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Introduction

The coupling of randomness with algebraic or arithmetic structures can lead to beautiful combinatorial results. The study of random partitions of integers and its extension to three-dimensional plane partitions [START_REF] Vershik | Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux[END_REF][START_REF] Andrews | Partitions[END_REF][START_REF] Okounkov | The uses of random partitions[END_REF] provides a prominent example. Recently, Lam studied Markov chains that can be represented geometrically as random walks on a regular tessellation of a vector space on which an affine Weyl group acts [START_REF] Lam | The shape of a random affine Weyl group element and random core partitions[END_REF]. When this Weyl group is a symmetric group, the stationary distribution of the chain displays remarkable combinatorial properties that were further explored by Lam and Williams, leading to various conjectures [START_REF] Lam | A Markov chain on the symmetric group which is Schubert positive?[END_REF]. The Markov chain studied in [START_REF] Lam | A Markov chain on the symmetric group which is Schubert positive?[END_REF] is equivalent to a multi-species exclusion process with inhomogeneous transition rates as shown by Ayyer and Linusson in a very recent publication [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF]. This suggests that the powerful techniques that were developed in non-equilibrium statistical mechanics to analyze the asymmetric exclusion process [START_REF] Liggett | Stochastic Models of Interacting Systems:Contact, Voter and Exclusion Processes[END_REF][START_REF] Derrida | An exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF][START_REF] Blythe | Nonequilibrium steady states of matrix product form: A solver's guide[END_REF] should be relevant to this more mathematical problem. Indeed, Ayyer and Linusson conjectured that the stationary state can be obtained by generalizing the elegant graphical algorithm, invented by Ferrari and Martin [START_REF] Ferrari | Stationary distributions of multi-type totally asymmetric exclusion processes[END_REF] to solve the homogeneous N -species totally asymmetric simple exclusion process (N -TASEP); in [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF], they generalized Ferrari and Martin's algorithm and explored the consequences for Lam and Williams' conjectures.

In the present work, we solve the N -TASEP with inhomogeneous transition rates by using a generalized matrix product Ansatz. More precisely, we show that a suitable deformation of the homogeneous algebra studied in [START_REF] Prolhac | The matrix product solution of the multispecies partially asymmetric exclusion process[END_REF][START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF] allows us to calculate the stationary state of the inhomogeneous N -TASEP. We also show that our matrix product solution is equivalent to the algorithm conjectured in [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF].

The outline of this work is as follows. In section 2, the model is defined. In section 3, we give a matrix product solution to the stationary state. In section 4, we explain the graphical construction of the stationary state conjectured by Ayyer and Linusson, and we show that this construction is equivalent to the matrix product solution. We give concluding remarks in section 5.

Definition of the model

We consider an L-site periodic chain in which each site takes a non-negative integer value 1, 2, . . . , or N + 1 (this is called the N-species problem). Each pair of nearest neighbor sites exchanges their values according to the following continuous time stochastic dynamics: The special case x a = 1 for all a corresponds to the homogeneous N -TASEP [START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF][START_REF] Arita | Spectrum of a multi-species asymmetric simple exclusion process on a ring[END_REF][START_REF] Ferrari | Stationary distributions of multi-type totally asymmetric exclusion processes[END_REF][START_REF] Evans | Matrix Representation of the Stationary Measure for the Multispecies TASEP[END_REF]. When the transition rates x a 's are not equal to each other, we say that this dynamics is inhomogeneous (although one could consider even more complicated or general transition rules). When L = N + 1, and there is exactly one particle of each species in the system, the process is equivalent to Lam and Williams' process on the symmetric group S L [START_REF] Lam | A Markov chain on the symmetric group which is Schubert positive?[END_REF]. The inhomogeneous N -TASEP is governed by the master equation

a b → b a with rate x a (a < b) 0 (otherwise) (2.
d dt |P = M (N ) |P (2.2)
for the vector

|P = P (j 1 • • • j L )|j 1 • • • j L , where P (j 1 • • • j L )
is the probability of finding the system in a configuration j 1 • • • j L . The generator matrix (Markov matrix) M (N ) is the summation of local operators

