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Abstract 

 

In magnetic fusion experiments, a simple technique to evaluate the heat flux on first wall 

components is a key to controlled plasma surface interaction. The heat flux can be 

characterized by the peaking factor which is the ratio of the peak heat flux to the average heat 

flux. The peaking factor can be calculated exactly using simple derivations and standard 

software tools. This analysis is applied to an Iter class experiment for plasma wall contact 

during start up phases at 15 MW, in idealised, realistic and misaligned situations. Even 

though the peaking factors are usually above 10, the peak heat load on the wall remains 

moderate at a few MW/m². 
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1. Introduction 

Estimating the peak heat load (qmax) on plasma facing components (PFCs) before plasma 

operation is a key safety issue of plasma surface interaction analysis. Various methods are 

possible and can be categorised according to their principles. More scientific techniques start 

from the plasma characteristics (temperature, density, transport, sheath transmission 

coefficient) and then express the heat flux to the component. These methods are often limited 

by the imprecision of the plasma characteristics and especially the transport coefficients. The 

most elaborated derivations make use of edge plasma codes, assuring a high level of self 

consistence [1-3]. Accounting for the detailed wall connections eventually requires a 3D 

mapping of the SOL [4], allowing a rather comprehensive description of small scale plasma 

variations.  A completely different technique uses the monte carlo principle [5] but is of little 

practical use as it requires extensive calculation time for actual 3D wall surfaces. Other 

authors have used semi-analytic derivations  [6,7] which are dependant on the experiment and 

only allow an approximate accounting of the cross component shadow. The most elementary 

method consists in dividing the exhaust power (Ptotal) by the component area (A), which gives 

an average heat load (qmean = Ptotal/A), and then applying a peaking factor (Pf), 

qmax = Pf  qmean. This simple technique based on the peaking factor is valuable because few 

parameters are needed. However most of the useful information is hidden in Pf, which is too 

often just estimated or guessed. The peaking factor Pf, can however be calculated exactly, 

using simple scrape of layer (SOL) assumptions (exponential heat flux decay in the SOL :q, 

cosine law and shadowing). Using field line calculations, the shadow can be precisely 

calculated. The influence of the plasma properties enters through, q, which is often 

documented (scaling laws [8]). This technique will be explained in section 2 and applied to an 

Iter class experiment for illustration. 
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2. Peaking factor calculation. 

The technique requires a mesh of the surface, described by a set of elements {E}C based on a 

set of nodes {N}C  (Fig. 1), defined for the investigated component C. The technique also 

requires data for the magnetic configuration, given as the three components of the magnetic 

field (Br, Bz, B). On each node n of {N}C, the relative heat flux magnitude j(n) is evaluated 

using the cosine law [9,10], possibly adding a cross field heat flux fraction [11]. As a result, 

the heat flux profile on the component is known, although in arbitrary units (fig. 2.a). The 

actual heat flux entering the component on each node n is )n(jq//

sep  , where 
//

sepq  is the 

parallel heat flux density on the last closed surface. This picture is rendered more complex by 

the possible shadowing between components, caused by SOL connections. They are evaluated 

for each node n for C by field line tracing (fig. 1) to another component (or more) representing 

the rest of the wall (the shadowing component S ), represented by a mesh ({E}S, {N}S), fig. 1. 

In the simplified scheme used here, the heat flux is set to zero if a connection is found (full 

shadowing, c(n) = 0) and c(n) is set to 1 if the field line escapes S (fig. 2.b). The integral of 

c(n) over the component gives the wetted area.  

The numerical projection of j(n) onto the elements e of {E}C allows calculation of a surface 

integral, giving a relation between Ptotal and  
//

sepq  :     
C

// dspcpjqP septotal . 

//

sepq  is assumed constant for each node n of the component surface and can be factorised. 

With discrete formulation, the integral is expressed as a sum and 
//

sepq can then be obtained 

from : 

  




CEe

total//

sep
)e(ds)e(c)e(j

P
q  

The denominator is obtained using a standard software operator. It has the dimension of a 

surface and is thus an effective area. As it relates the power to the separatrix heat flux, it can 
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be referred as "parallel heat flux density effective area" (
ef f

sepA ). Having quantified 
//

sepq  gives 

access to the absolute value of the heat flux everywhere at the surface of the component. The 

peak heat flux on the component qmax is the maximum value of the product )n(c)n(jq//

sep   

over all nodes n {N}C. The peaking factor Pf is then obtained through Pf = qmax  A / Ptotal. 

This technique is applicable to a set of limiters which are perfectly aligned. In this case, the 

calculation is simplified to a single element of the component, assuming toroidal symmetry. If 

N is the limiter number, the method is applied to a single limiter element using a power of  

Ptotal/N. The method is also applicable to misaligned limiters, the only price to pay being the 

loss of toroidal symmetry, with the consequence of much larger meshes and longer run times.  

