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Abstract

We study a multi-species exclusion process with inhomogeneous hopping rates. This model is equivalent
to a Markov chain on the symmetric group that corresponds to a random walk in the affine braid arrangement
[11]. We find a matrix product representation for the stationary state of this model. We also show that it
is equivalent to a graphical construction proposed by Ayyer and Linusson [4], which generalizes Ferrari and
Martin’s construction [8].

1 Introduction

The coupling of randomness with algebraic or arithmetic structures can lead to beautiful combinatorial results.
The study of random partitions of integers and its extension to three-dimensional plane partitions [17, 1, 15]
provides a prominent example. Recently, Lam studied Markov chains that can be represented geometrically as
random walks on a regular tessellation of a vector space on which an affine Weyl group acts [11]. When this Weyl
group is a symmetric group, the stationary distribution of the chain displays remarkable combinatorial properties
that were further explored by Lam and Williams, leading to various conjectures [12]. The Markov chain studied
in [12] is equivalent to a multi-species exclusion process with inhomogeneous transition rates as shown by Ayyer
and Linusson in a very recent publication [4]. This suggests that the powerful techniques that were developed in
non-equilibrium statistical mechanics to analyze the asymmetric exclusion process [14, 6, 5] should be relevant
to this more mathematical problem. Indeed, Ayyer and Linusson conjectured that the stationary state can
be obtained by generalizing the elegant graphical algorithm, invented by Ferrari and Martin [8] to solve the
homogeneous N -species totally asymmetric simple exclusion process (N -TASEP); in [4], they generalized Ferrari
and Martin’s algorithm and explored the consequences for Lam and Williams’ conjectures.

In the present work, we solve the N -TASEP with inhomogeneous transition rates by using a generalized
matrix product Ansatz. More precisely, we show that a suitable deformation of the homogeneous algebra studied
in [16, 2] allows us to calculate the stationary state of the inhomogeneous N -TASEP. We also show that our
matrix product solution is equivalent to the algorithm conjectured in [4].

The outline of this work is as follows. In section 2, the model is defined. In section 3, we give a matrix
product solution to the stationary state. In section 4, we explain the graphical construction of the stationary
state conjectured by Ayyer and Linusson, and we show that this construction is equivalent to the matrix product
solution. We give concluding remarks in section 5.

2 Definition of the model

We consider an L-site periodic chain in which each site takes a non-negative integer value 1, 2, . . . , or N + 1
(this is called the N-species problem). Each pair of nearest neighbor sites exchanges their values according to
the following continuous time stochastic dynamics:

a b → b a with rate

{
xa (a < b)
0 (otherwise)

(2.1)
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The special case xa = 1 for all a corresponds to the homogeneous N -TASEP [2, 3, 8, 7]. When the transition
rates xa’s are not equal to each other, we say that this dynamics is inhomogeneous (although one could consider
even more complicated or general transition rules). When L = N + 1, and there is exactly one particle of each
species in the system, the process is equivalent to Lam and Williams’ process on the symmetric group SL [12].

The inhomogeneous N -TASEP is governed by the master equation

d

dt
|P 〉 = M (N)|P 〉 (2.2)

for the vector |P 〉 =
∑
P (j1 · · · jL)|j1 · · · jL〉, where P (j1 · · · jL) is the probability of finding the system in

a configuration j1 · · · jL. The generator matrix (Markov matrix) M (N) is the summation of local operators(
M

(N)
Loc

)
i,i+1

that acts on the spaces corresponding to ith and (i+ 1)st sites of the chain:

M (N) =

L∑
i=1

(
M

(N)
Loc

)
i,i+1

, M
(N)
Loc =

N+1∑
a,b=1

Θ(a− b)
(
|ba〉〈ab| − |ab〉〈ab|

)
with Θ(a− b) =

{
xa (a < b),
0 (a ≥ b). (2.3)

