very small, the system enters on-phases with a frequency linear with a. However, the

duration of these on-phases and the values reached by the system during these phases do not depend on a. Therefore,
using eq. (23) and the above discussion, we conclude that

〈Xn〉 ∝ a , (24)

i.e., all the moments are linear with the departure from onset.
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C. Summary

We have studied different bifurcating systems subject to multiplicative noise. For a system of first order in time
and for a small value of the product of the noise amplitude with its correlation time, an expansion showed that on-off
intermittency occurs if the noise spectrum at zero frequency is greater than twice the departure from onset. This
prediction is in agreement with numerical simulations that use colored random processes or chaotic fluctuations as
noises. In the same limit we have shown that the statistics of the durations of the laminar phases are also controlled
by the departure from onset and the noise spectrum at zero frequency. Even at finite amplitude of the noise, we
have verified numerically that intermittency disappears when the low frequencies of the noise are filtered out. This
result is also derived analytically for a Gaussian white noise and for another particular kind of noise, the dichotomous
Markovian process. For a system of second order in time, we have numerically studied the behavior of the unstable
variable and showed that for small noise amplitudes, the PDF of the energy scales as a power law with exponent
controlled by the noise spectrum at zero frequency and the departure from the onset. Here again, by lowering the
noise spectrum at zero frequency, the on-off intermittency is reduced and can be suppressed. Finally, we have given
some physical explanations for the effect of the noise spectrum at zero frequency on on-off intermittency and for the
behavior of all the moments of an on-off intermittent variable that are linear with the departure from onset.
This work has benefited from fruitful discussions with C. Van den Broeck, P. Marcq, N. Leprovost and S. Fauve.

[1] N.G. van Kampen, Physics Reports 24 171 (1976).
[2] M. Neufeld, R. Friedrich, Phys. Rev. E, 51, 2033 (1995).
[3] D. Sweet, E.Ott, J.M. Finn, T.M. Antonsen Jr, D.P. Lathrop, Phys. Rev. E, 63, 066211 (2001), D. Sweet, E.Ott, T.M.

Antonsen Jr, D.P. Lathrop, J.M. Finn, Phys. Plasma, 8, 1944 (2001). S. Fauve and F. Pétrélis, “The dynamo effect”, pp.
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[18] M. Lücke, Noise in nonlinear dynamical systems, Vol 2, Ed. F. Moss & P.V.E. McClintock, Cambridge University Press,

1989.
[19] J.F. Heagy, N. Platt, S.M. Hammel, Phys. Rev. E, 49, 1140 (1994).
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Appendix : derivation of the cumulant expansion for a dynamical system of first order in time

If we consider one realization of the noise ζ(t) as a single time dependent forcing, then for a given initial condition
X(t = 0), equation (1) describes a single trajectory. In other words, for a given realization of the noise, the number
of trajectories in phase–space is conserved. A continuity equation for the density of trajectories in the phase–space
ρζ(X, t) can therefore be written [1] as follows :

∂tρζ(X, t) = −∂X

[

Ẋρζ(X, t)
]

= −∂X
[

(aX −X3)ρζ(X, t)
]

−α∂X [Fζ(X, t)ρζ(X, t)] , (25)

where α is the standard deviation of the noise and

Fζ(X, t) = ζ(t)X(t)/α.

The PDF of X(t) is just the average of ρζ(X, t) over all the realizations of the noise. Therefore, by averaging
eq. (25), an evolution equation for P (X, t) can be derived. Some approximations are however necessary to obtain
an equation which is closed with respect to P (X, t). In [1] (pp 210), Van Kampen expands equation (25) in powers
of the parameter ǫ = α2τc where τc is the correlation time of the noise. Assuming that ǫ << 1 and knowing that
〈Fζ(X, t) · Fζ(X

′, t′)〉 ∼ 0 for |t− t′| > τc, the following equation for P (X, t) is derived :

∂tP (X, t) = −∂X
[

−(aX −X3)P (X, t)
]

(26)

−α2∂X

{[

∫

∞

0 〈∂Fζ(X,t)
∂X Fζ(X

−τ , t− τ)〉
∣

∣

dX
dX−τ

∣

∣

]

P (X, t)
}

−α2∂2
XX

{[∫

∞

0
〈Fζ(X, t)Fζ(X

−τ , t− τ)〉
∣

∣

dX
dX−τ

∣

∣

]

P (X, t)
}

,

where X−τ = Xo(t − τ) is the deterministic backward position, i.e., X−τ represents the value of the variable X at
time (t− τ) such that X would evolve upto Xo(t) during the duration τ if there were no noise. The quantity

∣

∣

dX
dX−τ

∣

∣

is the Jacobian of X with respect to X−τ . Equation (26) is a second order expansion in power of the small parameter
ǫ = α2τc and is therefore valid as long as ǫ << 1.
For equation (1), all the quantities such as X−τ and the Jacobian can be explicitely calculated. By solving (1) with

ζ(t) = 0, we find that

X = ±
{[

(a(X−τ )−2 − 1) exp(−2aτ) + 1
]

/a
}−1/2

,

X−τ = ±
{[

(aX−2 − 1) exp(2aτ) + 1
]

/a
}−1/2

,
∣

∣

∣

∣

dX

dX−τ

∣

∣

∣

∣

= (X/X−τ)3 .

Finally, equation (3) is obtained by substituting the expressions for
∣

∣

dX
dX−τ

∣

∣ and X−τ in equation (26) and writing
Fζ(X, t) = ζ(t)X(t)/α.


	Introduction
	Analytical predictions
	Case of a Gaussian white noise
	Expansion for a colored noise
	An exactly solvable case: the dichotomous Poisson process

	Numerical studies
	Stochastic colored noise
	Deterministic and chaotic fluctuations as a noise

	Statistics of the durations of the laminar phases
	Numerical simulations for a bifurcating system of second order in time
	Physical interpretations and summary
	Role of the low frequencies of the noise
	Linearity of the moments
	Summary

	References
	Appendix : derivation of the cumulant expansion for a dynamical system of first order in time 

