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We use an effective Markovian description to study the long-time behaviour of a nonlinear second order Langevin equation with Gaussian noise. When dissipation is neglected, the energy of the system grows as with time a power-law with an anomalous scaling exponent that depends both on the confining potential and on the high frequency distribution of the noise. The asymptotic expression of the Probability Distribution Function in phase space is calculated analytically. The results are extended to the case where small dissipative effects are taken into account.

The influence of a random perturbation on a dynamical system is a problem of interest in various fields of science and engineering [START_REF] Arnold | Random Dynamical Systems[END_REF][START_REF]Stochastic dynamics[END_REF][START_REF] Horsthemke | Noise Induced Transitions[END_REF][START_REF] Miguel | Stochastic Effects in Physical Systems in Instabilities and Nonequilibrium Structures VI[END_REF][START_REF] Anishchenko | Nonlinear Dynamics of Chaotic and Stochastic Systems[END_REF][START_REF] Stratonovich | Topics on the Theory of Random Noise[END_REF]. The first example of a differential equation with stochastic terms appeared in Langevin's study of Brownian motion [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Gardiner | Handbook of Stochastic Methods[END_REF]: Langevin modelized the action of the solvant molecules on the Brownian particle as the sum of a deterministic viscous friction, proportional to the velocity of the Brownian particle, and of a random force of auto-correlation proportional to the temperature of the bath. Since then, it has been customary to add in the dynamical equations some phenomenological stochastic terms that describe random environmental loadings (e.g. the influence of a turbulent wind on a suspension bridge, or the study of random parametric vibration of helicopter rotor blades in atmospheric turbulent flow [START_REF] Roberts | Random Vibration and Statistical Linearization[END_REF][START_REF] Ibrahim | Parametric Random Vibration[END_REF]). Of particular interest is the determination of the energy flow into the system from external sources when the characteristic time of the parameters variations matches one of the natural frequencies of the system: parametric resonance then occurs and the rate of increase of the amplitude is generally exponential leading to an instability. The growth of the response is limited by various nonlinear effects.

Several methods have been developed to study random parametric vibrations [START_REF] Ibrahim | Parametric Random Vibration[END_REF]. One of the most efficient techniques is the averaging principle developed by Bogoliubov and Mitropol'skii for deterministic nonlinear vibrations [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillation[END_REF] where rapidly fluctuating circular coordinates are averaged out leading to a set of effective dynamical equations for slow variables. This method was extended to stochastic systems by Stratonovich [START_REF] Stratonovich | Topics on the Theory of Random Noise[END_REF] and put on a rigorous mathematical basis by Khas'minskii [START_REF] Khas | miniskii[END_REF] and by Papanicolaou and Kohler [13]. Since then, stochastic averaging has become a powerful method [14,15] (for a recent review see [16] and references therein).

In a series of recent works [17,18,19,20], we studied the long time behaviour of the nonlinear oscillator subject to parametric noise. We showed that, in the absence of dissipation, the nonlinear terms in the potential stiffness inhibit the exponential growth of the amplitude. The observables of the system (the amplitude, the momentum, the energy) rather display power-law scalings with anomalous diffusion exponents. When the parametric noise is a Gaussian white noise (i.e., it has a vanishingly small correlation-time), the averaging method, applied to the energy envelope [START_REF] Stratonovich | Topics on the Theory of Random Noise[END_REF][START_REF] Ibrahim | Parametric Random Vibration[END_REF]21,22,23], allows us to calculate analytically the time-asymptotic probability distribution function (PDF) of the system in phase space [17]; knowing this PDF, the scaling exponents and the corresponding prefactors are readily deduced. However, for colored noise a competition between conflicting time scales occurs. In fact, the nonlinear oscillator has an amplitude-dependent intrinsic frequency that increases with the amplitude. And as the oscillator absorbs energy from its environment, its amplitude grows and at a certain stage, the intrinsic period becomes smaller than the correlation time of the noise. This corresponds to a cross-over regime at which the correlation time of the noise ceases to be the smallest time-scale in the system: the scaling laws that govern the growth of amplitude, momentum and energy differ from those calculated for a white noise. Thus, when the amplitude of the oscillator is small its intrinsic period is large and the noise appears as if it were white and white noise exponents prevail; but at large amplitudes, the scaling regime changes and new exponents appear. Because of these conflicting time scales, the averaging technique is difficult to implement for a colored noise: at lowest order the noise itself is averaged out and the energy transfer stops at the cross-over time. Therefore one has to perform averaging at higher orders. When the colored noise is an Ornstein-Uhlenbeck process the calculations can be carried out by a second-order averaging, which requires rather tedious mathematical manipulations [18,19]. It is also possible to calculate the cross-over between the white noise and the Ornstein-Uhlenbeck scaling regimes. The averaging method works at second order for the Ornstein-Uhlenbeck noise because its time derivative is a white noise. However, if the random excitation is generated from a white noise through a differential equation of order n, one has to perform averaging at (n + 1)-th order and in practice, the calculations are intractable.