M (N ) Loc i,i+1
that acts on the spaces corresponding to ith and (i + 1)st sites of the chain:

M (N ) = L i=1 M (N ) Loc i,i+1 , M (N ) Loc = N +1 a,b=1 Θ(a -b) |ba ab| -|ab ab| with Θ(a -b) = x a (a < b), 0 (a ≥ b). (2.3) 
We write m = (m 1 , . . . , m N +1 ) (with m i ∈ Z ≥0 ) for the sector that contains m k particles of type k. Because of the conservation of the number of particles of each type, we have the decomposition M (N ) = m M m . In particular, we consider basic sectors, i.e. m i > 0. Since the identification of local states N + 1 → N maps the N -species dynamics to the (N -1)-species dynamics, we have the spectral inclusion: the spectrum of the sector m = (m 1 , . . . , m N , m N +1 ) contains that of the sector m = (m 1 , . . . , m N + m N +1 ). 1 This inclusion relation indicates that there exists a "conjugation matrix" ψ m such that

M m ψ m = ψ m M m . (2.4) 
This matrix allows one to lift states that belong to the (N -1)-species sector m and to construct eigenstates for the N -species sector m. In particular, the stationary state of the N -TASEP (the kernel of M (N ) ) can be constructed recursively if one knows the sequence of the conjugation matrices.

Generalized matrix product Ansatz

The idea of the matrix product Ansatz is to express the probability of finding each configuration j 1 • • • j L as a trace over a suitable algebra

P (j 1 • • • j L ) = 1 Z Tr X (N ) j1 • • • X (N ) j L (3.1)
with a normalization constant Z. The operators X (N ) j 's must satisfy suitable algebraic relations, which are usually infinite dimensional [START_REF] Derrida | An exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF][START_REF] Blythe | Nonequilibrium steady states of matrix product form: A solver's guide[END_REF]. For the homogeneous N -TASEP, the operators X (N ) j

were constructed recursively [START_REF] Evans | Matrix Representation of the Stationary Measure for the Multispecies TASEP[END_REF][START_REF] Prolhac | The matrix product solution of the multispecies partially asymmetric exclusion process[END_REF] as tensor products of four fundamental operators δ, , A and 1l that act on an infinite dimensional space A = µ≥0 C|µ as

δ|µ = 0 (µ = 0), |µ -1 (µ > 0), |µ = |µ + 1 , A|µ = |0 (µ = 0), 0 (µ > 0), 1l|µ = |µ . (3.2)
One can easily verify that the following quadratic relations are satisfied:

δ = 1l, δA = 0, A = 0 . (3.3)
In [START_REF] Prolhac | The matrix product solution of the multispecies partially asymmetric exclusion process[END_REF], the stationary state for the homogeneous N -TASEP has been expressed as a matrix product form, using an algebraic interpretation of Ferrari and Martin's algorithm [START_REF] Ferrari | Stationary distributions of multi-type totally asymmetric exclusion processes[END_REF]. More recently the matrix product Ansatz technique was generalized to obtain a conjugation matrix that satisfies "conjugation relation" (2.4) between systems having different numbers of species [START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF]. We now explain how the same ideas can be adapted to the inhomogeneous case.

The stationary state for N = 1 case is trivial, i.e. all the possible states in each sector are realized with a same probability. This can be regarded as one dimensional representation of the matrices X

(1) 1 = X (1) 2 = 1.

The 2 species case

For N = 2, a matrix product stationary representation has been known, even in the inhomogeneous case [START_REF] Blythe | Nonequilibrium steady states of matrix product form: A solver's guide[END_REF]. One possible choice for the algebra is

X (2) 1 X (2) 3 = 1 x 1 X (2) 1 + X (2) 3 , X (2) 2 X 
(2)

3 = 1 x 2 X (2) 2 , X (2) 1 X 
(2)

2 = X (2) 
2 .