We write m = (m1, . . . ,mN+1) (with mi ∈ Z≥0) for the sector that contains mk particles of type k. Because
of the conservation of the number of particles of each type, we have the decomposition M (N) =

⊕
mMm. In

particular, we consider basic sectors, i.e. mi > 0. Since the identification of local states N + 1 → N maps the
N -species dynamics to the (N − 1)-species dynamics, we have the spectral inclusion: the spectrum of the sector
m = (m1, . . . ,mN ,mN+1) contains that of the sector m′ = (m1, . . . ,mN + mN+1).1 This inclusion relation
indicates that there exists a “conjugation matrix” ψm such that

Mmψm = ψmMm′ . (2.4)

This matrix allows one to lift states that belong to the (N − 1)-species sector m′ and to construct eigenstates
for the N -species sector m. In particular, the stationary state of the N -TASEP (the kernel of M (N)) can be
constructed recursively if one knows the sequence of the conjugation matrices.

3 Generalized matrix product Ansatz

The idea of the matrix product Ansatz is to express the probability of finding each configuration j1 · · · jL as a
trace over a suitable algebra

P (j1 · · · jL) =
1

Z
Tr
(
X

(N)
j1
· · ·X(N)

jL

)
(3.1)

with a normalization constant Z. The operators X
(N)
j ’s must satisfy suitable algebraic relations, which are

usually infinite dimensional [6, 5]. For the homogeneous N -TASEP, the operators X
(N)
j were constructed recur-

sively [7, 16] as tensor products of four fundamental operators δ, ε, A and 1l that act on an infinite dimensional
space A =

⊗
µ≥0 C|µ〉〉 as

δ|µ〉〉 =

{
0 (µ = 0),
|µ− 1〉〉 (µ > 0),

ε|µ〉〉 = |µ+ 1〉〉, A|µ〉〉 =

{
|0〉〉 (µ = 0),
0 (µ > 0),

1l|µ〉〉 = |µ〉〉. (3.2)

One can easily verify that the following quadratic relations are satisfied:

δε = 1l, δA = 0, Aε = 0 . (3.3)

In [16], the stationary state for the homogeneous N -TASEP has been expressed as a matrix product form, using
an algebraic interpretation of Ferrari and Martin’s algorithm [8]. More recently the matrix product Ansatz

1 More general inclusion relations are satisfied for the homogeneous case, see [3].
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technique was generalized to obtain a conjugation matrix that satisfies “conjugation relation” (2.4) between
systems having different numbers of species [2]. We now explain how the same ideas can be adapted to the
inhomogeneous case.

The stationary state for N = 1 case is trivial, i.e. all the possible states in each sector are realized with a

same probability. This can be regarded as one dimensional representation of the matrices X
(1)
1 = X

(1)
2 = 1.

3.1 The 2 species case

For N = 2, a matrix product stationary representation has been known, even in the inhomogeneous case [5].
One possible choice for the algebra is

X
(2)
1 X

(2)
3 =

1

x1
X

(2)
1 +X

(2)
3 , X

(2)
2 X

(2)
3 =

1

x2
X

(2)
2 , X

(2)
1 X

(2)
2 = X

(2)
2 . (3.4)

Defining an operator-valued vector X(2) =

 X
(2)
1

X
(2)
2

X
(2)
3

, we observe that the following decomposition exists

X(2) =

 1l δ
0 A
y1ε y1B + y2A

( 1
1

)
, (3.5)

where we have set y1 = 1/x1, y2 = 1/x2 and the matrices δ, ε, A satisfy (3.3). This decomposition can be written
more formally as the product of two rectangular operator-valued matrices a(1) and a(2) of sizes 2× 1 and 3× 2
respectively

X(2) =

 a
(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

a
(2)
31 a

(2)
32

( a
(1)
11

a
(1)
21

)
:= a(2) ? a(1) , (3.6)

where the symbol ? means that we perform tensor products amongst the elements of the matrices a(2) and
a(1). More generally, for matrix-valued matrices Y = (Yuv)uv, Z = (Zuv)uv, it represents the product Y ? Z =

(
∑
w Yuw⊗Zwv)uv. Since a

(1)
11 and a

(1)
21 are scalars here, the tensor product reduces to the ordinary product.

