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Asymptotic localization of stationary states in the nonlinear Schrödinger equation
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The mapping of the Nonlinear Schrödinger Equation with a random potential on the Fokker-
Planck equation is used to calculate the localization length of its stationary states. The asymptotic
growth rates of the moments of the wave function and its derivative for the linear Schrödinger
Equation in a random potential are computed analytically and resummation is used to obtain the
corresponding growth rate for the nonlinear Schrödinger equation and the localization length of the
stationary states.

PACS numbers: 72.15.Rn, 42.25.Dd, 42.65.k

I. INTRODUCTION

In this work we consider the problem of the one-dimensional Anderson localization [1, 2] for the nonlinear
Schrödinger equation (NLSE) [3, 4, 5]. In spite of the extensive research, many fundamental problems are still
open, and, in particular, it is not clear whether in one dimension (1D) Anderson localization can survive the effects of
nonlinearities. This problem is relevant for experiments in nonlinear optics, for example disordered photonic lattices
[6, 7], where Anderson localization was found in presence of nonlinear effects as well as experiments on Bose-Einstein
Condensates (BEC) in disordered optical lattices [8, 9, 10, 11, 12]. The interplay between disorder and nonlinear
effects leads to new interesting physics [9, 10, 13, 14, 15, 16]. In particular, the problem of spreading of wave packets
and transmission are not simply related [17, 18], in contrast with the linear case.
We consider one-dimensional localization of stationary solutions of the nonlinear Schrödinger equation (NLSE) in a

random δ-correlated potential V (x) with a Gaussian distribution (white noise), of zero mean and variance 2D, namely,
〈V (x)V (x′)〉 = 2Dδ(x− x′). The linear version of this model was studied extensively in the past [19]. Following our
previous analysis [20] we study Anderson localization of stationary solutions with energies ω in the framework of the
stationary NLSE

ωφ(x) = −∂2
xφ(x) + βφ3(x) + V (x)φ(x) , (1)

where φ(x) is real, the variables are chosen in dimensionless units and the Planck constant is ~ = 1. For the lattice
version of the model, it was established rigorously [3, 21, 22] that the stationary solutions of this equation are
exponentially localized for a wide range of conditions. It was also argued that the rate of growth of moments for the
stationary NLSE (1) coincides exactly with the linear case [20] and determines the localization length.
We will specifically calculate 〈φ2(x)〉 of solutions of Eq. (1) that are found for a certain ω, with given boundary

conditions at some point, for example φ(x = 0) and φ′(x = 0), where prime means the derivative with respect to x.
This will be done with the help of the analogy with the Langevin equation [19, 20, 23]. In particular, we will calculate
the growth rate of the second moment,

2γ = lim
x→∞

ln〈φ2(x)〉
x

> 0 , ξ =
1

γ
, (2)

that will turn out to be independent of β, where ξ is the localization length. Note, it is different from the usually

studied (in the linear case) self averaging quantity γs = 1
2

d
dx〈lnφ2(x)〉 = 1

2 limx→∞
〈lnφ2(x)〉

x , and γ is a smooth
function of energy. Since the distribution of the random potentials is translationally invariant, it is independent of the
choice of the initial point as x = 0. Like in the linear case, starting from a specific initial condition, φ(x) will typically
grow. For specific values of ω at some point this function will start to decay, so that a normalized eigenfunction is
found. This is the approach à la Borland [24, 25] that was made rigorous for the linear case in [26, 27]. Here, following
[20] we extend this approach, in a heuristic form, to the nonlinear case. The envelope of the wave function will grow
exponentially if we start either from the right or from the left. The value of ω results from the matching condition, so
that an eigenfunction has some maximum and decays in both directions as required by the normalization condition.
The exponential decay is an asymptotic property, while the matching is determined by the potential in the vicinity of
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the maximum. This observation is crucial for the validity of this approach and enables us to determine the exponential
decay rate of states from the solution of the initial value problem (1). In [20] a linear equation for the moments of
φ(x) of Eq. (1) and its Langevin analog was derived and it was shown that the exponents that control the growth of
the moments are identical to the ones of the linear system (β = 0). In the present paper it will be shown that this is
also correct for the asymptotic behavior of the moments.
The outline of the paper is as follows. The analogy with the Langevin equation and dynamics of the moments is

outlined in Section II. The generalized Lyapunov exponents, that are the eigenvalues which determine the growth of
the various moments, are presented in Section II and their asymptotic behavior is derived analytically for the first
time in Appendix A (they were found numerically in [28]). The resulting asymptotic expansion for the growth of the
moments is presented in Section III. The results are summarized in Section IV.