(3.4)

Defining an operator-valued vector

X (2) =    X (2) 1 X (2) 2 X (2) 3 
  , we observe that the following decomposition exists

X (2) =   1l δ 0 A y 1 y 1 B + y 2 A   1 1 , (3.5) 
where we have set y 1 = 1/x 1 , y 2 = 1/x 2 and the matrices δ, , A satisfy (3.3). This decomposition can be written more formally as the product of two rectangular operator-valued matrices a (1) and a (2) of sizes 2 × 1 and 3 × 2 respectively

X (2) =    a (2) 11 a (2) 12 a (2) 21 a (2) 22 a (2) 31 a (2) 32    a (1) 11 a 
(1) 21

:= a (2) a (1) , (3.6) 
where the symbol means that we perform tensor products amongst the elements of the matrices a (2) and a (1) . More generally, for matrix-valued matrices Y = (Y uv ) uv , Z = (Z uv ) uv , it represents the product Y Z = ( w Y uw ⊗Z wv ) uv . Since a

(1)

11 and a

(1)

21 are scalars here, the tensor product reduces to the ordinary product. Finally, we observe that the matrices a (1) and a (2) satisfies

M (1)
Loc a (1) ⊗a (1) a (1) ⊗a (1) M (0) Loc = a (1) ⊗a (1) a (1) ⊗ a (1) (3.7)

M (2) Loc a (2) ⊗a (2) -a (2) ⊗a (2) M (1) Loc = a (2) ⊗a (2) -a (2) ⊗ a (2) (3.8)
where

a (1) = 0 x 1 , a (2) =   0 0 0 0 1l   . (3.9) Since M (0) Loc = 0, equation (3.7
) is the relation in the usual matrix product Ansatz [START_REF] Blythe | Nonequilibrium steady states of matrix product form: A solver's guide[END_REF]. The relation (3.8) implies that the matrix ψ m whose elements are given as

j 1 • • • j L |ψ m |k 1 • • • k L = Tr a (2) j1k1 • • • a (2) j L k L (3.10)
intertwines the dynamics of the sectors m = (m 1 , m 2 , m 3 ) and m = (m 1 , m 2 +m 3 ), i.e. it satisfies equation (2.4).

Formally we write the stationary state for the sector m as ψ m with j

1 • • • j L |ψ m |1 • • • 1 = Tr a (1) j11 • • • a (1) j L 1 = 1.
Then the stationary state for the sector m can be rewritten as ψ m ψ m . For a simple nontrivial example, the state of the sector (1, 1, 2) is given as 

ψ (1,1,2) ψ (1,3) =                    
y 1 y 2 y 2 1 0 y 2 2                         1 1 1 1     =                     y 2 2 y 2 (y 1 + y 2 ) y 2 1 + y 1 y 2 + y 2 2 y 2 1 + y 1 y 2 + y 2 2 y 2 (y 1 + y 2 ) y 2 2 y 2 2 y 2 (y 1 + y 2 ) y 2 1 + y 1 y 2 + y 2 2 y 2 (y 1 + y 2 ) y 2 2 y 2 1 + y 1 y 2 + y 2 2                     . (3.11)

The N -species case

We now explain the generalized matrix product Ansatz for general values of N (see [START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF] for more details).

Reversing the construction in the last subsection, we start with the following relation that we call "hat relation":

M (N ) Loc a (N ) ⊗a (N ) -a (N ) ⊗a (N ) M (N -1) Loc = a (N ) ⊗a (N ) -a (N ) ⊗ a (N ) , (3.12) 
where a (N ) and a (N ) are operator-valued matrices of size (N + 1) × N . We write their elements as j|a (N ) |k = a

(N ) jk , j| a (N ) |k = a (N )
jk . We know that, if we can construct a couple {a (N ) , a (N ) } (for the general integer of N ) that satisfies (3.12), the matrix ψ m defined as

j 1 • • • j L |ψ m |k 1 • • • k L = Tr a (N ) j1k1 • • • a (N ) j L k L (3.13)
satisfies the conjugation relation (2.4). Here the configurations

j 1 • • • j L and k 1 • • • k L belong to the sectors m = (m 1 , . . . , m N +1
) and m = (m 1 , . . . , m N + m N +1 ), respectively. Furthermore, the stationary state of the sector m can be written by the product of conjugation matrices

| P m = ψ m ψ m • • • ψ (m1,L-m1) (3.14)
if all of them are nonzero (we note that the conjugation matrix ψ m lifts up other eigenstates from lower sectors as well).

