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Abstract

We study the stochastic dynamics of growth and shrinkage of single actin
filaments taking into account insertion, removal, and ATP hydrolysis of sub-
units either according to the vectorial mechanism or to the random mech-
anism. In a previous work, we developed a model for a single actin or
microtubule filament where hydrolysis occurred according to the vectorial
mechanism: the filament could grow only from one end, and was in contact
with a reservoir of monomers. Here we extend this approach in several ways,
by including the dynamics of both ends and by comparing two possible mech-
anisms of ATP hydrolysis. Our emphasis is mainly on two possible limiting
models for the mechanism of hydrolysis within a single filament, namely the
vectorial or the random model. We propose a set of experiments to test the
nature of the precise mechanism of hydrolysis within actin filaments.
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Introduction

Actin monomers polymerize to form long helical filaments, by addition of
monomers at the ends of the filament. The two ends are structurally dif-
ferent. The addition and removal of subunits at one end, the barbed end,
are substantially faster than at the other end, the pointed end. In an equi-
librium polymer, the critical concentration at which the on- and off-rates
are balanced must be the same at both ends for thermodynamic reasons (1).
But actin is not an equilibrium polymer, it is an ATPase, and ATP is rapidly
hydrolyzed after polymerization. Due to this constant energy consumption,
the actin polymer exhibits many interesting non-equilibrium features; most
notably it is able to maintain different critical concentrations at the two ends
(2). This allows the existence of a special steady-state called treadmilling,
characterized by a flux of subunits going through the filament, which has
been observed both with actin as well as with microtubules filaments (3).

The precise molecular mechanism of hydrolysis in actin has been contro-
versial for many years. For each of the two steps involved in the hydrolysis
(the ATP cleavage and the Pi release), the possibility of the reaction oc-
curring either at the interface between neighboring units carrying different
nucleotides or at random location within the filament can be invoked. The
vectorial model corresponds to a limit of infinite cooperativity in which the
hydrolysis of a given monomer depends entirely on the state of its neighbors,
and the random model is a model of zero cooperativity in which the hydrol-
ysis of a given monomer is independent of the state of its neighbors. In
between these two limits, models with a finite cooperativity have been con-
sidered (4, 5). A direct evidence for a cooperative mechanism was brought
recently by the authors of Ref. (6), who observed GTP-tubulin remnants
using a specific antibody.

Several groups have emphasized the process of random cleavage followed
by random Pi release (7, 8). By studying the polymerization of actin in the
presence of phosphate, the authors of Ref. (2) argued that the crucial step
of release of the phosphate is not a simple vectorial process but is proba-
bly cooperative. Since this release of phosphate is slow, the delay between
the completion of hydrolysis and the polymerization can lead to overshoots
which indeed have been observed in fluorescence intensity measurements of
pyrene-labelled actin during rapid polymerization as discussed in (9). At
the single filament level, the dynamics of depolymerization is also very in-
teresting. The study of this dynamics provides insights into the underlying
mechanism of hydrolysis in actin as discussed recently in Refs. (5, 10).

Although decades of work in the biochemistry of actin have provided a
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lot of details on the kinetics of self-assembly of actin in the absence and in the
presence of actin binding proteins, it is difficult to capture the complexity of
this process without a mathematical model to organize all this information.
To this end, we have studied a non-equilibrium model for a single actin or
microtubule filament (11) based on the work of Stukalin et al. (12). In this
model, the hydrolysis of subunits inside the filament is a vectorial process,
the filament is in contact with a reservoir of monomers, and growth occurs
only from one end. We have analyzed the phase diagram of that model with a
special emphasis on the bounded growth phase, and we have discussed some
features of the dynamic instability. Our approach differs from previous work
on the dynamic instability of microtubules in the following way: the model
is formulated in terms of rates associated with monomer addition/removal
and hydrolysis rather than in terms of phenomenological parameters such
as the switching rates between states of growth and collapse as done in
Refs. (13, 14). This should be a definite advantage when bridging the gap
between the theoretical model and experiments.

The work of Flyvbjerg et al. (14) has inspired a number of other theoret-
ical models, based on a microscopic treatment of growth, decay, catastrophe
and rescue of the filament: see in particular Ref. (15) and Refs. (16–18),
which analyze using analytical and numerical methods several aspects of
the dynamic instability of microtubules.

In this paper, we present a model for a single actin filament which ac-
counts for the insertion, removal, and ATP hydrolysis of subunits at both
ends. It extends our previous work (11) in several ways: first by including
the dynamics of both ends and secondly by carrying out simulations for both
mechanisms of hydrolysis – vectorial and random. In section 1 we present
the first extension due to the inclusion of both ends, and in section 2 we
study the two versions of the model for the hydrolysis within the filament.
In the last section 3, we examine transient properties of a single filament
using numerical simulations and we show that for these transient properties,
the vectorial and random models lead to distinct behaviors. This suggests
experiments that would allow to discriminate between the two models.