In the present work, we follow an entirely different approach to study the nonlinear oscillator subject to a parametric Gaussian noise with an arbitrary spectrum (with the assumption that the spectrum decays as a power-law at high frequencies). We shall use an effective coarse-grained Markovian description of the dynamics, following a technique developed by Carmeli and Nitzan [24] (see also [23,25] for a similar approach). This technique will allow us to calculate analytically the asymptotic PDF which leads to the formulae for the growth of the amplitude, of the momentum and the energy transfer. In particular we shall prove that the scaling exponents depend both on the stiffness of the potential at infinity and on the smoothness of the random excitation; smoother the noise (which corresponds to a faster decay of the power spectrum at high frequencies), less efficient is the energy transfer from the bath to the oscillator. The method used here can be adapted both to additive and to multiplicative noise, and can also be used when a small friction is present: the system reaches at large times a non-equilibrium steady state in which physical observables do not grow anymore; the cross-over from power-law growth to this steady state occurs when the rate of energy dissipation by friction matches that of energy absorption from the random environmental loading.

The outline of this work is as follows. In Section I, we define precisely the model we shall study. In Section II, we use the underlying integrability of the system to write exact dynamical equations in energy-angle variables and we use the coarse-grained Markovian description to derive an effective Fokker-Planck equation for the energy variable. In Section III, we derive explicit formulae for various cases: multiplicative or additive noise, with or without dissipation. This leads to a rather exhaustive description of all the different cases. In particular, we verify that this method allows us to recover the analytical results obtained previously for white and Ornstein-Uhlenbeck noises. The last section is devoted to concluding remarks.

I. THE NONLINEAR OSCILLATOR WITH PARAMETRIC NOISE

A paradigm for the study of interplay of noise and nonlinearity is the nonlinear oscillator subject to parametric random excitations:

d 2 dt 2 x(t) + γ d dt x(t) + (ω 2 0 + ξ(t)) x(t) + ∂U(x) ∂x = 0 . (1) 
The variable x(t) represents the amplitude of the oscillator at time t. The potential U(x) that confines the oscillator is assumed to grow faster than quadratically when |x| → ∞ giving rise to nonlinear terms in the restoring force. We shall make the simplifying assumption that U is an even function of x and behaves as a power-law of x when |x| → ∞.

Then, a suitable rescaling of x allows us to write

U ∼ x 2ν 2ν with ν ≥ 2 . (2) 
Typically, ν is an integer; the value ν = 3 corresponds to the Duffing oscillator. The physical interpretation of Eq. ( 1) is that the linear stiffness of the oscillator fluctuates around its mean value ω 2 0 because of randomness in the external conditions and this randomness is represented by external noise ξ(t). We also suppose that the oscillator is subject to a linear friction with damping coefficient γ.

Equation ( 1) is thus a nonlinear stochastic differential equation. When the multiplicative noise ξ(t) is a white noise, a coherent convention to perform stochastic calculus must be chosen. Although Ito calculus is favored by mathematicians, we shall use here the Stratonovich calculus [START_REF] Risken | The Fokker-Planck Equation: Methods of Solution and Applications[END_REF][START_REF] Mortensen | [END_REF] which is physically more sound because it appears naturally when one considers the white noise as a limit of colored noise with very short correlation time [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Risken | The Fokker-Planck Equation: Methods of Solution and Applications[END_REF]. This equation seems to be very elementary but it embodies many features of random dynamics: inertial effects, nonlinear stiffness and parametric noise. In fact, many complex dynamical systems that appear in realistic engineering problems can be reduced after some simplifying assumptions to Equation (1). For example, the torsional stability of a suspension bridge under the influence of wind loads can be reduced to an equation similar to the one we are studying [START_REF] Ibrahim | Parametric Random Vibration[END_REF]28]; similarly, the dynamics of liquid sloshing, the roll motion of a ship or the stability of helicopter rotor blades in hoover flight under atmospheric turbulence can be reduced to effective single-degree-of-freedom systems represented by a second order equation with random parametric vibrations (for explicit derivation of such equations see e.g. [START_REF] Ibrahim | Parametric Random Vibration[END_REF]). A similar equation has also been proposed by Fermi as an acceleration mechanism for interstellar particles [29,30,31]. Finally, from the mathematical point of view, Equation ( 1) is also very appealing: it is rich enough to exhibit an interesting dynamical behaviour but simple enough to allow for explicit solutions [32,[START_REF] Hänggi | Noise in Dynamical Systems[END_REF][START_REF] Gitterman | The noisy oscillator: the first hundred years, from Einstein until now[END_REF]. This explains why such a simple model can play the role of a paradigm.