We set y i = 1/x i and define the operator B = 1l -A. An explicit solution to the hat relation (3.12) is given by

a (N ) jk =                    A ⊗(j-1) ⊗δ⊗1l ⊗(k-j-1) ⊗ ⊗1l ⊗(N -k-1) (j < k < N ), A ⊗(j-1) ⊗δ⊗1l ⊗(N -j-1) (j < k = N ), A ⊗(j-1) ⊗1l ⊗(N -j) (j = k), k-1 i=1 y i A ⊗(i-1) ⊗B⊗1l ⊗(k-i-1) + y k A ⊗(k-1) ⊗ ⊗1l ⊗(N -k-1) (k < j -1 = N ), N -1 i=1 y i A ⊗(i-1) ⊗B⊗1l ⊗(N -i-1) + y N A ⊗(N -1) (j -1 = k = N ), 0 (otherwise) (3.15) 
a (N ) jk =    1l ⊗(k-1) ⊗ ⊗1l ⊗(N -k-1) (k < j -1 = N ) 1l ⊗(N -1) (k = j -1 = N ) 0 (otherwise).
(3.16)

The difference from the homogeneous case appears in a (N ) jk for j = N + 1. Indeed we retrieve the solution to the homogeneous case [START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF][START_REF] Evans | Matrix Representation of the Stationary Measure for the Multispecies TASEP[END_REF] by setting y j = 1. We change the definitions of a (1) and a (1) as a (1) = 1 y 1 , a (1) = 0 1 for compatibility with the general forms (3.15), (3.16) .

a direct calculation, one can show that equations (3.15), (3.16) give a representation to the algebra defined by the hat relation (3.12) i.e.

-x j a jk a j k -x k (a jk a j k -a jk a j k ) = a jk a j k -a jk a j k (j < j ∧ k < k ), (3.17)

-x k (a jk a j k -a jk a j k ) = a jk a j k -a jk a j k (j = j ∧ k < k ), (3.18)

x j a j k a jk -x k (a jk a j k -a jk a j k ) = a jk a j k -a jk a j k (j > j ∧ k < k ), (3.19) -x j a jk a j k = a jk a j k -a jk a j k (j < j ∧ k ≥ k ), (3.20) 0 = a jk a j k -a jk a j k (j = j ∧ k ≥ k ), (3.21) x j a j k a jk = a jk a j k -a jk a j k (j > j ∧ k ≥ k ). (3.22)
It is straightforward to prove that the above relations are satisfied simply by substituting equations (3.15) and (3.16). In appendix, we prove the first identity (3.17) as an example. For N = 3 and 4, the result can be written explicitly as

a (3) =         1l⊗1l δ⊗ δ⊗1l 0 A⊗1l A⊗δ 0 0 A⊗A y 1 ⊗1l y 1 B⊗ y 1 B⊗1l +y 2 A⊗ +y 2 A⊗B +y 3 A⊗A         , a (3) =     0 0 0 0 0 0 0 0 0 ⊗1l 1l⊗ 1l⊗1l     , (3.23) a (4) =             1l⊗1l⊗1l δ⊗ ⊗1l δ⊗1l⊗ δ⊗1l⊗1l 0 A⊗1l⊗1l A⊗δ⊗ A⊗δ⊗1l 0 0 A⊗A⊗1l A⊗A⊗δ 0 0 0 A⊗A⊗A y 1 ⊗1l⊗1l y 1 B⊗ ⊗1l y 1 B⊗1l⊗ y 1 B⊗1l⊗1l +y 2 A⊗ ⊗1l +y 2 A⊗B⊗ +y 2 A⊗B⊗1l +y 3 A⊗A⊗ +y 3 A⊗A⊗B +y 4 A⊗A⊗A             , (3.24) 
a (4) =       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⊗1l⊗1l 1l⊗ ⊗1l 1l⊗1l⊗ 1l⊗1l⊗1l       . ( 3.25) 
We now generalize the form (3.5) or (3.6). The form (3.14) can be written as the matrix product form (3.1) with the matrices (1) .