Finally, we observe that the matrices a(1) and a(2) satisfies

M
(1)
Loca

(1)⊗a(1) − a(1)⊗a(1)M (0)
Loc = â(1)⊗a(1) − a(1)⊗â(1) (3.7)

M
(2)
Loca

(2)⊗a(2) − a(2)⊗a(2)M (1)
Loc = â(2)⊗a(2) − a(2)⊗â(2) (3.8)

where

â(1) =

(
0
x1

)
, â(2) =

 0 0
0 0
ε 1l

 . (3.9)

Since M
(0)
Loc = 0, equation (3.7) is the relation in the usual matrix product Ansatz [5]. The relation (3.8) implies

that the matrix ψm whose elements are given as

〈j1 · · · jL|ψm|k1 · · · kL〉 = Tr
(
a
(2)
j1k1
· · · a(2)jLkL

)
(3.10)

intertwines the dynamics of the sectors m = (m1,m2,m3) and m′ = (m1,m2+m3), i.e. it satisfies equation (2.4).

Formally we write the stationary state for the sector m′ as ψm′ with 〈j1 · · · jL|ψm′ |1 · · · 1〉 = Tr
(
a
(1)
j11
· · · a(1)jL1

)
=

1. Then the stationary state for the sector m can be rewritten as ψmψm′ .

3



For a simple nontrivial example, the stationary state of the sector (1, 1, 2) is given as

ψ(1,1,2)ψ(1,3) =



1222 2122 2212 2221

1233 y22 0 0 0
1323 y22 y1y2 0 0
1332 y22 y1y2 y21 0
2133 0 y22 y1y2 y21
2313 0 0 y22 y1y2
2331 0 0 0 y22
3123 0 y22 0 0
3132 0 y22 y1y2 0
3213 y21 0 y22 y1y2
3231 y1y2 0 0 y22
3312 0 0 y22 0
3321 y1y2 y21 0 y22




1
1
1
1

 =



y22
y2 (y1 + y2)
y21 + y1y2 + y22
y21 + y1y2 + y22
y2 (y1 + y2)

y22
y22

y2 (y1 + y2)
y21 + y1y2 + y22
y2 (y1 + y2)

y22
y21 + y1y2 + y22



. (3.11)

3.2 The N-species case

We now explain the generalized matrix product Ansatz for general values of N (see [2] for more details).
Reversing the construction in the last subsection, we start with the following relation that we call “hat relation”:

M
(N)
Loc a

(N)⊗a(N) − a(N)⊗a(N)M
(N−1)
Loc = â(N)⊗a(N) − a(N)⊗â(N) , (3.12)

where a(N) and â(N) are operator-valued matrices of size (N + 1)×N . We write their elements as 〈j|a(N)|k〉 =

a
(N)
jk , 〈j|â(N)|k〉 = â

(N)
jk . We know that, if we can construct a couple {a(N), â(N)} (for the general integer of N)

that satisfies (3.12), the matrix ψm defined as

〈j1 · · · jL|ψm|k1 · · · kL〉 = Tr
(
a
(N)
j1k1
· · · a(N)

jLkL

)
(3.13)

satisfies the conjugation relation (2.4). Here the configurations j1 · · · jL and k1 · · · kL belong to the sectors
m = (m1, . . . ,mN+1) and m′ = (m1, . . . ,mN + mN+1), respectively. Furthermore, the stationary state of the
sector m can be written by the product of conjugation matrices

|P̄ 〉m = ψmψm′ · · ·ψ(m1,L−m1) (3.14)

if all of them are nonzero (we note that the conjugation matrix ψm lifts up other eigenstates from lower sectors
as well).