The phase space origin, x = 0 and dx/dt = 0 is a solution of Eq. ( 1). However, it can be shown that this solution is unstable [START_REF] Bourret | [END_REF]36] when the power-spectrum of the noise contains all possible frequencies. When friction is neglected (i.e. if the underlying deterministic system is Hamiltonian), then because of the permanent injection of energy into the system by the noise, the amplitude, the velocity and the energy undergo anomalous diffusion. The associated anomalous diffusion exponents and amplitudes have been calculated exactly when the random excitation is a Gaussian white noise [17] or an Ornstein-Uhlenbeck process [18].

In the present work, we study the effect of the statistical properties of ξ(t) on the long time behaviour of the dynamical variable x(t). We must therefore specify the characteristics of the random perturbation ξ(t). We shall consider a stationary Gaussian noise of zero mean value. A Gaussian process is fully characterized by its autocorrelation function defined as

S(t ′ -t) = ξ(t ′ )ξ(t) . (3) 
In Fourier space, the power-spectrum of the noise is given by

Ŝ(ω) = +∞ -∞ dt exp(iωt)S(t) = +∞ -∞ dt exp(iωt) ξ(t)ξ(0) . (4) 
If ξ(t) is a white noise of amplitude D, we have

S(t ′ -t) = Dδ(t ′ -t) and Ŝ(ω) = D . (5) 
When ξ(t) is an Ornstein-Uhlenbeck process of amplitude D and of auto-correlation time τ , we have

S(t ′ -t) = D 2 τ e -|t-t ′ |/τ and Ŝ(ω) = D 1 + ω 2 τ 2 . ( 6 
)
In this work, we shall consider the case where the power-spectrum of ξ(t) decays at high frequencies in the following manner

Ŝ(ω) ∼ D(ωτ ) -2σ when |ω| → ∞ . (7) 
The amplitude D of the noise and the correlation-time τ are defined by dimensional analogy with equation ( 6). The exponent σ characterizes the high frequency behaviour of the power-spectrum. When σ is an integer, such a noise can be generated from the white noise by solving a linear differential equation of order σ.

We shall prove that in the long time limit, the statistical properties of the oscillator in the phase space can be classified by the following two parameters (i) the exponent ν, defined in Eq. ( 2), that encodes the large amplitude behaviour of the confining potential U; (ii) the exponent σ that determines the high frequency behaviour of the power-spectrum. For fixed values of ν and σ, the phase space distribution takes in the long time limit a universal form (that also depends on the dimensional parameters γ, τ and D) that we shall calculate.

II. EFFECTIVE DYNAMICS IN THE ASYMPTOTIC REGIME A. Use of integrability

The mechanical energy of the oscillator is defined as

E = 1 2 ẋ2 + U(x) . (8) 
In the absence of noise and dissipation this quantity is conserved. This implies that the Hamiltonian system underlying Eq. ( 1) is integrable. It is therefore possible to define an action variable J and an angular variable φ so that the transformation (p = ẋ, x) → (J, φ) is a canonical transformation. For a given value E of the energy, the angle φ is given by [START_REF] Landau | Mechanics[END_REF][START_REF] Lichtenberg | Regular and Chaotic Dynamics[END_REF] 

φ = ω(E) x 0 dy 2(E -U(y)) with ω(E) = 2 π xmax 0 dy 2(E -U(y)) -1 , (9) 
where x max satisfies U(x max ) = E (recall that U is an even function). With this definition, the range of the phase φ is 2π. The action variable J is a function of the energy only and is determined by the following equation:

dJ dE = 1 ω(E) . ( 10 
)
The Hamiltonian equations of motions, in terms of the action-angle variables, read simply:

J = - dE(J, φ) dφ = 0 (11) φ = dE(J, φ) dJ = ω(E) . (12) 
The variables (E, φ) define a bona fide set of coordinates on phase space. The formulae for transforming the variables from position and velocity to energy and angle are given by:

x(E, φ) = +∞ n=-∞ x n (E)e inφ (13) ẋ(E, φ) = +∞ n=-∞ v n (E)e inφ = iω(E) +∞ n=-∞ nx n (E)e inφ . (14) 
Here again to write this change of variables, we have used only the deterministic and dissipationless parts of the dynamics. We choose the origin of φ such that x n (E) is a real number and that x n (E) = x -n (E). We also write

1 2 x 2 (E, φ) = +∞ n=-∞ y n (E)e inφ . ( 15 
)
We then have

∂ ∂E 1 2 x 2 (E, φ) = +∞ n=-∞ dy n (E) dE e inφ , (16) 
d dt 1 2 x 2 (E, φ) = iω(E) +∞ n=-∞ ny n (E)e inφ . ( 17 
)
In the general case, we find from Eq. ( 1) that the time variation of the energy is given by

dE dt = -γ ẋ2 + ξ(t) d dt x 2 2 . ( 18 
)
We have used here the rules of classical calculus when changing variables [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Risken | The Fokker-Planck Equation: Methods of Solution and Applications[END_REF]: this is allowed because we are working with the Stratonovich interpretation of Eq. ( 1). The energy variation has thus two contributions: a loss term due to friction and a stochastic 'elastic energy' term due to the work of the random multiplicative force xξ(t).