3. Results for various limiter situations 

The model is applied to representative wall situations in an Iter size experiment. A 6.5 MA 

limiter plasma is used, the one at the end of the limiter phase in Iter (scenario 2 at 24.17s). For 

the modelling presented, the plasma continuously looses Ptotal = 15 MW to the wall. The outer 

poloidal curvature radius of this plasma is a = 3 m and the magnetic pitch 7.9°.  

The first results are for a series of sets of N outboard poloidal limiters, with N=9, 18 and 36 (a 

limiter is represented in fig. 1 with two neighbours at +/- 20°. The neighbours are reduced to 

their most forward ridge for simplification, an operation that has no influence of the shadow 

frontiers. The geometry of an individual PL is as follows : the intersection of one limiter with 

the equatorial plane is an arc, making a 2 centimetre bulge over a toroidal span of 1.5 m. This 

corresponds to a radius of 14 m in a horizontal plane. The profile is rotated along a horizontal 

axis in the poloidal direction, with a radius of 4.5 m matching approximately the outer 

poloidal curvature of the Iter wall. This results in a surface with a double curvature. The area 

is A = 10.6 m². The heat flux decay length is prescribed to be 10 mm, an average value 

representative of limiter phases in Iter. The number of poloidal limiters (PL) being high, the 

sink action of the PL set is that of a toroidal limiter, and q is kept constant. The heat flux 
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pattern and the wetted area are calculated and the results given in table 1. The peaking factor 

ranges from 23 to 72, indicating that the peak heat flux is an order of magnitude above the 

mean heat flux. The high peaking factor is caused by a combination of factors : the poloidal 

curvature mismatch between limiter and plasma, small heat flux decay length and cross 

limiter shadowing. The wetted area is a significant fraction of the total limiter area (24% to 

53%) : the highest set of limiters (36) has also the smallest wetted (i.e. unshadowed) area 

fraction (24%) because of the cross connections between individual limiter segments. 

Interestingly, the heat flux on the last closed flux surface is almost constant with the number 

of limiters N. Finally, the peak heat load has only as small dependence on the number of 

limiters. It can also be noticed that the change of 
//

sepq  is only of 17% while the area changes 

of 400%. This is a confirmation that the sink action of the limiter set toward the plasma is 

well approximated by the one of a toroidal limiter. Should this not be the case, 
//

sepq  would 

have a much bigger correlation to the limiter number. 

In order to investigate the effect of the local geometry, a series is computed for five wall 

surfaces labelled 1 to 5 on the outside, whose results are given in table 2. These wall surfaces 

are made to occupy half of the outboard wall to account for 18 equatorial ports (one 10° 

sector is occupied every 20°). Case (1) is for a smooth wall made of an outboard toroidal 

surface. This case generates no shadow, and the heat pattern is formed of two toroidal bands. 

The peak heat flux is multiplied by a factor of 2 to account for the fact that only half of the 

wall is used. This is a limiting case, not possible technically, as shaping is required to care for 

the leading edges. It is however an lower ideal limit, toward which shape optimisation should 

tend. The heat flux is low (0.6 MW/m²) with a Pf of 7, the lowest of all case. Case (2) is a 

facetted wall : this wall consists of flat panels in front of each blanket module. The peaking 

factor jumps to 38 as the wetted area is reduced by shadowing. It is a significant difference to 

the ideal case, considering the limited surface change. Cases (3) and (4) are poloidal limiters. 
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(3) is circular in the poloidal direction, as in the previous section. The limiter labelled (4) is 

very close to (3) , but is constituted of 1 m flat segments in the poloidal direction to match the 

shaping of the first wall modules. This is a shape that matches the current Iter shield modules, 

and is a significant design simplification compared to design (3). These two shapes give very 

similar results, with Pf ~ 37. This indicates that the price to pay for having straight panels in 

the poloidal direction is very small. Case (5) uses a spherical meniscus with a uniform 

curvature radius of 14 m, in both poloidal and toroidal directions. This case corresponds to 

first wall panel that are shaped in both toroidal and poloidal directions. These produce the 

highest peaking factor of 40. As in the previous section, the heat flux on the last closed flux 

surface is almost constant (+/- 20%) with the detailed surface shape. This is a remarkable 

result, considering the fact that the local geometry is changed of 5 cm, five time p : here also, 

this is a confirmation that the toroidal limiter approximation holds for such geometries. 