We set yi = 1/xi and define the operator B = 1l−A. An explicit solution to the hat relation (3.12) is given
by

a
(N)
jk =



A⊗(j−1)⊗δ⊗1l⊗(k−j−1)⊗ε⊗1l⊗(N−k−1) (j < k < N),

A⊗(j−1)⊗δ⊗1l⊗(N−j−1) (j < k = N),

A⊗(j−1)⊗1l⊗(N−j) (j = k),(∑k−1
i=1 yiA

⊗(i−1)⊗B⊗1l⊗(k−i−1) + ykA
⊗(k−1)

)
⊗ε⊗1l⊗(N−k−1) (k < j − 1 = N),∑N−1

i=1 yiA
⊗(i−1)⊗B⊗1l⊗(N−i−1) + yNA

⊗(N−1) (j − 1 = k = N),
0 (otherwise)

(3.15)

â
(N)
jk =

 1l⊗(k−1)⊗ε⊗1l⊗(N−k−1) (k < j − 1 = N)

1l⊗(N−1) (k = j − 1 = N)
0 (otherwise).

(3.16)

The difference from the homogeneous case appears in a
(N)
jk for j = N + 1. Indeed we retrieve the solution to the

homogeneous case [2, 7] by setting yj = 1. We change the definitions of a(1) and â(1) as a(1) =

(
1
y1

)
, â(1) =(

0
1

)
for compatibility with the general forms (3.15), (3.16) .
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By a direct calculation, one can show that equations (3.15), (3.16) give a representation to the algebra
defined by the hat relation (3.12) i.e.

− xjajkaj′k′ − xk(ajk′aj′k − ajkaj′k′) = âjkaj′k′ − ajkâj′k′ (j < j′ ∧ k < k′), (3.17)

−xk(ajk′aj′k − ajkaj′k′) = âjkaj′k′ − ajkâj′k′ (j = j′ ∧ k < k′), (3.18)

xj′aj′kajk′ − xk(ajk′aj′k − ajkaj′k′) = âjkaj′k′ − ajkâj′k′ (j > j′ ∧ k < k′), (3.19)

−xjajkaj′k′ = âjkaj′k′ − ajkâj′k′ (j < j′ ∧ k ≥ k′), (3.20)

0 = âjkaj′k′ − ajkâj′k′ (j = j′ ∧ k ≥ k′), (3.21)

xj′aj′kajk′ = âjkaj′k′ − ajkâj′k′ (j > j′ ∧ k ≥ k′). (3.22)

It is straightforward to prove that the above relations are satisfied simply by substituting equations (3.15) and
(3.16). In appendix, we prove the first identity (3.17) as an example. For N = 3 and 4, the result can be written
explicitly as

a(3) =


1l⊗1l δ⊗ε δ⊗1l

0 A⊗1l A⊗δ
0 0 A⊗A

y1ε⊗1l y1B⊗ε y1B⊗1l
+y2A⊗ε +y2A⊗B

+y3A⊗A

 , â(3) =


0 0 0
0 0 0
0 0 0
ε⊗1l 1l⊗ε 1l⊗1l

 , (3.23)

a(4) =



1l⊗1l⊗1l δ⊗ε⊗1l δ⊗1l⊗ε δ⊗1l⊗1l
0 A⊗1l⊗1l A⊗δ⊗ε A⊗δ⊗1l
0 0 A⊗A⊗1l A⊗A⊗δ
0 0 0 A⊗A⊗A

y1ε⊗1l⊗1l y1B⊗ε⊗1l y1B⊗1l⊗ε y1B⊗1l⊗1l
+y2A⊗ε⊗1l +y2A⊗B⊗ε +y2A⊗B⊗1l

+y3A⊗A⊗ε +y3A⊗A⊗B
+y4A⊗A⊗A


, (3.24)

â(4) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ε⊗1l⊗1l 1l⊗ε⊗1l 1l⊗1l⊗ε 1l⊗1l⊗1l

 . (3.25)

We now generalize the form (3.5) or (3.6). The form (3.14) can be written as the matrix product form (3.1)
with the matrices