1 Vectorial model of hydrolysis with activity at

both ends

ATP hydrolysis is a two steps process: the first step is the ATP cleavage
which produces ADP-Pi, and which is rapid. The second step is the release
of the phosphate (Pi), which leads to ADP-actin and which is by compar-
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ison much slower (19). ADP-Pi-actin and ATP-actin have similar critical
concentrations but they are kinetically different species, since they have dif-
ferent on and off rates as shown in Ref. (2). Nevertheless, from a kinetic
point of view, the slow step of release of the phosphate is the rate-limiting
essential step. This suggests that many kinetic features of actin polymeriza-
tion can be explained by a simplified model of hydrolysis, which takes into
account only the second step of hydrolysis and treats actin subunits bound
to ATP and actin subunits bound to ADP-Pi as a single specie. This is the
assumption of Ref. (12), which we have used in our published study (11) as
well as in the present work. In other words, what is meant by hydrolysis in
all these references is the step of Pi release. In this section, we assume that
this release of Pi is a vectorial process described as a single reaction with
rate R.

Let us recall the main features of the phase diagram of our previous
model which assumes that only one end is growing. The model has three
different phases: two phases of unbounded growth and one phase of bounded
growth. In one phase of unbounded growth (phase III), both the cap and
the bulk of the filament are unbounded. In this rapidly growing phase, the
filament is essentially made of unhydrolyzed ATP-actin monomers. In the
intermediate phase of unbounded growth (phase II), the cap length remains
constant as a function of time while the length of the filament grows lin-
early with time. Finally, in the phase of bounded growth (phase I), both
cap length and filament length remain constant on average. This phase is
characterized by a finite average length 〈l〉 and by a specific length distri-
bution of the filament which were calculated in Ref. (11). The phase of
unbounded growth is frequently observed with actin, whereas the interme-
diate phase only exists as a steady state in a small interval of concentration
of actin monomers near the critical concentration. The intermediate phase
can, however, be observed outside this interval in a transient way, by forcing
filaments to depolymerize through a dilution of the external medium. The
phase of bounded growth of a single filament growing from one end only has
not been observed experimentally so far with actin, but it has been observed
and is well known in microtubules (13, 14).

We now extend the single-end model by including dynamics at both the
ends. We keep, as before, the assumption of vectorial hydrolysis, which
means that there is a single interface between the ATP subunit and ADP
subunits, and the assumption of a reservoir of free ATP subunits in contact
with the filament. The addition of ATP subunits occurs with rate U at
the barbed end, the removal of ATP subunits occurs with rate W+

T at the
barbed end and with a rate W−

T at the pointed end. The removal of ADP
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subunits occurs at the barbed end only if the cap is zero, with rate W+

D . At
the pointed end, ADP subunits are removed with a rate W−

D . Note that we
neglect the possibility of addition of ATP subunits at the pointed end, this
assumption is not essential but simplifies the analysis.

In Fig. 1, we have pictorially depicted all these moves discussed above.
Furthermore, we have assumed that all the rates are independent of the con-
centration of free ATP subunits C except for the on-rate which is U = k0C.
All the rates of this model have been determined precisely experimentally
except for R. The values of these rates are given in table 1.

The state of the filament can be represented in terms of n, the number
of ADP subunits and k the number of ATP subunits. The dynamics of
the filament can be mapped onto that of a random walker in the upper-
quarter plane (n, k) with the specific moves as shown in figure 1. We find
the following steady-state phases (see Appendix A for details): a phase of
bounded growth (phase I), and three phases of unbounded growth (phase
IIA and IIB, phase III). The phase of bounded growth (phases I) and the
phase of unbounded growth with unbounded cap (phase III) are similar to
the corresponding phases in Ref. (11). In the phase IIA, similar to the phase
II of that reference, the filament is growing linearly in time, with a velocity
vIIA but the average cap length remains constant in time. In the new phase
IIB, the filament is growing linearly in time, with a velocity vIIB but there is
a section of ADP subunits which remains constant in time near the pointed
end (this is analogous to the cap of ATP subunits near the barbed end in
phase IIA).

This phase diagram can be understood from the random walk repre-
sentation of figure 1. The velocity of the random walker in the bulk has
components vn = (R − W−

D )d along the x axis and vk = (U − W+

T − R)d
along the y axis, where d is the subunit size. Depending on the signs of these
quantities, four cases emerge. If vn > 0 and vk > 0, both the filament and
cap length increase without bound, this corresponds to phase III. If vn < 0
and vk < 0, both the filament and cap length stay bounded and we have
phase I. If vn > 0 and vk < 0, the cap length remains constant in time, but
the rest of the filament made of D subunits can be either bounded (then we
are again in phase I) or unbounded (and we are in phase IIA). Similarly, if
vn < 0 and vk > 0, the length of the region of D subunits at the pointed end
remain constant in time, but the region of T subunits can be either bounded
(phase I) or unbounded (phase IIB). In phase IIA, the probability of finding
a non-zero cap,

q =
U

W+

T +R
, (1)
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is finite, and the average filament velocity is (see Appendix A)

vIIA = [U −W+

T q −W+

D (1− q)−W−
D ]d. (2)