II. THE FOKKER-PLANCK EQUATION AND LYAPUNOV EXPONENTS

Following Ref. [20], we perform the calculation of 〈φ2(x)〉 by using the analogy with the classical Langevin equation
[19, 23]. Therefore, considering the x-coordinate as the formal time variable on the half axis x ≡ τ ∈ [0,∞), Eq. (1)
reduces to the Langevin equation

φ̈+ ωφ− βφ3 − V (τ)φ = 0 (3)

with the δ correlated Gaussian noise V (τ). Now we introduce new variables u = φ and v = φ̇ ≡ dφ
dτ (that play the role

of position and velocity in the Langevin equation) and a distribution function of these new variables is P = P (u, v, τ).
The dynamical process in the presence of the Gaussian δ-correlated noise is described by the distribution function
that satisfies the Fokker-Planck equation: (FPE) [20, 30]

∂τP − [ωu− βu3]∂vP + v∂uP − 2Du2∂2
vP = 0 , (4)

where 2Du2 is the only nonzero component of the diffusion tensor.

A. Equation for moments

We are interested in the average quantum probability density 〈φ2(x)〉 ≡ 〈u2(τ)〉, where

〈u2(τ)〉 =
∫

u2P (u, v, τ)dudv .

From the FPE we obtain a system of equations for the moments

Mk,l = 〈ukvl〉 , (5)

where k, l = 0, 1, 2, . . . . Substituting ukvl in the FPE and integrating over u and v, one obtains the following relation
for Mk,l

Ṁk,l = −lωMk+1,l−1 + kMk−1,l+1 + l(l − 1)2DMk+2,l−2 + βlMk+3,l−1 , (6)

where Mk,l with negative indexes are assumed to vanish. We note that only terms with the same parity of k + l are
coupled. Since we are interested in M2,0 = 〈u2〉, we study only the case when this parity is even, namely k + l = 2n
with n = 1, 2, . . . . The sum of the indexes of the moments is 2n, except the last term βlMk+3,l−1, where the sum is
2(n+ 1). This leads to the infinite system of linear equations that can be written in the form

Ṁ = WM , (7)

where the column vector is M = (M2,0,M1,1,M0,2,M4,0,M3,1, . . . ) and W is the corresponding matrix. The matrix
elements Wk,l are determined by Eq. (6). The solutions of the system of linear equations (7) are linear combinations
of the eigenfunctions at time τ

Mλ(τ) = exp(λτ)Uλ , (8)

where Uλ = Mλ(t = 0) is the eigenvector of W corresponding to the eigenvalue λ found from the equation

WUm = λmUm , Um ≡ Uλm . (9)
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The infinite matrix W consists of two parts. The first one is independent of β and consists of independent diagonal
blocks An of size (2n + 1) × (2n + 1). The second one consists of the β dependent terms which couple the n-th
and the (n + 1)-th blocks and are located above the (n+ 1) block and to the right of the n-th block. Consequently,
the β dependent terms do not affect the characteristic polynomial, as can be shown by elementary operations on
determinants. Therefore, the characteristic polynomial of W reduces to a product of the block determinants [20]

∞
∏

n=1

det (An − λIn) = 0 , (10)

where In is an (2n+1)× (2n+1) unit matrix. The diagonal block An of the infinite matrix W defined in equation (7),
that couples the moments of order 2n with one another, is a band-diagonal square-matrix of size (2n+1). The explicit
form of this matrix is given by:

An =



























0 2n 0
−ω 0 2n− 1 0
2D −2ω 0 2n− 2 0
0 6D −3ω 0 2n− 3 0

. . . .
. . . .