X
(N)
j = 〈j|X(N)|1〉, X(N) = a(N) ? · · · ? a(1) . (3.26)

thanks to the “sector specificity”2.
Let us consider the element (3.13) for configurations j1 · · · jL and k1 · · · kL of the sectors (m1, . . . ,mN+1)

and (m1, . . . ,mN +mN+1) with ji < ji+1. Since ajkaj′j′ = 0 for j < j′ ≤ N and k 6= k′, we need to set ji = ki
for i ≤ L−mN+1 so that (3.13) is nonzero, and we have

Tr
(
a11 · · · a11a22 · · · a22 · · · aNN · · · aNNa(N+1)N · · · a(N+1)N

)
= y

mN+1

N . (3.27)

Therefore the stationary weight of the configuration j1 · · · jL is
∏N
n=1 y

mn+1+···+mN+1
n . As far as we treat basic

sectors, the matrix product a
(N)
j1k1
· · · a(N)

jLkL
contains a

(N)
NN = A⊗(N−1) or 0. This implies that the matrix product

is transformed into a tensor product of the form εcAδc = |c〉〉〈〈c| multiplied by a monomial of yn’s (by applying

the relation (3.3) and A2 = A), otherwise it is 0. Since TrεcAδc = 1, the trace of a
(N)
j1k1
· · · a(N)

jLkL
is a monomial

of yn’s or 0. Note that the trace is not always finite if we consider a non basic sector.

2 When k1 · · · kL does not belong to the sector m′, the trace (3.13) is always 0. This specificity is because the numbers of δ’s
and ε’s are different in the matrix product, see [2] for details.
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4 Graphical construction of the stationary state

We have found a solution to the generalized matrix product Ansatz that constructs conjugation matrices of
the inhomogeneous N -TASEP. In this section, we first review the algorithm that A. Ayyer and S. Linusson
devised [4] to calculate the stationary weights by defining an inhomogeneous extension of the seminal algorithm
by Ferrari and Martin[8]. Then we show that the solution to the matrix product Ansatz of the previous section
is equivalent to Ayyer and Linusson’s construction.

4.1 Ayyer and Linusson’s algorithm

The algorithm of Ayyer and Linusson [4] constructs the stationary state of the N -species sector (m1, . . . ,mN+1)
from the (N−1)-species sector (m1, . . . ,mN +mN+1). It is provided by two maps F,W from an (N−1)-species
configuration and a configuration consisting of black and white boxes, to an N -species configuration and a
polynomial in yi’s. Figure 4.1 is helpful to understand the algorithm.

(i) Let us set two lines. On the upper line, there are m1 + · · ·+mN black boxes � and mN+1 white boxes �
as c1 · · · cL (ci = �,�). On the lower line, we give a configuration k1 · · · kL of the (N − 1)-species sector
(m1, . . . ,mN +mN+1). Thus, on the lower line, there are mν ν’s (1 ≤ ν ≤ N − 1) and (mN +mN+1) N ’s.

(ii-1) Let {i(1)1 , . . . , i
(1)
m1} be the positions of the m1 1’s on the lower line. For the first 1 located at i

(1)
1 , find

the nearest black box ci′ = � with i′ ≤ i
(1)
1 and put 1 on it. If there is no such black box, put 1 on

the rightmost black box. For the second 1 located at i
(1)
2 , find the nearest unoccupied black box ci′ = �

with i′ ≤ i
(1)
2 and put 1 on it. If there is no such black box, put 1 on the rightmost unoccupied black

box. We draw an arrow from i
(1)
1 to the targeted black box. (In the following procedure till (ii-ν), we

always draw an arrow in the same way, see figure (4.1)) We iterate this procedure m1 times, i.e. find the

nearest unoccupied black box ci′ = � with i′ ≤ i(1)` for the `th 1 located at i
(1)
` , and put 1 on it or on the

rightmost unoccupied black box if i′ does not exist.