At the critical concentration c = cA, vIIA = 0 and this marks the boundary
to phase I. We find that

cA =
(W+

D +W−
D )

k0

(

W+

T +R

W+

D +R

)

, (3)

which is always larger than the critical concentration of the barbed end
alone. In region III, the velocity is still given by

vIII = [U −W+

T ]d. (4)

Similarly, in phase IIB, the probability of finding a non-zero region of
D-subunits q̃ = R/W−

D is finite, and the average filament velocity is

vIIB = [U −W+

T −W−
T (1− q̃)−W−

D q̃]d, (5)

which vanishes when c = cB at the boundary with phase I, with

cB =
1

k0

[

(W−
T −W−

D )

(

1−
R

W−
D

)

+ (W+

T +W−
D )

]

. (6)

Note thatW−
T does not enter in vIIA since the hydrolyzed part of the filament

is always infinitely large in this case, in contrast to the case of vIIB, which
depends on both W−

T and W−
D . Note also that the velocity vIIA and vIIB

are sums of a contribution due to the barbed end and a contribution due
to the pointed end. This is due to the fact that in all growing phases, the
filament is infinitely long in the steady state, and therefore the dynamics of
each end is independent of the other.

Length fluctuations of the filament are characterized by a diffusion co-
efficient which is defined in Appendix A. Since the dynamics of each end is
independent in phase IIA, the diffusion coefficient of this phase DIIA is the
sum of a contribution from the barbed end and another from the pointed
end. From Ref.(11) we obtain,

DIIA =
d2

2

[

U +W+

T q +W+

D (1− q) +
2(W+

D −W+

T )(U +W+

D q)

W+

T +R
+W−

D

]

.

(7)
where (W−

Dd2)/2 is contribution of the diffusion coefficient due to the pointed
end.
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On the boundary lines c = cA and c = cB , the average filament velocity
vanishes. At this point, the addition of subunits at the barbed end exactly
compensates the loss of subunits at the pointed end. Such a state is well
known in the literature as treadmilling (21). There, the length diverges as
−DIIA/vIIA near c = cA and similarly as −DIIB/vIIB near c = cB as shown
in figure 5, where DIIA and DIIB are diffusion coefficient in phases IIA and
IIB. That divergence is a consequence of the assumption that the filament
is in contact with a reservoir of monomers, in experimental conditions the
maximum length is fixed by the total amount of monomers. In the bulk
of phase I, the average velocity is zero due to a succession of collapses and
nucleations of a new filament. In this phase, there is a steady state with a
well-defined treadmilling average length.

As mentioned above, since the two ends are far from each other in the
growing phases, they can be treated independently. In the phase of bounded
growth (phase I) however, where the filament length reaches zero occasion-
ally, the two ends are interacting strongly. For this reason, a precise de-
scription of the phase of bounded growth is more difficult (see Appendix A).
Because of this, we have computed numerically the average length in Fig. 5
as function of the free monomer concentration. In this figure, we compare
the case of the filament with two ends to the case with one end only. We
see that there is a small increase in the critical concentration where the
length diverges and a corresponding lowering of the average length due to
the inclusion of both ends in the model. This effect is correctly captured
by Eqs. 3-6. Note that although there are large length fluctuations in phase
I, the diffusion coefficient DI as defined in appendix A is zero in phase I,
because these fluctuations do not depend on time.

2 Hydrolysis within the filament: a vectorial or

random process ?

2.1 Growth velocity

As explained earlier, we have used a simplified model for hydrolysis (12), in
which the first step of hydrolysis is absent. The only remaining step, the
phosphate release, is assumed to be a vectorial process. In the following, we
keep this assumption, but we compare the two limiting mechanisms for the
phosphate release, namely the vectorial and the random processes. All the
rates have the same meaning for both models, except for the hydrolysis rate
which is denoted R in the vectorial model and r in the random model.
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We have compared experimental data from (22) together with the two
theoretical models, vectorial and random. Both models successfully account
for the observed sharp bend in the velocity versus concentration plots ob-
served near the critical concentration as shown in figure 7. Below the critical
concentration, the velocity is negative for depolymerizing filaments and it is
the velocity of phase II, since phase II extends transiently below the critical
concentration.

Note that the velocities of both models superimpose, which means that
bulk velocity measurements do not allow to discriminate between these mod-
els. Irrespective of the actual hydrolysis (phosphate release) mechanism, a
fit of this data provides a bound on the value of the hydrolysis rate in the
vectorial model R which is not accurately determined experimentally. This
parameter, was roughly estimated in Ref.(12) to be 0.3s−1 based on mea-
surements of Pi release by Melki et al. (23). The measured hydrolysis rate
was multiplied by a typical length to get the estimate for R. Our fit of the
data of Ref.(24), gives R = 0.1 ± 0.12s−1. This is the value which we have
used for later comparison.