. . . .
0 (2n− 2)(2n− 1)D −(2n− 1)ω 0 1

0 (2n− 1)2nD −2nω 0



























(11)

Let us denote by λmax(n) the maximal eigenvalue of this matrix. The vector of the moments in this block is Mn =
(M2n,0,M2n−1,1 . . . ,M2n−l,l, . . . ,M0,2n). In Appendix A it is proven that for ω = 0 the maximal Lyapunov exponent
λmax(n) behaves for large n as

λmax(n) ≃
3

4
D1/3(2n)4/3 . (12)

Then it is argued and verified numerically that also for other values ω 6= 0 it behaves in this way.

III. ASYMPTOTIC GROWTH OF THE MOMENTS

A. Eigenvalue problem for the moments

Taking into account Eqs. (8) and (9), we present the solution of Eq. (7) as an expansion

M(τ) =
∑

m

Cm(τ)Um =
∑

m

eλmτ cmUm , (13)

where cm ≡ Cm(τ = 0). Due to the block structure the eigenvectors are characterized by two indexes m = (n, k),
where n indicates number of block, while k = 1, 2, . . . , 2n + 1 counts elements inside each block. Therefore, the
eigenstates Um ≡ Un,k are found from the following algorithm. For the block n = 1 there are 3 eigenvalues λ1,k

with corresponding eigenvectors Ū1,k determined by the first block A1. Therefore, U1,k = (Ū1,k,O), where O is
an infinite zero vector. For the second block n = 2 there are 5 eigenvalues λ2,k with corresponding eigenvectors
U2,k = (R1,k, Ū2,k,O), where R1,k is a 3 dimensional vector, while Ū2,k is a 5 dimensional vector, and k = 1, 2, . . . , 5.
Here λ2,k and Ū2,k are determined from the second diagonal block matrix A2, while R1,k is determined by A1 and
by the corresponding β-dependent off diagonal block. Continuing this procedure, we obtain 2n + 1 eigenvectors for
λn,k in the form

Un,k = (Rn−1,k, Ūn,k,O) , (14)

where Rn−1,k is a (n2 − 1) dimensional vector determined by n− 1 diagonal and off diagonal blocks of the truncated
matrix W .
Summation over m in Eq. (13) is broken into the sum over the block numbers n ∈ [1,∞) and the sum over indexing

inside each block l ∈ [0, 2n]. Thus, Eq. (13) reads

M(τ) =

∞
∑

n=1

2n
∑

l=0

cn,le
λn,lτUn,l . (15)
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The vector M consists of the block vectors Mn: M = (M1,M2, . . . ,Mn, . . . ), where Mn is a vector of 2n+1 elements
defined in Eq. (5) and corresponds to the moments of the order of 2n. Therefore, the initial vector at τ = 0 is

(M1,M2, . . . ,Mn, . . . ) =
∑

n′

∑

l′

cn′,l′Un′,l′ . (16)

Assume that at the initial point τ = 0, the wave function and its derivative are small, of the order of ǫ in units of
√

|ω/β|. Then, at that point the moments scale as Mn ∼ ǫ2n with ǫ arbitrary small. As follows from Eq. (16),
one finds cn,lUn,l ∼ c̄nǫ

2n + o(ǫ2n) with bounded c̄n for any n, as demonstrated in Appendix B. In the linear case
(β = 0) the growth rate of each moment of the order of 2n corresponding to the n-th block is determined by the
eigenvalue with the largest real part, and we denote it by λmax(n) ≡ max(Re λn,l), where the maximum is over the
2n+1 eigenvalues corresponding to the nth block, indicated by l. As shown in Appendix A, the asymptotic behavior
of the generalized Lyapunov exponent λmax(n) when n → ∞ is given by λmax(n) ∼ An4/3, where A = 3

42
4/3D1/3 is a

constant (see Eq. (12)). The leading contribution to the growth of Mn(τ) in the nonlinear case (β 6= 0) is determined
by the following sum

M̃n(τ) =
∑

m≥n

c̄mǫ2meAm4/3τ , (17)

as is clear from Eqs. (13)–(16).