(ii-2) Let {i(2)1 , . . . , i
(2)
m2} be the positions of the m2 2’s on the lower line. There are (m2 + · · ·+mN ) unoccupied

black boxes on the upper line. We iterate the following procedure m2 times: find the nearest unoccupied

black box ci′ = � with i′ ≤ i(2)` for the `th 2 (1 ≤ ` ≤ m2), and put 2 on it or on the rightmost unoccupied
black box if i′ does not exist.

(ii-ν) In the same way, we go on for ν = 3, 4, . . . , (N − 1). Let {i(ν)1 , . . . , i
(ν)
mν} be the positions of the mν ν’s

on the lower line. There are (mν + · · · + mN ) unoccupied black boxes remaining on the upper line. We

iterate the following procedure mν times: find the nearest unoccupied black box ci′ = � with i′ ≤ i(ν)` for
the `th ν (1 ≤ ` ≤ mν), and put ν on it or on the rightmost unoccupied black box if i′ does not exist.

(iii) There are mN unoccupied black boxes remaining. Put Ns on them.

(iv) Put (N + 1)s on the mN+1 white boxes. We have thus constructed a configuration F (c1 · · · cL, k1 · · · kL)
of the N -TASEP on the upper line, belonging to the sector m.

(v) Define a vector from the stationary state |P̄m′〉 of the sector m′ as follows:

|P̄m〉 =
∑

W (j1 · · · jL, k1 · · · kL)|j1 · · · jL〉〈k1 · · · kL|P̄m′〉. (4.1)

The summation
∑

runs over j1 · · · jL and k1 · · · kL belonging to the sectors m and m′. If there exits a
configuration c1 · · · cL such that

F (c1 · · · cL, k1 · · · kL) = j1 · · · jL, (4.2)

the coefficient W (j1 · · · jL, k1 · · · kL) is defined as the product of the following weights {w1, · · · , wL}. Draw
a vertical line between each bond between site i− 1 and i, see figure 4.1. When an arrow connecting two

6



4 4 4 3 1 2 3 4 4 

1 

y3  y2 y2
 y4

 

44 4 3 1 2 3 4 4 

3 3 2 5 1 5 5 4 5 

4 4 4 3 1 2 3 4 4 

 2 1 

4 4 4 3 1 2 3 4 4 

3 3 2 1 

11 1 1 1 

(ii-1) (ii-2)

(ii-3) (iii)(iv)

weights

Figure 1: An example of Ayyer and Linusson’s algorithm.

ν’s on the upper and lower lines in our figures, we say “the value of the arrow is ν”:
ν
↑−−|
ν
. Each weight wi

is defined as

wi =

 1 (ji ≤ N),
y` (ji = N + 1, and ` is the minimal value of arrows that cross the ith vertical line),
yN (ji = N + 1, and no arrow crosses the ith vertical line).

(4.3)

Then we have W (j1 · · · jL, k1 · · · kL) =
∏

1≤i≤L wi. If there is no configuration c1 · · · cL such that equation
(4.2) is satisfied, we define W (j1 · · · jL, k1 · · · kL) = 0.

Ayyer and Linusson conjectured that the form (4.1) gives the stationary state |P̄m〉 of the sector m [4].
There the definition of the weight looks different from our W , but is equivalent by multiplying it by a constant.

Figure 4.1 gives an example of the algorithm for the sectors m = (1, 1, 2, 1, 4),m′ = (1, 1, 2, 5), where the
upper and lower lines are

c1 · · · cL = ���������, k1 · · · kL = 443123444. (4.4)

According to the algorithm, the configuration of the sector m and the weight are obtained as

F (���������, 443123444) = 325155453, W (325155453, 443123444) = y22y3y4. (4.5)

4.2 Equivalence of the matrix representation and Ayyer and Linusson’s algorithm

We explain the relation between the matrix product representation and Ayyer and Linusson’s algorithm (follow-

ing [2] for the homogeneous case). The elements a
(N)
jk act on a basis vector |µ1, . . . , µN−1〉〉 = |µ1〉〉⊗ · · · ⊗|µN−1〉〉 ∈