In figure 6, the phase diagram of the random hydrolysis model is shown.
This phase diagram has only two phases in contrast to the vectorial case, be-
cause it can be shown that the average of the total amount of ATP subunits
〈k〉 is always bounded in the random model. Thus phase III is absent in
the random model. In appendix B, we present details about the derivation
of the mean-field equations for the random model (25, 26). An analytical
expression for the phase boundary between phase I and II is obtained, which
corresponds to the solid line in figure 6 and which agrees well with the Monte
Carlo simulations.

2.2 Length diffusivity

Length fluctuations are quantified by the length diffusivity also called dif-
fusion coefficient D which is defined in Eq. 18 of Appendix A. The length
diffusivity of single filaments has been measured using TIRF microscopy by
two groups (27, 28). Both groups reported rather high values, of the or-
der of 30 monomer2/s. This value is high when thinking in terms of the
rates of assembly and disassembly measured in bulk (29, 30). From such
bulk measurements, one could have expected a length diffusivity at the crit-
ical concentration of 1 monomer2/s; so an order of magnitude smaller than
observed in single filament experiments.

Several studies have been carried out to explain this discrepancy: Vavy-
lonis et al. (7) computed the diffusion coefficient D as a function of ATP
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monomer concentration and found that D is peaked just below the criti-
cal concentration and its maximum is comparable to the value observed in
experiments(≈ 30 monomer2/s). Stukalin et al (12) obtained from an an-
alytical model the same large values for D (≈ 30 monomer2/s) just above
the critical concentration. Recently, Fass et al. studied the length diffusiv-
ity numerically taking into account filament fragmentation and annealing,
within the vectorial model (20). They found that high length diffusivity at
the critical concentration cannot be explained by fragmentation and anneal-
ing events unless both fragmentation and annealing rates are much greater
than previously thought. In the limit where their fragmentation rate goes to
zero, they recover the results of Ref. (7). Others have expressed the opinion
that the discrepancy in diffusivity may be related to experimental errors in
the length of the filament due to out of plane bending of the filaments (M.
F. Carlier, private communication).

According to Stukalin et al (12) and Vavylonis et al (7), the large length
diffusivity observed in experiments results from dynamic instability-like fluc-
tuations of the cap. It is important to point out that both papers make very
different assumptions: the first one describes hydrolysis as a single step cor-
responding to Pi release with the vectorial mechanism, whereas the second
one describes both steps as random processes.

We have shown in figure 8 the concentration dependance of D for the
vectorial model using analytical expressions provided in the appendix and
similar to that of (11, 12). In this figure, the critical concentration defined
as the boundary between phases I and II almost coincides with the concen-
tration at the boundary between phases II and III, both are of the order of
0.14 µM. Above this value, D is indeed small, the expected estimate of 1
monomer2/s is indeed recovered there because the contribution of hydrolysis
is negligible. Near the critical concentration, however, the fluctuations are
much larger, for a reason which is similar to the reason that leads to large
fluctuations near critical points in condensed matter systems (31). Here,
hydrolysis which is known to destabilize filaments, has a larger effect. It
leads to large fluctuations of the cap, and ultimately to a large length dif-
fusivity. Note that the region below the critical concentration corresponds
to the transient extension of phase II discussed in the previous section. If
the fluctuations were probed there for a very long time, one would find
D = DI = 0, characteristic of phase I.

In figure 8, we have compared these analytical results obtained for the
vectorial model with numerical results obtained for the random model. In
the random model, we use Monte Carlo simulations to calculate a time de-
pendent diffusion coefficient D(t), defined as D(t) = 1

2

d
dt

(

〈l2〉 − 〈l〉2
)

. For



10

concentrations larger than the critical concentration, the initial condition is
l(t = 0) = 0, whereas for concentrations smaller than the critical concentra-
tion, the initial condition was a very long filament (l(t = 0) > 106 subunits)
with all subunits in the hydrolyzed state. On a large time window, we find
that D(t) is approximately time independent, and we interpret that value
as the length diffusivity of the random model. Our results fully agree with
that of Ref. (7), and with that of Ref. (20) in the limit of zero fragmenta-
tion rate. The length diffusivity indeed reaches a maximum of the order of
30 monomer2/s below the critical concentration. As shown in that figure,
there is only a small difference of length diffusivity in the vectorial case as
compared to the random case: the maximum of the curve for the random
model occurs at a smaller concentration than in the vectorial model. The
fact that we are able to reproduce a similar curve as in Refs. (7, 20) justifies
our simplifying assumption of describing the hydrolysis as a single step as-
sociated with the release of phosphate rather than taking into account the
two steps as done in these references. More importantly it confirms the idea
that the length diffusivity of actin, near critical concentration, is dominated
by a process similar to the dynamic instability, which is essentially captured
by the vectorial model.