The time variation of the angle variable is given by

dφ dt = ω(E) + (γ ẋ -xξ(t)) ω(E) ∂x ∂E = ω(E) + γω(E) ẋ ∂x ∂E -ξ(t)ω(E) ∂ ∂E 1 2 x 2 (E, φ) . ( 19 
)
If we substitute in the two dynamical equations ( 18) and ( 19), the expressions given in Eqs. ( 13), ( 14), ( 16) and ( 17), we obtain

Ė = γω 2 (E) +∞ n=-∞ +∞ m=-∞ x n (E)x m (E)e i(n+m)φ -ξ(t)ω(E) +∞ n=-∞ iny n (E)e inφ (20) 
φ = ω(E) + γω 2 (E) +∞ n=-∞ +∞ m=-∞ inx n (E) dx m (E) dE e i(n+m)φ + ξ(t)ω(E) +∞ n=-∞ dy n (E) dE e inφ . (21) 
We emphasize that this coupled system of stochastic nonlinear equations is rigorously equivalent to the initial random dynamical equation (1).

B. The effective Markovian description

Although the problem we study here is non-Markovian, because the noise has a non-vanishing correlation time, it is possible to derive for the associated Probability Distribution Function P t (E, φ) an effective coarse-grained Markovian equation using a Kramers-Moyal type expansion [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Gardiner | Handbook of Stochastic Methods[END_REF][START_REF] Risken | The Fokker-Planck Equation: Methods of Solution and Applications[END_REF]:

∂P t (E, φ) ∂t = lim δ→0 + 1 δ ∞ n=1 (-1) n n! m+k=n m,k≥0 ∂ ∂E m ∂ ∂φ k [ M m,k (E, φ, t, δ)P t (E, φ) ] ( 22 
)
where we have defined

M m,k (E, φ, t, δ) = (∆E t (δ)) m (∆φ t (δ)) k , (23) 
with ∆E t (δ) = E(t + δ) -E(t) = δ 0 ds Ė (E(t + s), φ(t + s), t + s) , (24) 
and ∆φ t

(δ) = φ(t + δ) -φ(t) = δ 0 ds φ (E(t + s), φ(t + s), t + s) . (25) 
The expressions of Ė and φ on the r.h.s. of Eqs. ( 24) and ( 25) are given in Eqs ( 20) and ( 21) respectively. The time scale δ that appears in the Kramers-Moyal expansion must be chosen in a physically relevant manner: δ has to be small but must remain larger than the intrinsic period of the oscillator (this condition is automatically fulfilled at large amplitudes because the intrinsic period tends to zero). Besides, one must also have δ ≫ τ (where τ characterizes the correlation-time of the noise) in order to end up with an effective Markovian description of the dynamics.

A systematic procedure for evaluating the coefficients M m,k that appear in Kramers-Moyal expansion has been developed by Carmeli and Nitzan in [24]. We first rewrite Eqs. ( 24) and ( 25) as

∆E t (δ) = δ 0 ds Ė (E(t) + ∆E t (s), φ(t) + ∆φ t (s), t + s) ( 26 
)
∆φ t (δ) = δ 0 ds φ (E(t) + ∆E t (s), φ(t) + ∆φ t (s), t + s) . ( 27 
)
The values of ∆E t (δ) and ∆φ t (δ) are evaluated according to the following iteration scheme, labelled by the integer index l

∆E (l) t (δ) = δ 0 ds Ė E(t) + ∆E (l-1) t (s), φ(t) + ∆φ (l-1) t (s), t + s (28) 
∆φ

(l-1) t (δ) = δ 0 ds φ E(t) + ∆E (l-1) t (s), φ(t) + ∆φ (l-1) t (s), t + s , (29) 
with initial values given by ∆E (0) t (s) = 0 and ∆φ

(0) t (s) = ω(E)s . (30) 
Performing this expansion and neglecting the terms of order δ n with n > 1, we obtain, in the limit δ → 0, after some systematic but tedious calculations:

1 δ ∆E(δ) = -γω 2 (E) +∞ n=-∞ n 2 |x n (E)| 2 + +∞ n=-∞ n 2 Ŝn 4 d (ω(E)y n (E)) 2 dE + ω 2 (E) d (y n (E)) 2 dE + ω 2 (E) 2 +∞ n=-∞ n 2 |y n (E)| 2 d Ŝn dE , (31) 
1 2δ (∆E) 2 (δ) = ω 2 (E) 2 +∞ n=-∞ n 2 |y n (E)| 2 Ŝn , (32) 
∆E(δ)∆φ(δ) = 0 , (33) 
where we have defined

S n = S(nω(E)) = +∞ -∞ dt exp(inω(E)t) ξ(t)ξ(0) . (34) 
We do not need to give the exact values of ∆φ(δ) and (∆φ) 2 (δ) because they will have no incidence in the following calculations. Higher moments are negligible at the considered order of the calculations.