B. Resummation

This series in Eq. (16) has a vanishing radius of convergence and probably has to be interpreted as an asymptotic

series. It can be used to study the behavior of M̃n(τ) after being resummed. Such a resummation is done with the
help of the identity

exp(K2) =
1√
π

∫ +∞

−∞

du exp(−u2 + 2Ku) , (18)

known as the Hubbard-Stratonovich transformation. We can rewrite the above series as follows

M̃n(τ) =
∑

m≥n

c̄mǫ2m exp(Am4/3τ) =
1√
π

∫ +∞

−∞

du exp(−u2)Φ(2u
√
Aτ ) , (19)

where the function Φ is given by

Φ(y) =
∑

m≥n

c̄mǫ2m exp(m2/3y) . (20)

If the coefficients c̄m do not grow too fast (which we shall assume hereafter) the function Φ(y) is well defined at least
for small values of y. Note that for the resummation of Eq. (19) it was not crucial that the power of m is 4/3. Such
a resummation can be performed for any power ᾱ < 2 replacing 4/3.
A more explicit resummation procedure for the r.h.s. of equation (17) can be developed with the help of fractional

derivatives. First, let us expand the exponential function

exp(Aτm4/3) =

∞
∑

k=0

(

Aτm4/3
)k

k!
. (21)

Then, writing ǫ2m = em ln ǫ2 ≡ eζm, we obtain

M̃n(τ) =

∞
∑

k=0

(Aτ)k

k!

∑

m≥n

c̄mm4k/3eζm . (22)

We now introduce the Weyl fractional derivative of order q of a function f(z) by the Weyl integral, see e.g. [32],

dqf(z)

dzq
≡ 1

Γ(−q)

∫ z

−∞

f(y)dy

(z − y)1+q
(23)
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where for q > 0 the integral should be properly regularized [32, 33], and Γ(−q) is the gamma function. For f(y) = eνζ

it takes the form

dqeνζ

dζq
= νqeνζ . (24)

Substitution of Eq. (24) in Eq. (22) with ν = m yields

M̃n(τ) =
∞
∑

k=0

(Aτ)k

k!

d4k/3

dζ4k/3

∑

m≥n

c̄mǫ2m . (25)

If c̄m are bounded, as shown in Appendix B, by some C̄n, the sum in Eq. (25) is bounded by C̄ne
2n

1−ǫ2 , hence M̃n is the

fractional derivative of some well defined function presented in Eq. (23) with its regularization.
Therefore, Eqs. (25) and (19) describe the long time asymptotics of the moments. Therefore, Eq. (17) is an

asymptotic expansion and is a good approximation as long as we sum decreasing terms. The condition is (for
bounded c̄m)

ǫ2m exp
(

Am4/3τ
)

> ǫ2(m+1) exp
(

A(m+ 1)4/3τ
)

. (26)

For large m this inequality is ln 1
ǫ > 2

3Aτm1/3 with m ≥ n. Consequently, for the time of the order

τ < τ
(n)
0 ≡ 3

2

ln(1/ǫ)

An1/3
(27)

the n-th moment will be dominated by the leading terms and will grow as in the linear case (β = 0).

C. The growth of the second moments

The second moments are of particular interest for the present work. Their growth for a time that is shorter than

τ
(1)
0 of Eq. (27) is dominated by the leading term, namely M̃2 = c̄2ǫ

2eλmax(1)τ . Consequently, for τ < τ
(1)
0 ,

〈u2〉 = M2,0 = c̄2ǫ
2eλmax(1)τ . (28)

This result was verified numerically. Using the analogy between the stationary Schrödinger equation (1) and the
Fokker-Planck equation (4) we identify the generalized Lyapunov exponent λmax(1) with the growth rate (2) as

2γ = λmax(1) = lim
x→∞

lim
ǫ→0

ln〈φ2(x)/ǫ2〉
x

> 0 . (29)

For τ > τ
(1)
0 , non-linear saturation effects become relevant and the full nonlinear theory should be used.

