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(2) Institut de Physique Théorique, C. E. A. Saclay, 91191 Gif-sur-Yvette Cedex, France
(3) Instituut Theoretische Fysica, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium

Non-equilibrium systems are often characterized by the transport of some quantity at a macro-
scopic scale, such as, for instance, a current of particles through a wire. The Asymmetric Simple
Exclusion Process (ASEP) is a paradigm for non-equilibrium transport that is amenable to exact
analytical solution. In the present work, we determine the full statistics of the current in the finite
size open ASEP for all values of the parameters. Our exact analytical results are checked against
numerical calculations using DMRG techniques.

PACS numbers: 05-40.-a; 05-60.-k; 02.50.Ga

A system containing carriers (of thermal energy, mass,
or electrical charge) and subject to a driving field in its
bulk, or to a difference of potentials between its bound-
aries, will usually evolve to a non-equilibrium steady
state (NESS) with a non-vanishing macroscopic current
of heat, particles or charges flowing through it. Due to
the presence of this macroscopic current, time-reversal
invariance is violated. This is a situation which lies be-
yond the realm of traditional thermodynamics: steady-
state transitions at the microscopic level break detailed
balance and the principles of equilibrium statistical me-
chanics do not apply. Hence, for a system that is bulk-
driven, boundary-driven, or both, no suitable generaliza-
tion of the Gibbs-Boltzmann formalism exists that would
allow us to predict the value of the current and of its fluc-
tuations from first principles.

During the last two decades, substantial progress has
been made towards a statistical theory of non-equilibrium
systems [1–6]. Large deviation functions, that encode
atypical fluctuations of a physical observable, are likely
to be the best candidates to generalize the traditional
thermodynamic potentials. Moreover, it has been proved
that large deviations functions display symmetry prop-
erties, called ‘Fluctuation Theorems’, that remain valid
far from equilibrium [2]. These remarkable relations im-
ply linear response theory in the vicinity of equilibrium.
Hence, the determination of large deviations in a non-
equilibrium system, whether theoretically, numerically,
or experimentally, is a question of fundamental impor-
tance [7–14].

There are very few models in non-equilibrium physics
that can be studied analytically. Among these, the asym-
metric simple exclusion process (ASEP) has become a
paradigm [15–17]. The ASEP is a one-dimensional lat-
tice gas model in which particles perform biased random
walks and interact through an exclusion constraint that
mimics a hard-core repulsion: two particles cannot oc-
cupy the same site at a given time. This minimal sys-
tem appears as a building block in a great variety of
phenomena that involve low-dimensional transport with
constraints. Invented originally to represent the motion
of ribosomes along mRNA during protein synthesis, this
model plays a seminal role in non-equilibrium statistical

mechanics and has been applied to problems as different
as surface growth, biological transport, traffic flow and
pure mathematics [5, 18–22].

In the long time limit, the ASEP reaches a NESS with
a fluctuating macroscopic current. Exact results have
been derived for the exclusion process on a periodic ring
and on the infinite line, using the Bethe Ansatz, deter-
minantal processes and random matrix theory [22–26].
For open boundaries, the steady-state has a recursive
structure [27] that can be encoded by a matrix prod-
uct representation [28], a fruitful method to analyze low-
dimensional transport models [5, 29]. The mean value of
the stationary current, the associated density profiles and
the phase diagram of the open ASEP are known exactly
[27, 28]. However, finding the full statistical properties of
the current in the open ASEP has remained, until now,
an outstanding challenge that has stimulated many works
[8, 11, 30–35]. A recent conjecture based on the Bethe
Ansatz [30] gives the asymptotic behavior of the large
deviation function of the current for infinitely large sys-
tems in some specific regions of the phase diagram. In the
present work, we give exact analytic expressions for the
full statistics of the current, that are valid for arbitrary
system sizes and boundary parameters, thus solving this
long-standing problem.

The dynamics of the ASEP is that of a continuous
time Markov chain: during an infinitesimal time interval
dt, a particle located on a site can jump forward to the
next adjacent site with rate 1 and hop backward to the
previous site with rate q, provided these sites are empty.
A particle can enter the site 1 with rate α and the site
L with rate δ, and can exit from the site 1 with rate γ
and from the site L with rate β (see Fig. 1). Each of
the 2L microscopic configurations C of the ASEP can be
written as a binary string of length L, (τ1, . . . , τL), where
τi = 1 if the site i is occupied and τi = 0 otherwise. The
probability Pt(C) of being in configuration C at time t
evolves according to the Master equation:

dPt(C)
dt

=
∑
C′
M(C, C′)Pt(C′) . (1)

The non-diagonal matrix element M(C, C′) represents
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the transition rate from C′ to C. The diagonal element
M(C, C) = −

∑
C′ 6=CM(C′, C) is equal to minus the exit

rate from C.

q 1

γ δ

1 L

α β

RESERVOIRRESERVOIR

FIG. 1. Dynamical rules for the ASEP with open boundaries.
The rate of forward jumps has been normalized to 1. Back-
ward jumps occur with rate q < 1. All other parameters are
arbitrary.