C. Effective Fokker-Planck equation for the energy

We now substitute the average values calculated in Eqs. (31,32 and 33) into the Kramers-Moyal expansion (22). Because the cross-correlation term ∆E(δ)∆φ(δ) vanishes, we can integrate out the angular variable from Eq. ( 22) and obtain an effective Fokker-Planck equation for the energy:

∂P t (E) ∂t = - ∂ ∂E ∆E(δ) δ P t (E) + ∂ 2 ∂E 2 (∆E) 2 (δ) 2δ P t (E) . (35) 
Defining the following two auxiliary functions:

ǫ 1 (E) = +∞ n=-∞ n 2 |x n (E)| 2 , (36) 
ǫ 2 (E) = 1 2 +∞ n=-∞ n 2 |y n (E)| 2 Ŝn , (37) 
we rewrite Eqs. ( 31) and ( 32) as follows:

1 δ ∆E(δ) = -γω 2 (E)ǫ 1 (E) + ω 2 (E) dǫ 2 (E) dE + ǫ 2 (E)ω(E) dω(E) dE , (38) 
1 2δ (∆E) 2 (δ) = ω 2 (E)ǫ 2 (E) . (39) 
Substituting these expressions in Eq. ( 35) leads us to the effective Fokker-Planck equation for the energy:

∂P t (E) ∂t = ∂ ∂E ω(E) γǫ 1 (E) + ǫ 2 (E) ∂ ∂E ω(E)P t (E) . (40) 
For dissipationless motion, γ = 0, this equation does not have a stationary solution: the particle diffuses in phase space by absorbing energy from the noise and there is no mechanism to limit the growth of the amplitude. The observables grow as power-laws with time as the explicit solutions of the next section will show. When γ = 0, the system reaches a stationary measure characterized by a non-equilibrium steady state with an asymptotic probability distribution P stat (E) that differs from the canonical Boltzmann-Gibbs law. For γτ ≪ 1, the effective Markovian description remains valid and the stationary solution of the effective Fokker-Planck equation is given by

P stat (E) = N ω(E) e -γ R E 0 du ǫ 1 (u) ǫ 2 (u) (41) 
where the prefactor N ensures the normalization of P stat (E).

III. EXPLICIT SOLUTIONS A. The Hamiltonian case

We shall first consider the case where the dissipation effects are not taken into account. In the absence of dissipation, the physical observables such as the amplitude, the velocity and the energy of the oscillator grow as power-laws with time. We shall calculate the associated scaling exponents and prove that their values depend only on ν which determines the behaviour of the external potential at large amplitudes and on σ that measures the relative weight of high frequencies in the noise spectrum (and which also characterizes the smoothness of the noise).

In the long time limit, the particle diffuses to large amplitudes in phase space. Therefore in Eq. ( 1) we can neglect the linear restoring force (proportional to ω 0 ) and replace the potential by its asymptotic behaviour given in Eq. ( 2): U(x) ∼ x 2ν 2ν . Then, the change of variables to energy and angle coordinates, given in Eqs. ( 8) and ( 9), takes the simpler form:

E = 1 2 ẋ2 + x 2ν 2ν , and φ = π 2 x/(2νE) 1/2ν 0 du √ 1-u 2ν 1 0 du √ 1-u 2ν . ( 42 
)
The equation of motion for the underlying deterministic system are given by

Ė = 0 (43) φ = ω(E) where ω(E) = π 2 √ ν (2νE) ν-1 2ν 1 0 du √ 1-u 2ν = C ν E ν-1 2ν with C ν = (2ν) ν-1 2ν Γ( ν+1 2ν ) Γ( 1 2ν ) √ πν , (44) 
where the last formula, in terms of the Euler Gamma function, is obtained from [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. We now define [START_REF] Byrd | Handbook of elliptic integrals for engineers and physicists[END_REF] the hyperelliptic function T ν :

T ν (Y ) = X ↔ Y = X 0 du √ 1 -u 2ν . ( 45 
)
The function T ν is periodic with period

t ν = 4 1 0 du √ 1 -u 2ν = 2 √ π ν Γ( 1 2ν ) Γ( ν+1 2ν ) . ( 46 
)
Inverting Eq. ( 42), we express the position and the velocity in terms of energy and angle using the function T ν [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Byrd | Handbook of elliptic integrals for engineers and physicists[END_REF]:

x(E, φ) = (2νE)