X (N ) j = j|X (N ) |1 , X (N ) = a (N ) • • • a
(3.26) thanks to the "sector specificity"2 . Let us consider the element (3.13) for configurations

j 1 • • • j L and k 1 • • • k L of the sectors (m 1 , . . . , m N +1
) and (m 1 , . . . , m N + m N +1 ) with j i < j i+1 . Since a jk a j j = 0 for j < j ≤ N and k = k , we need to set j i = k i for i ≤ L -m N +1 so that (3.13) is nonzero, and we have

Tr a 11 • • • a 11 a 22 • • • a 22 • • • a N N • • • a N N a (N +1)N • • • a (N +1)N = y m N +1 N . (3.27)
Therefore the stationary weight of the configuration

j 1 • • • j L is N n=1 y mn+1+•••+m N +1 n
. As far as we treat basic sectors, the matrix product a 1) or 0. This implies that the matrix product is transformed into a tensor product of the form c Aδ c = |c c| multiplied by a monomial of y n 's (by applying the relation (3.3) and A 2 = A), otherwise it is 0. Since Tr c Aδ c = 1, the trace of a

(N ) j1k1 • • • a (N ) j L k L contains a (N ) N N = A ⊗(N -
(N ) j1k1 • • • a (N ) j L k L
is a monomial of y n 's or 0. Note that the trace is not always finite if we consider a non basic sector.

Graphical construction of the stationary

We have found a solution to the generalized matrix product Ansatz that constructs conjugation matrices of the inhomogeneous N -TASEP. In this section, we first review the algorithm that A. Ayyer and S. Linusson devised [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF] to calculate the stationary weights by defining an inhomogeneous extension of the seminal algorithm by Ferrari and Martin [START_REF] Ferrari | Stationary distributions of multi-type totally asymmetric exclusion processes[END_REF]. Then we show that the solution to the matrix product Ansatz of the previous section is equivalent to Ayyer and Linusson's construction. . . , µ N -1 is not killed by a matrix product a j1k1 • • • a j L k L , the series of matrices {a j1k1 , . . . , a j L k L } give a series ("trajectory") as

A ⊗(N -1) as a (N jk |µ 1 , . . . , µ N -1 =                |µ 1 , . . . , µ j -1, . . . , µ k + 1, . . . , µ N -1 (j < k < N, µ 1 = • • • = µ j-1 = 0, µ j > 0), |µ 1 , . . . , µ j -1, . . . , µ N -1 (j < k = N, µ 1 = • • • = µ j-1 = 0, µ j > 0), |µ 1 , . . . , µ N -1 (j = k, µ 1 = • • • = µ j-1 = 0), y min{ ,k} |µ 1 , . . . , µ k + 1, . . . , µ N -1 (k < j -1 = N, µ 1 = • • • = µ -1 = 0, µ > 0), y |µ 1 , . . . , µ N -1 (j -1 = k = N, µ 1 = • • • = µ -1 = 0, µ > 0), 0 (otherwise). 
|µ 1 , . . . , µ N -1 a (N ) j L k L -→ v L |µ L 1 , . . . , µ L N -1 a (N ) j L-1 k L-1 -→ v L-1 v L |µ L-1 1 , . . . , µ L-1 N -1 → • • • → v 2 • • • v L |µ 2 1 , . . . , µ 2 N -1 a (N ) j 1 k 1 -→ v 1 • • • v L |µ 1 1 , . . . , µ 1 N -1 , (4.7) 
where we have set

a (N ) jiki |µ i+1 1 , . . . , µ i+1 N -1 = v i |µ i 1 , . . . , µ i N -1 (µ L+1 ν = µ ν ). (4.8) Since a (N )
jk increases µ k → µ k + 1 and decreases µ j → µ j -1 (see the action (4.6)), and we have #

{j i = ν} = #{k i = ν} for ν ≤ N -1, we find |µ 1 1 , . . . , µ 1 N -1 = |µ 1 , . . . , µ N -1 .
In other words, |µ 1 , . . . , µ N -1 is an eigenvector of the matrix product with a nonzero eigenvalue. If a trajectory (4.7) is given, one notices that it is unique and a