In the long time limit, the ASEP reaches a NESS where
each configuration C occurs with a probability P ?(C),
that can be written as a matrix product [28]:

P ?(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi)E) |V 〉 , (2)

where the operators D and E, the bra-vector 〈W | and
the ket-vector |V 〉 satisfy quadratic algebraic relations

DE − qED = (1− q) (D + E)

(βD − δE) |V 〉 = (1− q)|V 〉
〈W | (αE − γD) = (1− q)〈W | . (3)

The normalization constant in equation (2) is given by

ZL = 〈W | (D + E)
L |V 〉 . The matrix product represen-

tation allows us to determine stationary equal-time cor-
relations and density profiles for any system size L.

For L→∞, the ASEP has three phases whose bound-
aries are given in terms of the effective densities ρa =
1/(a+ + 1) and ρb = b+/(b+ + 1) of the left and right
reservoirs, where

a± =
(1− q − α+ γ)±

√
(1− q − α+ γ)2 + 4αγ

2α
,(4)

b± =
(1− q − β + δ)±

√
(1− q − β + δ)2 + 4βδ

2β
. (5)

The ASEP is in the Maximal Current (MC) phase when
ρa > 1/2 and ρb < 1/2, in the Low Density (LD) phase
when ρa < 1/2 and ρa + ρb < 1 and in the High Density
(HD) phase when ρb > 1/2 and ρa + ρb > 1 .

For a system of size L, the average value J of the
stationary current is given by the ratio ZL−1/ZL which
can be expressed in terms of orthogonal polynomials [34].
However, the fluctuations of the steady-state current can
not be calculated from the knowledge of the stationary
probabilities alone. In order to study the current we in-
troduce an observable Yt that counts the number of parti-
cles exchanged between the system and the left reservoir

between times 0 and t. Therefore, Yt+dt = Yt + y where
y = +1 if a particle enters the site 1, y = −1 if a parti-
cle exits from 1 during the interval dt and y = 0 other-
wise. These three mutually exclusive types of transitions
lead to a three parts decomposition of the generator M :
M = M+ + M− + M0. We note that Yt also represents
the total integrated current that has flown through the
system till time t. When t → ∞, the expectation value
of Yt/t converges to the average stationary current J .
The convergence rate is quantified by the large deviation
function Φ(j), characterizing non-typical fluctuations of
Yt and defined as P

(
Yt

t = j
)
∼e−tΦ(j).

A different manner to encode the statistics of Yt is
through its characteristic function which, in the long
time limit, behaves as 〈eµYt〉 ' eE(µ)t , where E(µ) is
the cumulant generating function of Yt, and is the Leg-
endre transform of the large-deviation function Φ(j) [14]:
E(µ) = maxj (µj − Φ(j)). Following [3, 9], one can prove
that E(µ) is the largest eigenvalue of the deformed opera-
tor M(µ) = eµM+ + e−µM−+ M0. Thus, the calculation
of the cumulants of the current is equivalent to an eigen-
value problem.

For the ASEP with periodic boundary conditions,
M(µ) can be diagonalized by Bethe Ansatz, leading to
a full solution for the current fluctuations [9, 24]. In
the case of open boundary conditions, integrability con-
ditions are only met on hypersurfaces of the parameter
space and the Bethe Ansatz can be used only for L→∞
and in specific regions of the phase diagram [30].

We have obtained a solution valid for all parameters
and all system sizes using a generalized matrix product
representation. The components Fµ(C) of the dominant
eigenvector Fµ of M(µ) can be expanded formally as a
power-series with respect to µ to any given order k ≥ 0.
For each value of k, we have proved rigorously [38] that
Fµ can be represented by a matrix product Ansatz up to
corrections of order µk+1 i.e.,

Fµ(C) =
1

Z
(k)
L

〈Wk|
L∏
i=1

(τiDk + (1− τi)Ek) |Vk〉+O
(
µk+1

)
(6)

The matrices Dk and Ek are constructed recursively
starting with D1 = D and E1 = E and

Dk+1 = (1⊗ 1 + d⊗ e)⊗Dk + (1⊗ d+ d⊗ 1)⊗ Ek
Ek+1 = (1⊗ 1 + e⊗ d)⊗ Ek + (e⊗ 1 + 1⊗ e)⊗Dk

(7)

where we have defined the operators d = D − 1 and e =
E − 1 that satisfy the q-deformed harmonic oscillator
algebra de − qed = 1 − q. These matrices are related
to the ones used for the matrix product solution of the
multispecies periodic ASEP [36].