1 2ν T ν t ν φ 2π , ( 47 
) ẋ(E, φ) = √ 2E T ′ ν t ν φ 2π , ( 48 
)
where T ′ ν is the derivative of the function T ν which, using Eq. ( 45), satisfies the relation

(T ν (Y )) 2ν + (T ′ ν (Y )) 2 = 1 . (49) 
The coordinates x and ẋ are 2π periodic functions of the angle variable φ; they can thus be developed into Fourier Series as in Eqs. ( 13) and ( 14). More precisely, if we write

T ν t ν φ 2π = +∞ n=-∞ f n e inφ , (50) 
we obtain the Fourier coefficients of x and ẋ

x n (E) = (2νE)

1 2ν f n and v n (E) = √ 2E (inf n ) . ( 51 
)
We note that, in the present case, the Fourier coefficients depend on the energy E only through a global prefactor that does not depend on the harmonic n. This identification allows to calculate exactly the function ǫ 1 (E) defined in Eq. ( 36):

ǫ 1 (E) = (2νE) 1 ν +∞ n=-∞ n 2 f 2 n = (2νE) 1 ν 2π t ν 2π 2 2π 0 T ′ ν t ν φ 2π 2 dφ = (2νE) 1 ν t ν (2π) 2 4 tν /4 0 T ′ ν (Y ) 1 -(T ν (Y )) 2ν dY = (2νE) 1 ν t ν π 2 1 0 du 1 -u 2ν , ( 52 
)
where the second equality is obtained using Parseval's identity, the third equality using Eq. ( 49) over a quarter of a period of the hyperellectic function T ν and the fourth equality by the change of variable T ν (Y ) = u. Using the expression (46) and evaluating the last integral in terms of Gamma functions [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], we obtain:

ǫ 1 (E) = (2νE) 1 ν ν πν(ν + 1) Γ 2 ( 1 2ν ) Γ 2 ( ν+1 2ν ) . ( 53 
)
We now calculate the function ǫ 2 (E), defined in Eq. [START_REF] Landau | Mechanics[END_REF]. Using Eqs. ( 15) and (47), we find that

y n (E) = (2νE) 1 ν 2 g n where T 2 ν t ν φ 2π = +∞ n=-∞ g n e inφ . (54) 
Because T ν is a real and even function of φ, we have g n = g -n and we can rewrite ǫ 2 (E) as follows:

ǫ 2 (E) = (2νE) 2 ν 4 +∞ n=1 n 2 g 2 n Ŝn . (55) 
This sum depends in a non-trivial manner on the noise spectrum. We are, however, interested in the long time behaviour of the Probability Distribution Function ∂P t (E). When t → ∞ the typical value of the energy E of the system also increases without bounds and, therefore, the intrinsic frequency ω(E) of the system, which according to Eq. ( 44) is proportional to E ν-1 2ν , also increases without bounds. Thus, when t → ∞, we can replace Ŝn ( = Ŝ(nω(E)) ) by its asymptotic behaviour given in Eq. ( 7) and obtain

ǫ 2 (E) = D (2νE) 2 ν 4(ω(E)τ ) 2σ +∞ n=1 n 2-2σ g 2 n . (56) 
Denoting by A σ the value of the convergent series +∞ n=1 n 2-2σ g 2 n , we can write

ǫ 2 (E) = D ν,σ τ 2σ E 2-σ(ν-1) ν with D ν,σ = D (2ν) 2 ν 4 (C ν ) 2σ A σ , (57) 
where C ν was defined in Eq. ( 44). When the noise is white σ = 0, its power spectrum is constant and the sum in Eq. ( 55) can be evaluated exactly. Following steps similar to those which led to Eq. ( 52), we obtain

ǫ 2 (E) = D (2νE) 2 ν 4πν 2 Γ( 1 2ν )Γ( 3 2ν ) Γ( ν+1 2ν )Γ( 3ν+3 2ν ) . (58) 
For an Ornstein-Uhlenbeck noise σ = 1 and we must evaluate the expression +∞ n=1 g 2 n . This, again can be done explicitely, thanks to the Parseval identity:

ǫ 2 (E) = D (2νE) 3-ν ν 8πντ 2 Γ( 1 2ν )Γ( 5 2ν ) Γ( ν+1 2ν )Γ( 5+ν 2ν ) - Γ 2 ( 3 2ν ) Γ 2 ( ν+3 2ν ) . (59) 
We now deduce the asymptotic expression of the Probability Distribution Function ∂P t (E) in the limit t → ∞ and when there is no dissipation. The effective Fokker-Planck equation then reduces to

∂P t (E) ∂t = ∂ ∂E ω(E)ǫ 2 (E) ∂ ω(E)P t (E) ∂E . (60) 
Taking into account the expressions of ω(E) and ǫ 2 (E), given in Eqs. ( 44) and (57) respectively, we can rewrite this equation as