The same technique can be used to investigate the effect of a misaligned component. This is 

tested on a inner cylindrical wall of radius R = 5m, of which a sector of 20° is supposed 

misaligned by a radial displacement of  (Fig. 3). The curvature radius of the bulging module 

is adapted so that there is no leading edge. For the case without misalignment ( = 0), the wall 

is actually a cylinder, and in that case, the peak heat load can be calculated analytically : 

Ra

eP
q

p

/

total
max






22

21

 

For a = 2.5 m,p = 17 mm this peak heat load is 0.7 MW/m². The peaking factor is calculated 

to 3 by assuming a 2 m high wall, making a total surface of 63 m² (the mean heat flux is 

15 MW / 63 m² = 0.24 MW/m²) . With increasing , the peak heat flux and the peaking factor 

are evaluated using the numerical tool described in section 2. Both peak heat flux and peaking 

factor increase with , an intuitive result (table 3). On the regular surface, the peak heat flux 

decreases only slowly, from 0.7 to 0.45 MW/m². It is worth noting that a 2 mm misalignment 
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(12% of p) causes a two-fold increase of Pf, while a 20 mm misalignment (slightly above 

p) creates a peaking factor increase of an order of magnitude. These results are influenced by 

the shape change with increasing misalignment (the incidence angle on the bulging module is 

variable), nevertheless they illustrate the effect of a misaligned element on the power 

distribution. This simple case can be used as a benchmark for the various modelling methods. 

4. Conclusion 

Given the component geometry and the magnetic field configuration, the exact value of the 

peaking factor can be calculated numerically rather than being estimated or guessed. High 

values are found for poloidal limiters in Iter sized experiments (usually greater than 10). 

These values are caused by the mismatch of curvature radius, as well, of course, the peaking 

effect caused by short q. 
//

sepq does not vary with the geometrical details of the wall, but 

rather with the large scale arrangement. This is a confirmation that for a sufficiently large 

number of discrete limiter-objects the plasma-wall contact is well approximated by a toroidal 

limiter type geometry, which simplifies the analysis of the wall. Local shaping will be 

required to take care of gaps, misalignments (as for the JET Iter-like wall [12]), and of the 

long toroidal span caused by the NBI ports in Iter [13]. Nevertheless, such an analyse show 

that input power, heat flux decay length and plasma scenario is a sufficient set of data to 

perform a detailed analysis of first wall geometries in tokamaks. 
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Fig. 1 : Component mesh Ecomp (1, in black) and shadowing mesh Eshad (2, in gray). Eshad 

is the central ridge of Ecomp, rotated from +/- 20° degrees. Two field lines are represented, (i) 

escapes the shadowing mesh, and the node of Ecomp from which it originates is designed as 

wetted, whereas (ii) connects to neighbour limiter, so that the the node of Ecomp from which 

it originates is designed as shadowed.  
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a) Heat flux profile 

(cosine law) 

b) Wetted area 

(light gray is 

wetted) 

 

Fig. 2 : Heat flux profile and wetted area for the limiter described in Fig. 1
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Fig. 3 : Wall and plasma cross sections in the equatorial plane with a misaligned module. For 

 = 0, the wall is a pure cylinder. 


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Number of limiters 9 18 36 

toroidal span 
between limiters (°) 

40 20 10 

Total area (m²) 96 191  382  

Wetted area (m²) 51 (9 x 5.66) 74 (18 x 4.12)  100 (36 x 2.78) 
//

sepq  (MW/m²) 133 116  113 

qmax (MW/m²) 3.6 3.1 2.8* 

Peaking factor 23 37 72 

 

Table 1 : Results for 9, 18 and 36 outboard poloidal limiters for Ptotal = 15 MW. In the last 

case (*), qmax is governed by the shadow transition. 
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Case number 1 2 3 4 5 

short wall 
description 

smooth 
wall 

Facetted wall 
Pol. limiter 
(poloidally 
circular) 

Pol. limiter 
(Poloidally 

flat segment) 

Spherical 
modules 

qmax (MW/m²) 0.6 2.6 3.2 3.2 4.8 

//

sepq  (MW/m²) 104.8 121.9 123 119 145 

Pf 7 38 37 37 40 

 

Table 2 : Comparison of peak heat fluxes on various outer wall surfaces for Ptotal = 15 MW. 

 



 14 

 

Mis-
alignment 

(mm) 

Power on 
bulging 
module 
(MW)  

Peak 
heat flux 
(MW/m²) 

Reg. 
heat flux 
(MW/m²) 

Pf 

0 0.8 (15/18) 0.71 0.71 3 

2 1.0 1.5 0.71 6.3 

5 1.6 2.8 0.68 11 

10 3.0 5.0 0.61 20 

20 6.0 9.1 0.45 38 

 

Table 3 : Peak heat fluxes and peaking factors for increasingly bulging modules for 

Ptotal = 15 MW. 