The boundary vectors 〈Wk| and |Vk〉 are constructed
by taking tensor products of bra and ket vectors. We
start with |V1〉 = |V 〉 and 〈W1| = 〈W | and iterate

|Vk+1〉 = |V 〉 ⊗ |Ṽ 〉 ⊗ |Vk〉 (8)

〈Wk+1| = 〈Wµ| ⊗ 〈W̃µ| ⊗ 〈Wk| , (9)
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where |V 〉 is defined in Eq. (3) and

[β(1− d)− δ(1− e)] |Ṽ 〉 = 0 (10)

〈Wµ|[α(1 + eµ e)− γ(1 + e−µ d)] = (1− q)〈Wµ| (11)

〈W̃µ|[α(1− eµ e)− γ(1− e−µ d)] = 0 . (12)

This matrix Ansatz allows us to calculate the cumu-
lants to any desired order k. Our central result is a
parametric formula for the cumulant generating function
E(µ):

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− q)

∑
k≥1

Dk
Bk

k
, (13)

where B is a formal parameter that has to be eliminated
from the two equations. We emphasize that similar para-
metric expressions have appeared in all known exact ex-
pressions for the current cumulant generating function
[9, 24, 37] and a similar generic form was derived from the
additivity principle in [8]. The function E(µ) is fully spec-
ified from the knowledge of the scalars Ck and Dk. These
are given by contours integrals in the complex plane along
a contour Γ (to be defined below):

Ck =

∮
Γ

dz

2 i π

φk(z)

z
, Dk =

∮
Γ

dz

2 i π

φk(z)

(z + 1)2
. (14)

The φk(z)’s are obtained as follows: we define a function
WB(z) that depends on the parameter B

WB(z) =
∑
k≥1

φk(z)
Bk

k
, (15)

and we find that WB(z) is uniquely determined as the
solution of the functional equation:

WB(z) = −1

2
ln
(

1−BF (z)eX[WB ](z)
)
, (16)

where F (z) is given by the expression

(1 + z)L(1 + z−1)L(z2)∞(z−2)∞

(a+z)∞(a+z )∞(a−z)∞(a−z )∞(b+z)∞( b+z )∞(b−z)∞( b−z )∞
(17)

with (x)∞ =
∏∞
k=0(1− qkx) . We note that F (z) appears

in the definition of the Askey-Wilson polynomials, known
to be relevant to the open ASEP [34]. The operator X
is a linear integral operator:

X[WB ](z1) =

∮
Γ

dz2

2ıπ z2
WB(z2)K

(
z1

z2

)
, (18)

where the kernel K is given by

K(z) = 2

∞∑
k=1

qk

1− qk
{
zk + z−k

}
(19)

and the contour Γ in the complex plane encircles (once)
the points 0, qka+, q

ka−, q
kb+ and qkb− for all integers

k ≥ 0. The kernel K(z1/z2) was used in [24] to calculate
the current fluctuations in the periodic case.

The functional equation (16) contains the complete in-
formation about the current statistics: by solving it iter-
atively to any order k, we obtain the first k cumulants of
the current. At first order, we have φ1(z) = F (z)/2 and
the mean value of the current is

J = lim
t→∞

〈Yt〉
t

= (1− q)D1

C1
= (1− q)

∮
Γ

dz
2 i π

F (z)
z∮

Γ
dz

2 i π
F (z)

(z+1)2

(20)

This expression is identical to that given in [34]. At sec-
ond order, the variance of the current is:

∆ = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
= (1− q)D1C2 −D2C1

2C3
1

(21)

where C2 and D2 are obtained using (14) with

φ2(z) =
1

2

(
F 2(z) +

∮
Γ

dz2F (z)F (z2)K(z/z2)

2ıπz2

)
.

For higher cumulants, exact expressions similar to
Eq. (21) are obtained and can be expressed via a com-
binatorial tree expansion akin to that found in the peri-
odic case [24]. The expression of the diffusion constant
∆ generalizes the formula of [35] obtained for the to-
tally asymmetric exclusion process (TASEP) in which
q = δ = γ = 0. For the TASEP, the kernel K and
the operator X vanish identically and F (z) reduces to

FTASEP(z) =
−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b)
(22)

with a = 1−α
α and b = 1−β

β ; then, Eq. (16) leads to

φk(z) = F kTASEP(z)/2 and the results of [37] are retrieved.
For a periodic system of size L with N particles, the
current fluctuations can be brought into the framework
described here with the same generalized matrix Ansatz,
but the boundary vectors are replaced by a trace and
equation (16) is modified as follows: the prefactor 1/2
is removed, F (z) = (1 + z)L/zN and the Kernel K is
still given by (19). Then, the results of [24], originally
obtained by Bethe Ansatz, are retrieved.