IV. SUMMARY

In this work the asymptotic behavior of the generalized Lyapunov exponents of the linear Fokker-Planck equation
(3) with β = 0, was found analytically and is given by Eq. (12). The resulting expression for the moments (17) is

divergent, but it can be resummed in the form Eqs. (19) or (25). Therefore, for short time τ < τ
(n)
0 , the first term in

Eq. (17) provides a good approximation of the moments. In particular, for the second moment this result enabled to
identify the generalized Lyapunov exponent of the linear system with the asymptotic growth rate for the nonlinear
one, namely

2γ = λmax(1) .

According to the implementation of the à la Borland method, as outlined in [20], this is the decay rate of the stationary
states of the random nonlinear equation (1), showing that it is independent of the nonlinearity β.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE GENERALIZED LYAPUNOV EXPONENTS

In this appendix, λmax(n), the maximal eigenvalue of the matrix (11) will be evaluated. Following [28] we call
this quantity a generalized Lyapunov exponent. By elementary dimensional analysis [28], one finds that the following
scaling is suggestive,

λmax(n) = D1/3Ln

( ω

D2/3

)

. (A1)

In the long time limit the moments of order 2n grow as eλmax(n)t. In [28], Zillmer and Pikovsky studied λmax(n) for
different values of n: they give exact expressions for n = 2, for n → 0 (which corresponds to the usual Lyapunov
exponent) and consider limiting cases for large values of the dimensionless parameter ω/D2/3. They also study
numerically the behavior of λmax(n) as n → ∞, keeping the dimensionless parameter fixed. They found numerically
the scaling law:

λmax(n) ∝ nα with α ≃ 1.4 . (A2)

The fact that the scaling exponent α is different from 2, implies deviations from Gaussian behavior and breakdown
of monoscaling; the consequences of this breakdown of single parameter scaling for conductance distribution were
studied by Schomerus and Titov [29]. We also remark that related studies were also carried out in the context of the
harmonic oscillator with random frequency [30, 31].
In this appendix, we study analytically the behavior of the generalized Lyapunov exponents in the limit n → ∞.

For the special case of ω = 0, we prove the following asymptotic formula:

λmax(n) ≃
3

4
D1/3(2n)4/3 . (A3)

We shall then argue that this behavior remains valid for any finite value of ω.
We now outline the proof of the scaling equation (A3) for ω = 0 by studying the large n behavior of the coefficients

of the characteristic polynomial P (X) of the matrix An. Recalling that if λn,1, . . . λn,2n+1 are the eigenvalues of An

we have

P (X) =

2n+1
∏

i=1

(X − λn,i) = X2n+1 − (

2n+1
∑

i=1

λn,i)X
2n + (

∑

i6=j

λn,iλn,j)X
2n−1 + . . .+

2n+1
∏

i=1

λn,i . (A4)

We also have λ(n) = maxl(Reλn,l). The coefficients of the characteristic polynomial P (X) are symmetric functions
of the eigenvalues λn,i. Thanks to the Newton formulae, all these coefficients can be written as linear combinations
of traces of powers of An. Hence, we have

P (X) = X2n+1 − Tr(An)X
2n +

1

2

(

[Tr(An)]
2 − Tr(A2

n)
)

X2n−1 + . . . (A5)

In principle, we can obtain the eigenvalues from the traces of the 2n + 1 powers of An. In practice, since we are
interested only in the asymptotic behavior of λmax(n), it will be computed from the traces of high powers. From
equation (11) we observe that Tr(An) = 0. In the case ω = 0, we also have Tr(A2

n) = 0. More generally, for ω = 0,
we can show that Tr(Ak

n) 6= 0 only when k is a multiple of 3. Indeed, writing

An = d+ g (A6)
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with

d =













0 2n 0
0 0 2n− 1

. .
. . .
0 1

0













and g = D





















0
0 0
2 0 0

6 0 0
12 0 0

. . .
. . .