∂P t (E) ∂t = D ν,σ (C ν ) 2 τ 2σ ∂ ∂E E ψ ∂ E ν-1 2ν P t (E) ∂E with ψ = ν + 3 -2σ(ν -1) 2ν . (61) 
This equation has a self-similar structure [START_REF] Barenblatt | Similarity, Self-Similarity and Intermediate Asymptotics[END_REF] and it is natural to look for solutions of the form

P t (E) = 1 E φ E α Kt with K = D ν,σ (C ν ) 2 τ 2σ and α = (σ + 1)(ν -1) ν , (62) 
the prefactor 1/E ensures that P t (E) is normalized. The function φ(u) of the scaling variable u = E α /(Kt) satisfies an ordinary differential equation. The solution of this equation is given by

φ(u) ∝ u ν+1 2να e -u α 2 . ( 63 
)
Inserting this solution into the expression (61) for P t (E) we find, after normalisation, the following asymptotic formula for the probability distribution function:

P t (E) = α Γ ν+1 2να 1 E E α α 2 Kt ν+1 2να exp - E α α 2 Kt , (64) 
where K and α are defined in Eq. ( 62).

From this general result, we can retrieve the solutions for white noise (W) and for Ornstein-Uhlenbeck (OU) noise. For white noise, using Eq. (58) we have

P W t (E) = 1 Γ ν+1 2(ν-1) ν -1 νE E ν-1 ν 2 DW t ν+1 2(ν-1) exp - E ν-1 ν 2 DW t , with DW = D (2ν) 1 ν (ν -1) 2 2ν(ν + 1) Γ( 3 2ν )Γ( 3ν+1 2ν ) Γ( 1 2ν )Γ( 3ν+3 2ν ) . ( 65 
)
This formula was also obtained in [17] by stochastic averaging. For Ornstein-Uhlenbeck noise, we have, using Eq. ( 59)

P OU t (E) = 1 Γ ν+1 4(ν-1) 2(ν -1) νE E 2 ν-1 ν 2 Dou t ν+1 4(ν-1) exp - E 2 ν-1 ν 2 Dou t , with Dou = D 4τ 2 ν -1 ν 2 (2ν) 2 ν Γ( ν+1 2ν )Γ( 5 2ν ) Γ( 1 2ν )Γ( 5+ν 2ν ) - Γ 2 ( ν+1 2ν )Γ 2 ( 3 2ν ) Γ 2 ( 1 2ν )Γ 2 ( ν+3 2ν ) . ( 66 
)
This formula is identical to the one derived in [18] by using the averaging method at the second order.

To summarize, we have shown that in the long time limit the scaling behaviour of the dissipationless nonlinear oscillator in presence of a noise with a power-spectrum that satisfies equation [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF], is given by

E ∼ Dt τ 2σ ν (σ+1)(ν-1) , x ∼ Dt τ 2σ 1 2(σ+1)(ν-1) , ẋ ∼ Dt τ 2σ ν 2(σ+1)(ν-1)
.

(67)

These scalings, derived here by a systematic calculation, agree with the results given in [20] that were conjectured by performing a partial resummation of the small correlation-time expansion of the stochastic Liouville equation associated with the random dynamical system under study. The method used in [18,20] was an approximation that could not be applied to the system studied here but only to a simplified model. In fact the resummation technique yielded the correct exponents but the prefactors were out of reach. Here, we have obtained the closed expression (64) for the Probability Distribution Function, which contains the full information on the statistics of the system when t → ∞, ı.e., it provides us the scaling exponents and the corresponding prefactors.

B. The dissipative case

In the presence of dissipation, the system reaches in the long time limit a steady state with the stationary probability given by Eq. [START_REF] Byrd | Handbook of elliptic integrals for engineers and physicists[END_REF]. Using Eqs. ( 53) and (56), we find the explicit formula for this stationary distribution:

P stat (E) = α Γ ν+1 2να 1 E 2νγ E α αK(ν + 1) ν+1 2να exp - 2νγ E α α K(ν + 1) , (68) 
where K and α are defined in Eq. (62). From this stationary PDF we find that the typical value of the energy is given by

E α ∼ D γτ 2σ . ( 69 
)
We observe that the expression of P stat (E) becomes identical to that given in Eq. (64) if the time t in Eq. ( 64) is replaced by t γ with

t γ = 1 γ ν + 1 2(σ + 1)(ν -1) . ( 70 
)
The value of t γ determines the time scale at which the system becomes sensitive to the dissipative effects. For t ≪ t γ , the system evolves as if it were Hamiltonian and the physical observables grow algebraically with time. For t ≫ t γ , the system sets in its steady state and the statistical averages of the physical observables become stationary. Finally, we justify the validity range of the stationary probability distribution (68). We recall [24] that the Markovian approximation is valid only if γ -1 is much smaller than the correlation time τ of the noise, i.e., γτ ≪ 1 .