7



A⊗(N−1) as

a
(N)
jk |µ1, . . . , µN−1〉〉

=



|µ1, . . . , µj − 1, . . . , µk + 1, . . . , µN−1〉〉 (j < k < N, µ1 = · · · = µj−1 = 0, µj > 0),
|µ1, . . . , µj − 1, . . . , µN−1〉〉 (j < k = N,µ1 = · · · = µj−1 = 0, µj > 0),
|µ1, . . . , µN−1〉〉 (j = k, µ1 = · · · = µj−1 = 0),
ymin{`,k}|µ1, . . . , µk + 1, . . . , µN−1〉〉 (k < j − 1 = N,µ1 = · · · = µ`−1 = 0, µ` > 0),
y`|µ1, . . . , µN−1〉〉 (j − 1 = k = N,µ1 = · · · = µ`−1 = 0, µ` > 0),
0 (otherwise).

(4.6)

Let j1 · · · jL and k1 · · · kL belong to basic sectors m and m′. If the vector |µ1, . . . , µN−1〉〉 is not killed by a
matrix product aj1k1 · · · ajLkL , the series of matrices {aj1k1 , . . . , ajLkL} give a series (“trajectory”) as

|µ1, . . . , µN−1〉〉
a
(N)
jLkL7−→ vL|µL1 , . . . , µLN−1〉〉

a
(N)
jL−1kL−17−→ vL−1vL|µL−11 , . . . , µL−1N−1〉〉 7→

· · · 7→ v2 · · · vL|µ2
1, . . . , µ

2
N−1〉〉

a
(N)
j1k17−→ v1 · · · vL|µ1

1, . . . , µ
1
N−1〉〉, (4.7)

where we have set

a
(N)
jiki
|µi+1

1 , . . . , µi+1
N−1〉〉 = vi|µi1, . . . , µiN−1〉〉 (µL+1

ν = µν). (4.8)

Since a
(N)
jk increases µk 7→ µk + 1 and decreases µj 7→ µj − 1 (see the action (4.6)), and we have #{ji = ν} =

#{ki = ν} for ν ≤ N − 1, we find |µ1
1, . . . , µ

1
N−1〉〉 = |µ1, . . . , µN−1〉〉. In other words, |µ1, . . . , µN−1〉〉 is an

eigenvector of the matrix product with a nonzero eigenvalue. If a trajectory (4.7) is given, one notices that it is

unique and a
(N)
j1k1
· · · a(N)

jLkL
|µ′1, . . . , µ′N−1〉〉 = 0 for (µ′1, . . . , µ

′
N−1) 6= (µ1, . . . , µN−1). We regard µν in the vector

|µ1, . . . , µN−1〉〉 as the number of arrows with value ν. The trajectory gives one graph of arrows which is the
same as obtained by Ayyer and Linusson’s algorithm since the local action (4.6) is compatible with it. (For

example, when j < k < N , the action of a
(N)
jk decreases # of arrows with value j and increases # of arrows

with value k. This is allowed only if there is no arrow with value ν < j, otherwise it kills the vector.) We can
also see a compatibility of the local action for the coefficient vi = wi as well as arrows, and thus the nonzero
eigenvalue is identical to W (j1 · · · jL, k1 · · · kL):

Tr
(
a
(N)
j1k1
· · · a(N)

jLkL

)
= W (j1 · · · jL, k1 · · · kL). (4.9)