. . .
2n(2n− 1) 0 0





















(A7)

we obtain

(d+ g)k =
∑

k1+k2=k

Wk1,k2
(A8)

where Wk1,k2
is a product of k factors with k1 factors equal to d and k2 factors equal to g, with k1 + k2 = k (there are

2k such terms because the matrices d and g do not commute). We remark that d is an upper-diagonal band matrix and
its non vanishing terms are all on the band located at level +1 above the diagonal. Similarly g is a lower-triangular
band matrix and its non vanishing terms are all on the band located 2 levels below the diagonal. Therefore a product
of k1 matrices d and k2 matrices g will have a non-zero diagonal term only if k1 = 2k2 i.e. if k = 3k2; hence, k is a
multiple of 3. For example, we have

Tr(A3
n) = Tr(ddg+dgd+gdd) = 3Tr(d2g) = 3D

2n−1
∑

l=1

l(l+1)(2n− l+1)(2n− l)≃ 3D(2n)5
∫ 1

0

x2(1−x)2dx = D
16n5

5
.

(A9)
More generally, the terms that contribute to Tr(A3k

n ) are obtained by taking the product of 2k factors d and k factors

g written in all possible orders (there are (3k)!
(2k)!k! such terms):

Tr(A3k
n ) =

∑

Tr(W2k,k) = d2kgk + ‘permuted terms’ (A10)

In particular, we have

Tr(d2kgk) = Dk
∑

l

l(l + 1)(l+ 2)..(l + 2k − 1)(2n− l + 1)(2n− l)...(2n− l − 2k + 2)

≃ Dk(2n)4k+1

∫ 1

0

x2k(1− x)2kdx = Dk(2n)4k+1 (2k)!(2k)!

(4k + 1)!
. (A11)

The trace of any term W2k,k is given by the same expression at the leading order: indeed, the elements of the matrix
dg are of order n3 whereas those of the commutator [d, g] are of order n2. The reason is that both dg and gd are
triangular with all nonvanishing matrix elements one level below the diagonal, of the form (dg)l,l−1 and (gd)l,l−1. In
the center of the matrix, l ≈ n, a generic term is of the order of n3 +O(n2). Therefore both dg and gd are dominated
by n3, while [d, g], given by the difference of two such terms is dominated by the O(n2) corrections. We know that any
W2k,k differs from d2kgk by a finite number of commutators. Therefore, Tr(W2k,k) = Tr(d2kgk)+ subleading terms.
We thus have

Tr(A3k
n ) ≃ Dk(2n)4k+1

(4k + 1)

(3k)!(2k)!

(4k)!k!
. (A12)

Rewriting this trace in terms of the eigenvalues of the matrix An, we obtain

2n+1
∑

i=1

λ3k
n,i ≃

Dk(2n)4k+1

(4k + 1)

(3k)!(2k)!

(4k)!k!
. (A13)

Besides, from equation (A12), we deduce that

[

Tr(A3
n)
]k

Tr(A3k
n )

∼ nk−1 . (A14)
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2n λmax(n)
3D(2n)4/3

4λmax(n)

10 15 1.077

40 101 1.015

80 257 1.006

100 347 1.003

120 443 1.0021

140 544 1.0022

160 650 1.0018

180 761 1.0016

200 876 1.0013

300 1504.7 1.0010

TABLE I: Behavior of the dominant eigenvalue in the case ω = 0, D = 1.

2n λmax(n)
3D(2n)4/3

4λmax(n)

10 13.2 1.223

40 95.9 1.072

80 248 1.043

100 336 1.035

120 431 1.031

140 530 1.028

160 635 1.026

180 745 1.023

TABLE II: Behavior of the dominant eigenvalue in the case ω = 1, D = 1.

This equation shows that the trace is not dominated by the largest eigenvalue alone: otherwise this ‘participation’
ratio would be of order one. Rather, a finite fraction ρ of the eigenvalues has a scaling behavior similar to that of
λmax(n) and we can write: Tr(A3k

n ) ∼ ρnλmax(n)
3k . Thus, we deduce from equation (A13) the following behavior

ρnλmax(n)
3k ≃ Dk(2n)4k+1

(4k + 1)

(3k)!(2k)!