To make further progress, it would be very useful to reproduce experi-
ments similar to those of Ref. (27), on single filaments for various monomer
concentrations, to confirm the scenario presented above for the length fluc-
tuations of actin. Given that the predictions of the random and vectorial
model are rather close to each other as shown in our figure 8, it is likely that
it will be difficult to distinguish between these models from measurements of
the concentration dependence of the length diffusivity. One reason for which
the length diffusivity of the two models are very close to each other is that
a very small value of the hydrolysis rate r (as estimated from experiments)
has been used, we have observed that if this parameter had a larger value
than expected, the predictions of the vectorial and random model would
differ much more.

3 Dynamics of the filament in transient regimes

Since it appears difficult to distinguish the vectorial from the random model
using measurements of growth velocity or length diffusivity, one can turn
to an analysis of the dynamics of the filament length in polymerization
(27) or in depolymerization (5, 10) to discriminate between the two models.
Here, we focus on the dynamics of polymerization of a single filament, in
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the presence of a constraint of conservation of the total number of subunits
(free+polymerized). This constraint leads to a steady state with a constant
average length for the filament. We compare the time it takes for the filament
to be fully hydrolyzed to the time that it takes to reach the steady state
length. We also discuss the corresponding length fluctuations as a function
of time. We argue that both measurements (the lag time of hydrolysis and
the time resolved fluctuations) can distinguish between the two mechanisms
of hydrolysis.

In Fig. 9 we show the filament length as well as its variance, as a func-
tion of time, for both vectorial and random models. Using Monte Carlo
simulations we computed l(t), starting from l(t = 0) = 0, for 1000 differ-
ent realizations and calculated σ2(t) = 〈l2〉 − 〈l〉2. Concerning the lag time
of hydrolysis, we have observed that in simulations of the vectorial model,
the filament typically reaches its steady state length long before it has been
completely hydrolyzed. The time when this happens corresponds to the
point where the two curves meet in Fig. 9 (a). This characteristic time since
only one end is involved, is tH ≃ 〈l〉/R where R is the hydrolysis rate in the
vectorial model (11). From the figure we find that tH ≃ 3500/0.3 ≃ 11000s
≃ 180 min (with R ≃ 0.3, which is much longer than the typical time to
reach the steady state tSS ≃ 〈l〉/v ≃ 3500/(11.6 × 0.7 − 1.4) = 520s. In
contrast to this, in the random model, the time for completion of hydrolysis
is comparable to the time to reach steady state (see Fig. 9 (b)) as both the
filament and the ADP part have similar growth dynamics.

In practice, this lag time of hydrolysis may be difficult to measure on
single filaments since the ATP subunits and ADP subunits can not be distin-
guished easily experimentally. In view of the previous section, on the role of
ATP hydrolysis in length diffusivity, we suggest to study instead the length
fluctuations of the filament as a function of time. Such a quantity is accessi-
ble from image analysis of single filaments with TIRF for instance. We have
simulated the variance of the length fluctuations σ(t)2 = 〈l(t)2〉 − 〈l(t)〉2

as function of time, for the vectorial model and random model, as shown
in Fig. 9 (c) and (d) respectively. At early times, this variance is linear in
time, and the slope corresponds to the length diffusivity discussed in pre-
vious section, because the constraint of conservation of monomers plays no
role at short times. Once the steady state has been reached, we find that the
variance of the vectorial model shows a sharp increase when t ≥ tH , while
the variance of the random model shows no significant change. The approx-
imately constant variance of the random model is intermediate between the
variance of the vectorial model before and after the jump.

Thus contrary to velocity and length diffusivity measurements, an anal-
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ysis of either the lag time of hydrolysis or of the time dependence of the
length fluctuations provide a direct signature of the underlying mechanism
of hydrolysis.

4 Conclusion

In this article, we have analyzed several aspects of the dynamics of a single
actin filament. Many results discussed above could be extended mutatis

mutandis to the case of microtubules.
We have constructed a phase diagram, which summarizes all the possi-

ble dynamical phases of an actin filament with two active ends and vectorial
hydrolysis in its inside. We have found that quantities like the filament
velocity and the length diffusivity show similar behavior for both vectorial
and random model of hydrolysis. We propose that measuring the length
fluctuations of a single filament as a function of time can distinguish be-
tween the two models for hydrolysis (or to be more precise to the step of
phosphate release). Although more experimental and theoretical work are
needed, studies of the dynamics of the length of single filaments during poly-
merization (27) and during depolymerization (5, 10) suggest a mechanism
of phosphate release which is not purely vectorial or purely random, but
rather partially cooperative.