When there is no nonzero eigenvalue, this equation is also true since W (j1 · · · jL, k1 · · · kL) = 0.
For example, for configurations j1 · · · jL = 325155453, k1 · · · kL = 443123444 as in figure 4.1, the matrix

product aj1k1 · · · ajLkL gives a trajectory

|0, 0, 1〉〉
a
(4)
347−→ |0, 0, 0〉〉

a
(4)
547−→ y4|0, 0, 0〉〉

a
(4)
447−→ |0, 0, 0〉〉

a
(4)
537−→ y3y4|0, 0, 1〉〉

a
(4)
527−→ y2y3y4|0, 1, 1〉〉

a
(4)
117−→ y2y3y4|0, 1, 1〉〉

a
(4)
537−→ y22y3y4|0, 1, 2〉〉

a
(4)
247−→ y22y3y4|0, 0, 2〉〉

a
(4)
347−→ y22y3y4|0, 0, 1〉〉, (4.10)

and we have aj1k1 · · · ajLkL |0, 0, 1〉〉 = y22y3y4|0, 0, 1〉〉, and we have Tr(aj1k1 · · · ajLkL) = y22y3y4.

5 Concluding remarks

In this work, we applyed the generalized matrix product Ansatz to represent the stationary weights of the
inhomogeneous N -species TASEP. We also explained that our solution to the Ansatz is equivalent to Ayyer and
Linusson’s combinatorial algorithm. Our analysis was motivated by some conjectures proposed by Lam and
Williams [12]. For example, for L = N + 1, they claim that the stationary probability is a polynomial with
respect to the hoping rates with non-negative integer coefficients and is a non-negative integral sum of Schubert
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polynomials. The first observation is an obvious consequence of Kirchhoff’s matrix tree formula [18]. (Note that
this is also an outcome of our matrix product solution because all operators have positive entries.) However, the
relation with Schubert polynomials is still unclear. Another interesting problem would be to extend the present
study to the partially asymmetric case and to classify the multi-species systems with arbitrary inhomogeneous
hopping rates that can be solved by the matrix product Ansatz. Finally, we note here that the inhomogeneities
are linked to the particles rather than to the underlying lattice. Extending our approach to models with lattice
defects (such as the Janowsky and Lebowitz model in which the insertion of a slow bond can generate a shock
[9]) remains a very challenging open question.
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A Proof of equation (3.17)

Here we show the first case (3.17) of the algebra.

The case when j 6= k, j′ ≤ N . We have

ajκ = 0 or jth component of ajκ is δ (for κ = k, k′), (A.1)

aj′κ = 0 or jth component of aj′κ is A (for κ = k, k′). (A.2)

In any cases, we find ajkaj′k′ = aj′kajk′ = 0, and thus the left-hand side is 0. The right-hand side is also
0 thanks to âjk = âj′k′ = 0.

The case when j = k, j′ ≤ N . The left hand side is −xjajk′aj′j = 0 thanks to aj′j = 0. The right-hand

side is again 0 thanks to âjk = âj′k′ = 0.

The case when j < k, j′ = N + 1 . Since

ajkaj′k′ = ajk′aj′k = yjA
⊗(j−1)⊗δ⊗1l⊗(k−j−1)⊗ε⊗1l⊗(k

′−k−1)⊗ε⊗1l⊗(N−k
′−1), (A.3)

the left hand side is calculated as

−A⊗(j−1)⊗δ⊗1l⊗(k−j−1)⊗ε⊗1l⊗(k
′−k−1)⊗ε⊗1l⊗(N−k

′−1), (A.4)

which agrees with the right-hand side. (We read · · · 1l⊗(N−k−1)⊗ε⊗1l⊗(−1) = · · · 1l⊗(N−k−1) for k′ = N .)

The case when j = k, j′ = N + 1 . The left-hand side is calculated as

− xjajk′aj′j = −A⊗(j−1)⊗1l⊗(k
′−j)ε⊗1l⊗(N−k

′−1), (A.5)

which agrees with the right-hand side.

The case when j > k, j′ = N + 1 . We have ajkaj′k′ = 0 thanks to ajk = 0. Since the kth component of

each term of aj′k is ε, and ajk′=0 or the kth component ajk′ is A, we also have ajk′aj′k = 0. Thus the
left hand side is 0. The right hand side is also 0 thanks to ajk = âjk = 0.
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