(4k)!k!
. (A15)

Finally, using Stirling formula, we obtain for large k, assuming ρn does not vary strongly with n

λmax(n) ≃ D1/3(2n)4/3
((3k)!(2k)!

(4k)!k!

)1/3k

≃ 3

4
D1/3(2n)4/3 . (A16)

This ends the proof of equation (A3) or (12) in the case ω = 0. In Table I the highest eigenvalue of the matrix An is
computed numerically for various values of 2n up to 2n = 300 (for ω = 0 and D = 1). The asymptotic scaling given
in equation (A3) is well satisfied.
When ω is different from 0, we can still write An as a sum of two matrices as in equation (A6): the upper-diagonal

matrix d remains the same as in equation (A7) but the lower-triangular part g′ is now given by the previous g plus
a band-diagonal matrix g2(ω) (with a band-diagonal at level -1) which contains terms proportional to ω. However,
in the large n limit (and keeping the value of ω fixed) the matrix elements of g are much bigger than those of g2(ω):
hence g′ ≃ g up to subdominant contributions and the large n scaling of the maximal eigenvalue is insensitive to ω
at leading order, therefore equation (A3), derived for ω = 0, remains true for finite values of ω. In Tables II and III
we give numerical results ω = 1 and ω = −1 (taking D = 1 for both cases). The scaling behavior, proportional to
(2n)4/3, is well satisfied and it seems also that the prefactor 3/4 remains correct.
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2n λmax(n)
3D(2n)4/3

4λmax(n)

10 18 0.900

40 107.5 0.952

80 267 0.968

100 358 0.972

120 455 0.975

140 557.5 0.977

160 666 0.980

180 777 0.981

TABLE III: Behavior of the dominant eigenvalue in the case ω = −1, D = 1.

APPENDIX B: BOUNDNESS OF THE c̄n

Let us assume an expansion (of the initial moments (16))

Mn.l =
∞
∑

m=0

b
(n+m)
n,l ǫ2(n+m) (B1)

for the l-th moment of order n as defined after the matrix (11). The b’s are bound (by construction). Let us expand
the cn,l of Eq. (16) in powers of ǫ as

cn,l =
∑

m′

c̄
(m′)
n,l ǫ2m

′

. (B2)

Since only even moments are considered, the powers of ǫ are even. Now we write Eq. (16) in the form

Mn.l =
∑

n′,l′

cn′,l′U
(n,l)
n′,l′ , (B3)

where we equate the components of the vectors. now we use the property (14) of the eigenvectors U
(n,l)
n′,l′ , namely

U
(n,l)
n′,l′ = 0 for n > n′, and solve the equation order by order in ǫ.
Take first n = 1, and leading order in ǫ

b
(1)
1,l =

∑

l′

c̄
(1)
1,l′U

(1,l)
1,l′ l = 0, 1, 2 . (B4)

These are three linear equations for the c̄1,l′ , since the eigenvectors U
(1,l)
1,l′ are given.

Next take n = 2,

b
(2)
1,l =

2
∑

l′=0

c̄
(2)
1,l′U

(1,l)
1,l′ +

4
∑

l′=0

c̄
(2)
2,l′U

(1,l)
2,l′ (B5)

b
(2)
2,l =

2
∑

l′=0

c̄
(2)
1,l′U

(2,l)
1,l′ +

4
∑

l′=0

c̄
(2)
2,l′U

(2,l)
2,l′ . (B6)

These are eight equations for the c̄
(2)
2,l′ , c̄

(2)
1,l′ .

This process can be continued to any order in ǫ. The independence of the eigenvectors implies that finite solutions

for the c̄
(m′)
n,l can be obtained by Kramer’s rule. Note, that b

(m′)
n,l = 0 for n > m′, therefore, also c̄

(m′)
n,l = 0 for n > m′.

Therefore,

cn,l ∼ c̄nǫ
2n (B7)

for small ǫ.
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This shows that the c̄n are bounded for any finite n, but it does not imply the existence of a uniform bound for all
n and m.
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