Besides, the presence of dissipation should not alter significatively the dynamics of the fast variable φ: thus on the r.h.s. of Eq. ( 21) the second term must remain much smaller than the first one. Using Eqs. (44, 47 and 48) this requires that γ ≪ E (ν-1)/2ν . From the typical value (69) of the energy and the expression of α given in (62), this condition becomes

(γτ ) 2σ γ 3 ≪ D . (72) 
Thus, a sufficient condition is γ 3 < D. For higher values of the dissipation rate, the expression (68) will no more be valid. The behaviour of the system can change drastically and a phase transition to a state localized at the origin x = ẋ = 0 can occur [START_REF] Horsthemke | Noise Induced Transitions[END_REF][START_REF] Bourret | [END_REF][START_REF] Mallick | [END_REF].

C. The additive noise case

In this last subsection, we study the nonlinear oscillator driven by an additive noise:

d 2 dt 2 x(t) + γ d dt x(t) + ∂U(x) ∂x = ξ(t) . (73) 
The change of coordinates to energy and angle variables is the same as in Eqs. ( 13) and ( 14). The dynamical equations in these coordinates will read

Ė = γω 2 (E) +∞ n=-∞ +∞ m=-∞ x n (E)x m (E)e i(n+m)φ + ξ(t)ω(E) +∞ n=-∞ inx n (E)e inφ (74) 
φ = ω(E) + γω 2 (E) +∞ n=-∞ +∞ m=-∞ inx n (E) dx m (E) dE e i(n+m)φ -ξ(t)ω(E) +∞ n=-∞ dx n (E) dE e inφ . (75) 
Using the Carmeli-Nitzan technique, we derive the following effective Fokker-Planck equation for the energy:

∂P t (E) ∂t = ∂ ∂E ω(E) γǫ 1 (E) + ǫ2 (E) ∂ ∂E ω(E)P t (E) , (76) 
the function ǫ 1 (E) was defined in Eq. ( 36) and ǫ2 (E) is given by ǫ2

(E) = 1 2 +∞ n=-∞ n 2 |x n (E)| 2 Ŝn . (77) 
Denoting by Ãσ the value of the convergent series

+∞ n=1 n 2-2σ f 2 n , we can write ǫ2 (E) = Dν,σ τ 2σ E 1-σ(ν-1) ν with Dν,σ = D (2ν) 2 ν 4 (C ν ) 2σ Ãσ . (78) 
The constant C ν was defined in Eq. ( 44). It is possible to carry out explicit calculations following the same lines as for the multiplicative noise case. If dissipation is neglected, probability distribution function is found to be

P t (E) = α Γ ν+1 2ν α 1 E E α α2 Kt ν+1 2ν α exp - E α α2 Kt , (79) 
where α and K are given by α = (σ + 1)(ν -1) + 1 ν and K = Dν,σ (C ν ) 2

τ 2σ . ( 80 
)
For the special cases of white noise or Ornstein-Uhlenbeck noise, explicit expressions for K can be derived and the formulae for the probability distribution function derived in [19] using the averaging method are recovered. Thus, in the absence of dissipation, the following algebraic scalings for the main observables of the system are satisfied .

(81)

In particular, when the noise is white (or if the potential is quadratic), we recover the result that the energy grows linearly with time. The amplitude of the noise being constant, the exponents in the additive case are smaller than those in the multiplicative case, as expected.

If we take dissipation into account, the system reaches a steady state in the long time limit. The expression of the stationary probability matches that of Eq. (79) if t is taken to be

t → 1 γ ν + 1 2 (ν + σ(ν -1)) . ( 82 
)
This expression defines the dissipation time scale for a nonlinear oscillator subject to additive noise.

IV. CONCLUSION

We have used an effective coarse-grained Markovian description to carry out a quantitative analysis of the nonlinear oscillator confined by a polynomial potential and subject to Gaussian noise of arbitrary spectrum that decays as a power-law at high frequencies. This approach has allowed us to calculate the distribution, in phase space, of the dynamical system in the long time limit. In the absence of dissipation, the particle diffuses without bounds with an anomalous scaling law. The energy transfer from the random perturbation to the particle also follows a scaling power-law. The diffusion exponents and the corresponding amplitudes are determined exactly. In the presence of dissipation, the system reaches a non-equilibrium steady state; the corresponding stationary distribution has also been calculated analytically in the limit of vanishingly small dissipation. The advantage of the method used here as compared to stochastic averaging is that it can readily be adapted to any noise spectrum. For white and Ornstein-Uhlenbeck noises, the two approaches give identical results. It would be of great interest to apply this method to higher dimensional integrable systems subject to stochastic perturbations such as the nonlinear Schrödinger equation in a random potential, which is often used to study the effect of nonlinearity on localization.