(N ) j1k1 • • • a (N ) j L k L |µ 1 , . . . , µ N -1 = 0 for (µ 1 , . . . , µ N -1 ) = (µ 1 , . . . , µ N -1
). We regard µ ν in the vector |µ 1 , . . . , µ N -1 as the number of arrows with value ν. The trajectory gives one graph of arrows which is the same as obtained by Ayyer and Linusson's algorithm since the local action (4.6) is compatible with it. (For example, when j < k < N , the action of a (N ) jk decreases # of arrows with value j and increases # of arrows with value k. This is allowed only if there is no arrow with value ν < j, otherwise it kills the vector.) We can also see a compatibility of the local action for the coefficient v i = w i as well as arrows, and thus the nonzero eigenvalue is identical to W

(j 1 • • • j L , k 1 • • • k L ): Tr a (N ) j1k1 • • • a (N ) j L k L = W (j 1 • • • j L , k 1 • • • k L ). (4.9)
When there is no nonzero eigenvalue, this equation is also true since W 

(j 1 • • • j L , k 1 • • • k L ) = 0. For example, for configurations j 1 • • • j L = 325155453, k 1 • • • k L =

Concluding remarks

In this work, we applyed the generalized matrix product Ansatz to represent the stationary weights of the inhomogeneous N -species TASEP. We also explained that our solution to the Ansatz is equivalent to Ayyer and Linusson's combinatorial algorithm. Our analysis was motivated by some conjectures proposed by Lam and Williams [START_REF] Lam | A Markov chain on the symmetric group which is Schubert positive?[END_REF]. For example, for L = N + 1, they claim that the stationary probability is a polynomial with respect to the hoping rates with non-negative integer coefficients and is a non-negative integral sum of Schubert

The first observation is an obvious consequence of Kirchhoff's matrix tree formula [18]. (Note that this is also an outcome of our matrix product solution because all operators have positive entries.) However, the relation with Schubert polynomials is still unclear. Another interesting problem would be to extend the present study to the partially asymmetric case and to classify the multi-species systems with arbitrary inhomogeneous hopping rates that can be solved by the matrix product Ansatz. Finally, we note here that the inhomogeneities are linked to the particles rather than to the underlying lattice. Extending our approach to models with lattice defects (such as the Janowsky and Lebowitz model in which the insertion of a slow bond can generate a shock [START_REF] Janowsky | Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process[END_REF]) remains a very challenging open question.

1 ) 1 arXiv

 11 :1209.1913v1 [math-ph] 10 Sep 2012

(4. 6 )

 6 Let j 1 • • • j L and k 1 • • • k L belongto basic sectors m and m . If the vector |µ 1 , .

11 -→ y 2 y 3 y 4 |0, 1 -→ y 2 2 y 3 y 4

 11414 443123444 as in figure4.1, the matrix producta j1k1 • • • a j L k L gives a trajectory |0, |0, 0, 1 ,(4.10)and we havea j1k1 • • • a j L k L |0, 0, 1 = y 2 2 y 3 y 4 |0, 0,1 , and we have Tr(a j1k1 • • • a j L k L ) = y 2 2 y 3 y 4 .

More general inclusion relations are satisfied for the homogeneous case, see[START_REF] Arita | Spectrum of a multi-species asymmetric simple exclusion process on a ring[END_REF].

When k 1 • • • k L does not belong to the sector m , the trace (3.13) is always 0. This specificity is because the numbers of δ's and 's are different in the matrix product, see[START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF] for details.
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Ayyer and Linusson's algorithm

The algorithm of Ayyer and Linusson [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF] constructs the stationary state of the N -species sector (m 1 , . . . , m N +1 ) from the (N -1)-species sector (m 1 , . . . , m N + m N +1 ). It is provided by two maps F, W from an (N -1)-species configuration and a configuration consisting of black and white boxes, to an N -species configuration and a polynomial in y i 's. (ii-1) Let {i

m1 } be the positions of the m 1 1's on the lower line. For the first 1 located at i

1 , find the nearest black box c i = with i ≤ i

(1) 1

and put 1 on it. If there is no such black box, put 1 on the rightmost black box. For the second 1 located at i and put 1 on it. If there is no such black box, put 1 on the rightmost unoccupied black box. We draw an arrow from i to the targeted black box. (In the following procedure till (ii-ν), we always draw an arrow in the same way, see figure (4.1)) We iterate this procedure m 1 times, i.e. find the nearest unoccupied black box c i = with i ≤ i (1) for the th 1 located at i (1) , and put 1 on it or on the rightmost unoccupied black box if i does not exist.