We hope that our study will contribute to the understanding of the non-
equilibrium self-assembly of actin/microtubule filaments.
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Appendix

A Equations of the vectorial model with two ends

Let P (n, k, t) be the probability of having n hydrolyzed ADP subunits and
k unhydrolyzed ATP subunits at time t, such that l = (n+ k)d is the total
length of the filament. It obeys the following master equation: For k > 0
and n > 0 we have

dP (n, k, t)

dt
= UP (n, k − 1, t) +W+

T P (n, k + 1, t) +RP (n− 1, k + 1, t)

+W−
DP (n+ 1, k) − (U +W+

T +R+W−
D )P (n, k, t). (8)

For k > 0 and n = 0

dP (0, k, t)

dt
= UP (0, k − 1, t) + (W+

T +W−
T )P (0, k + 1, t)

+W−
DP (1, k) − (U +W+

T +W−
T +R)P (0, k, t). (9)

For k = 0 and n ≥ 1 we have,

dP (n, 0, t)

dt
= (W+

D+W−
D )P (n+1, 0, t)+W+

T P (n, 1, t)+RP (n−1, 1, t)−(U+W+

D+W−
D )P (n, 0, t).

(10)
If k = 0 and n = 0, we have

dP (0, 0, t)

dt
= (W+

T +W−
T )P (0, 1, t)+(W+

D+W−
D )P (1, 0, t)−UP (0, 0, t). (11)

We define the following generating functions

G(x, y, t) =
∑

n≥0

∑

k≥0

P (n, k, t)xnyk, (12)

Fk(x, t) =
∑

n≥0

P (n, k, t)xn, (13)

Hn(y, t) =
∑

k≥0

P (n, k, t)yk. (14)

Normalization imposes that at all times t,

G(1, 1, t) =
∞
∑

n=0

∞
∑

k=0

P (n, k, t) = 1. (15)
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Using eqs 8, 9, 10 and 11, we obtain the evolution equation for G(x, y, t)

dG(x, y, t)

dt
=

[

U (y − 1) +W+

T

(

1

y
− 1

)

+R

(

x

y
− 1

)

+W−
D

(

1

x
− 1

)]

G(x, y, t)

−

[

W+

T

(

1

y
− 1

)

+R

(

x

y
− 1

)

+W+

D

(

1−
1

x

)]

F0(x, t)

−

[

W−
D

(

1

x
− 1

)

+W−
T

(

1−
1

y

)]

H0(y, t)

−

[

W+

D

(

1

x
− 1

)

−W−
T

(

1−
1

y

)]

P (0, 0, t). (16)

From G(x, y, t), the following quantities can be obtained: the velocity of
the filament, which is

v = lim
t→∞

d〈l〉

dt
= d lim

t→∞

∂

∂x

(

dG(x, x, t)

dt

)

x=1

, (17)

the diffusion coefficient characterizing filament length fluctuations

D = lim
t→∞

1

2

d

dt

(

〈l2〉 − 〈l〉2
)

= d2 lim
t→∞

[

1

2

∂2

∂x2

(

dG(x, x, t)

dt

)

+
1

2

∂

∂x

(

dG(x, x, t)

dt

)

−

(

∂G(x, x, t)

∂x

)

∂

∂x

(

dG(x, x, t)

dt

)]

x=1

. (18)

The average cap velocity is

J = d lim
t→∞

d〈k〉

dt
= d lim

t→∞

∂

∂y

(

dG(1, y, t)

dt

)

y=1

, (19)

and the diffusion coefficient characterizing the fluctuations of the cap is

Dc = d2 lim
t→∞

1

2

d

dt

(

〈k2〉 − 〈k〉2
)

= d2 lim
t→∞

[

1

2

∂2

∂y2

(

dG(1, y, t)

dt

)

+
1

2

∂

∂y

(

dG(1, y, t)

dt

)

−

(

∂G(1, y, t)

∂y

)

∂

∂y

(

dG(1, y, t)

dt

)]

y=1

. (20)
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Phase diagram and average length in the bounded phase

To construct the phase diagram, we first focus on steady-states solutions of
Eq. 16, which are such that dG(x, y, t)/dt = 0. The obtained equation for
G(x, y) involves the following time independent quantities

F0(x) = G(x, 0) =
∑

n≥0

P (n, 0)xn, (21)

H0(y) = G(0, y) =
∑

k≥0

P (0, k)yk, (22)

P (0, 0) = F0(0) = H0(0) = G(0, 0), (23)

which are coupled back to G(x, y).
Progress can be made by considering two particular cases for x = 1 and

y = 1 of this expression for G(x, y). This leads to

R−W−
T = F0(1)

(

R+W+

D

)

−W−
DH0(1) − P (0, 0)W+

T , (24)

U −R−W+

T = −F0(1)
(

R+W+

T

)

+W−
T H0(1)− P (0, 0)W−

T . (25)

These two equations involve three unknowns F0(1): the probability that the
cap is zero, H0(1): the probability that the D part of the filament is zero,
and P (0, 0): the probability that the filament is in the state of monomers.
Note that P (0, 0) = 0 in phases of unbounded growth whereas P (0, 0) > 0
in the phase of bounded growth.