The derivation of the above results involves combina-
torial identities for matrix elements of the generalized
matrix Ansatz. Some of these identities were guessed by
induction rather than mathematically proved [38]. It was
therefore necessary to validate our calculations numeri-
cally. For small size systems (L ≤ 7), expressions for the
cumulants have been checked against the exact values
from direct calculations. For larger systems (L ≤ 100),
we compared the analytical formulas with numerical com-
putations of the cumulants performed using a DMRG
method. That method, originally introduced to study
ground state properties of quantum spin chains [39] was
recently adapted to calculate the highest eigenvalues of
deformed stochastic operators like M(µ) [11]. A few of
those results are displayed in Figs 2 and 3.
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FIG. 2. Third (E3, red) and fourth (E4, blue) cumulants in
the Maximal Current phase, with q = 0.5, a+ = b+ = 0.65,
a− = b− = 0.6; the full lines represent the corresponding large
size asymptotic behaviors.
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FIG. 3. Second (E2, red) and third (E3, blue) cumulants in
the High Density phase, with q = 0.5, a+ = 0.28, b+ = 1.15,
a− = −0.48 and b− = −0.27.

For large system sizes, L → ∞, the cumulant gen-
erating function takes different expressions in different
phases. These are derived from an asymptotic analysis
involving the leading singularities of F (z) [29, 34, 38]. In
the Low Density phase, the dominant singularity is the
pole at a+ leading to φk(z) ∼ F k(z). Using the Lagrange
inversion formula as in [37], we obtain

E(µ) = (1− q)(1− ρa)
eµ − 1

eµ + (1− ρa)/ρa
. (23)

This expression agrees with the one found in [30] using
the Bethe Ansatz. Its Legendre Transform matches the

prediction of the additivity principle [31]:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1− ρa
ρa

r

1− r

)}
,

(24)
where the current j is parametrized as j = (1−q)r(1−r).
The HD Phase leads to similar expressions with a+ → b+
and ρa → 1 − ρb. In both cases, the statistics of the
current do not depend on system size in the large L limit.

In the Maximal Current phase, we find that k-th cu-
mulant grows as L(k−3)/2. When L→∞, we have

µ = −L
−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk , (25)

E − 1− q
4

µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk .(26)

These expressions have the same structure as those ob-
tained for the case of a periodic ring [9] and the large
deviation functions have the same asymptotic behavior.
Moreover, for the open TASEP of size L with α = 1 and
β = 1/2, we observed that the formulas are identical to
those for the half-filled periodic TASEP of size 2L+ 2.

Along the shock line (ρa = 1− ρb < 1/2), we obtain

µ = −2L−1 (1 + a+)

(1− a+)

∞∑
k=1

k2k−1

(2k)!
Bk , (27)

E − (1− q)a+

(1 + a+)2
µ = −2L−2 (1− q)a+

(1− a2
+)

∞∑
k=1

k2k−2

(2k)!
Bk ,(28)

with the k-th cumulant scaling as L(k−2) as can be ex-
plained by the domain wall picture for ρa � 1 [32, 37].
We note that this is the only case where the statistics of
the current depend on both the system size and on the
boundary parameters at the large L limit.

We have obtained exact formulas for the current statis-
tics of the open exclusion process in contact with two
reservoirs. Our results are valid for arbitrary sizes and
values of the parameters and have been tested by precise
DMRG computations in various regions of the phase di-
agram. They could also be used as benchmarks to test
alternative computational algorithms [12]. In the limit of
large size systems, the asymptotic behavior of the large
deviation function is derived in all regions of the phase
diagram as long as the asymmetry (1 − q) remains fi-
nite. The diffusive limit q → 1 represents an important
open analytical problem and the exact formulas should
coincide with the predictions of macroscopic fluctuation
theory [7, 31]. We have used an extension of the ma-
trix Ansatz, that was introduced for multispecies exclu-
sion models [36]. The relation between multispecies mod-
els and current fluctuations (and also between open and
periodic systems) is mysterious as no direct mapping is
known. We believe that our results should be derivable
from Bethe Ansatz for a spin chain with non-diagonal
boundaries, but the corresponding Bethe equations have
not yet been derived [30]. Finally, we emphasize that the
matrix representation given here contains all the infor-
mation about the density profiles that generate atypical
currents: the precise calculation of these profiles repre-
sents a challenging open question [1].
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