In the random walk representation of figure 1, the velocity of the random
walker in the bulk has components vn = (R −W−

D )d along the x axis and
vk = (U − W+

T − R)d along the y axis. Depending on the signs of these
quantities, four cases emerge. If vn > 0 and vk > 0, both the filament and
cap length increase without bound (phase III) which means that F0(1) =
H0(1) = P (0, 0) = 0. If vn < 0 and vk < 0, both the filament and cap length
stay bounded (phase I) and F0(1) > 0,H0(1) > 0 and P (0, 0) > 0.

If vn > 0 and vk < 0, the cap length remains constant in time which
means F0(1) > 0, but the rest of the filament made of D subunits can be
either bounded (for H0(1) = P (0, 0) = 0, which corresponds to phase I)
or unbounded (for H0(1) = P (0, 0) > 0 which corresponds to phase IIA).
When reporting the condition H0(1) = P (0, 0) = 0 into Eqs. 24-25 and
solving for F0(1), one finds that the phase of bounded growth occurs when
U/(R +W+

T ) < (W+

D +W−
D )/(R +W+

D ), and the boundary to the phase of
unbounded growth corresponds to replacing the unequal sign by an equal
sign.
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An alternative way to find this condition is to start from the time de-
pendent evolution equation of G(x, y, t) of Eq. 16 and impose H0(y, t) =
P (0, 0, t) = 0. We end up with two coupled dynamical equations for F0(x, t)
and G(x, y, t). The way to obtain the velocity and diffusion coefficient in
phase IIA from these equations is explained in details in the appendix of
Ref. (11). The result is the expression of vIIA given in Eq. 2, and the
expression of DIIA of Eq. 7. As expected, the condition that marks the
boundary between phase IIA and phase I corresponds to vIIA = 0.

Similarly, if vn < 0 and vk > 0, the length of the region of D subunits at
the pointed end remains constant in time, and the region of T subunits can
be either bounded (phase I) or unbounded (phase IIB). By either method,
one obtains the velocity in the phase IIB given in Eq. 5, and the condition
that marks the boundary to phase I, which corresponds to vIIB = 0.

In Ref. (11), an explicit expression for the average length in the phase
of bounded growth was obtained by a method of cancellation of poles of
G(x, y). Unfortunately, this method does not allow us to derive the expres-
sion of G(x, y) here, because the rates W−

T 6= 0 and W−
D 6= 0 lead to an

additional unknown H0(y, t) in Eq. 16 which makes the problem much more
difficult to solve. For this reason, we could not derive an explicit expression
for the average length in this case, and we investigated this quantity only
numerically.

B Mean-field equations of the random model

We explain in this appendix how the velocity of the filament in the random
model is obtained from a mean-field approach. This appendix is provided
mainly for pedagogical reasons, since the solution has already appeared in
Ref. (12) and Ref. (26). For simplicity, we focus on the case where growth
and shrinking occur only from one end, which we number as the first site
i = 1. We use the same notations for the rates as in the vectorial model
except for the hydrolysis rate, which is denoted r in the random model. For
a given configuration, we introduce for each subunit i inside the filament an
occupation number τi, such that τi = 1 if the subunit binds ATP and τi = 0
otherwise. In the reference frame associated with the end of the filament,
the equations for the average occupation number are

d〈τ1〉

dt
= U(1− 〈τ1〉)−WT 〈τ1(1− τ2)〉+WD〈τ2(1− τ1)〉 − r〈τ1〉, (26)
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d〈τi〉

dt
= U(〈τi−1(1− τi)〉 − 〈τi(1− τi−1)〉) +WT 〈τ1[(1 − τi)τi+1 − τi(1− τi+1)]〉

+ WD〈(1− τ1)[(1 − τi)τi+1 − τi(1− τi+1)]〉 − r〈τi〉. (27)

In a mean-field approach, the effect of correlations 〈τiτj〉 are neglected, i.e.
these correlations are replaced by 〈τi〉〈τj〉 (and similarly for averages of prod-
uct of three occupation numbers). At steady state, the left-hand sides of
Eqs. 26-27 are both zero, which leads to recursion relations for the 〈τi〉.
Note that 〈τi〉 is denoted as ai in Ref. (26) and as Pi in Ref. (12). We still
denote 〈τ1〉 = q, since it represents the probability that the terminal unit
binds ATP. It is the analog of the parameter defined in Eq. 1 for the vec-
torial model, which is now a more complicated function of the rates. The
recursion relations have a solution of the form for i ≥ 1,

〈τi+1〉

〈τi〉
=

U − q(WT + r)

U − qWT

. (28)

Combining Eqs. 26-28, one obtains the following cubic equation for q

(WT + r)(WT −WD)q
3 + (UWD − 2UWT +WDWT +WDr (29)

− WT r −W 2
T )q

2 + U(U −WD + 2WT + r)q − U2 = 0. (30)

This cubic equation has three solutions, but only one solution is such that
0 ≤ q ≤ 1. The rate of elongation of the filament can be obtained by
reporting that solution into

v =
d〈l〉

dt
= [U −WT q −WD(1− q)]d. (31)

In figure 7, this velocity v is shown as function of the concentration of free
monomers. For low values of r, the velocity of the random and vectorial
model are identical, as r is increased the velocity of the random model
starts to deviate from the curve of the vectorial model. By imposing the
condition v = 0, one obtains the phase boundary shown in the solid line in
figure 6.
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Tables

References

On rate of T subunits at the barbed end k0 (µM−1s−1) 11.6 (1, 12)

Off-rate of T subunits at the barbed end W+

T (s−1) 1.4 (1, 12)

Off-rate of T subunits at the pointed end W−
T (s−1) 0.8 (1, 12)

Off-rate of D subunits at the barbed end W+

D (s−1) 7.2 (1, 12)

Off-rate of D subunits at the pointed end W−
D (s−1) 0.27 (1, 12)

Hydrolysis rate (vectorial model) R (s−1) 0.1-0.3 (12)

Hydrolysis rate (random model) r (s−1) 0.003 (7, 9, 12)

Table 1: Various rates used in the model and corresponding references. The
conditions are that of a low ionic strength buffer.

Figure Legends

Figure 1

Schematic diagram representing the addition of subunits with rate U , re-
moval with rates W+

T ,W−
T and W+

D , and hydrolysis with rate R, which can
only occur at the interface between T and D monomers in the vectorial
model. Note that two new rates W−

T and W−
D have been added as compared

to Ref. (11).

Figure 2

Representation of the various possible moves for actin dynamics. (i), (ii)
and (ii) depict different cases for vectorial hydrolysis. (iv) and (v) depict
cases for random hydrolysis.

Figure 3

Theoretical phase diagram for the vectorial model with two ends in the
variables hydrolysis rate R and on-rate U . The line OQ is obtained by
setting the cap velocity equal to zero, and the line OP is given by the
condition vIIA = 0 where vIIA is the velocity in phase IIA calculated in
Eq. 2. Similarly, the line OR is given by the condition vIIB = 0, where vIIB
is the velocity in phase IIB given in Eq. 5.
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Figure 4

Filament velocity v versus concentration of free monomers C for the vectorial
model with two active ends. (a) Case R > W−

D for R = 0.3. In regions I and
IIA, v = vIIA, where vIIA is given by Eq. 2. In region III, v = vIII , where
the velocity is that of Eq. 4. (b) Case R < W−

D for R = 0.2. Here v = vIIB
where vIIB is given by Eq. 5.

Figure 5

Average length as function of concentration. (filled circles ) W−
T = 0.8

and W−
D = 0.27; (open circles)W−

T = 0 and W−
D = 0.27; (open squares)

W−
T = 0.8 and W−

D = 0; (filled squares) W−
T = 0 and W−

D = 0. The
rates which are not specified here are given in table 1. The black line is
DIIA(c = cA)/vIIA

Figure 6

Phase diagram of the random hydrolysis in the coordinate on-rate U versus
hydrolysis rate r (per site). The symbols have been obtained from Monte
Carlo simulations, while the solid line is the mean-field theory of appendix
B. For r = 0, we recover the value of U corresponding to the critical con-
centration of the vectorial model.

Figure 7

Velocity versus free monomer concentration. The squares symbols are ex-
perimental data of (22), which were taken from Ref. (32), the solid lines is
the velocity for the random model as calculated from the theory presented
in appendix B and the plus symbols is the velocity for the vectorial model
using rates in table 1 except for R = 0.12s−1 and W+

D = 6.7s−1.

Figure 8

Diffusion coefficient as function of the monomer concentration for the ran-
dom and vectorial model of hydrolysis. The data points are the prediction
for the random model of hydrolysis while the solid lines are the predictions
for the vectorial model. The dashed (resp. dash-dotted) vertical line repre-
sents the critical concentration for the vectorial (resp. random) model.
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Figure 9

(a) and (b) : Total filament length (denoted l, black), and total amount
of hydrolyzed subunits (denoted n, grey) as function of time for the case
of vectorial hydrolysis (left panel) and random hydrolysis (right panel) (the
total concentration of subunits cT = 0.7µM ; 1 filament in a volume of 10
(µm)3). Note that the point where the two curves meet in the random
hydrolysis model occurs much earlier compared to the case of vectorial hy-
drolysis (≈10000s). (c) and (d): The variance (σ2 = 〈l2〉−〈l〉2) as a function
of time is plotted for the vectorial model and random model respectively.
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