(ii-2) Let {i

m2 } be the positions of the m 2 2's on the lower line. There are (m 2 + • • • + m N ) unoccupied black boxes on the upper line. We iterate the following procedure m 2 times: find the nearest unoccupied black box c i = with i ≤ i (2) for the th 2 (1 ≤ ≤ m 2 ), and put 2 on it or on the rightmost unoccupied black box if i does not exist.

(ii-ν) In the same way, we go on for ν = 3, 4, . . . , (N -1). Let {i

mν } be the positions of the m ν ν's on the lower line. There are (m ν + • • • + m N ) unoccupied black boxes remaining on the upper line. We iterate the following procedure m ν times: find the nearest unoccupied black box c i = with i ≤ i (ν) for the th ν (1 ≤ ≤ m ν ), and put ν on it or on the rightmost unoccupied black box if i does not exist.

(iii) There are m N unoccupied black boxes remaining. Put N s on them.

(iv) Put (N + 1)s on the m N +1 white boxes. We have thus constructed a configuration

of the N -TASEP on the upper line, belonging to the sector m.

(v) Define a vector from the stationary state | Pm of the sector m as follows:

The summation runs over (ii-1) (ii-2)

weights ν's on the upper and lower lines in our figures, we say "the value of the arrow is ν":

. Each weight w i is defined as

, and is the minimal value of arrows that cross the ith vertical line), y N (j i = N + 1, and no arrow crosses the ith vertical line).

Ayyer and Linusson conjectured that the form (4.1) gives the stationary state | Pm of the sector m [START_REF] Ayyer | An inhomogeneous multispecies TASEP on a ring[END_REF]. There the definition of the weight looks different from our W , but is equivalent by multiplying it by a constant. 

According to the algorithm, the configuration of the sector m and the weight are obtained as

Equivalence of the matrix representation and Ayyer and Linusson's algorithm

We explain the relation between the matrix product representation and Ayyer and Linusson's algorithm (following [START_REF] Arita | Recursive structures in the multispecies TASEP[END_REF] for the homogeneous case). The elements a

jk act on a basis vector |µ 1 , . . . , µ

A Proof of equation (3.17)

Here we show the first case (3.17) of the algebra.

The case when j = k, j ≤ N . We have a jκ = 0 or jth component of a jκ is δ (for κ = k, k ), (A.1)

In any cases, we find a jk a j k = a j k a jk = 0, and thus the left-hand side is 0. The right-hand side is also 0 thanks to a jk = a j k = 0.

The case when j = k, j ≤ N . The left hand side is -x j a jk a j j = 0 thanks to a j j = 0. The right-hand side is again 0 thanks to a jk = a j k = 0.

The case when j < k, j = N + 1 . Since a jk a j k = a jk a j k = y j A ⊗(j-1) ⊗δ⊗1l ⊗(k-j-1) ⊗ ⊗1l ⊗(k -k-1) ⊗ ⊗1l ⊗(N -k -1) , (A.3) the left hand side is calculated as

which agrees with the right-hand side. (We read • • • 1l ⊗(N -k-1) ⊗ ⊗1l ⊗(-1) = • • • 1l ⊗(N -k-1) for k = N .)

The case when j = k, j = N + 1 . The left-hand side is calculated as -x j a jk a j j = -A ⊗(j-1) ⊗1l ⊗(k -j) ⊗1l ⊗(N -k -1) , (A.5) which agrees with the right-hand side.

The case when j > k, j = N + 1 . We have a jk a j k = 0 thanks to a jk = 0. Since the kth component of each term of a j k is , and a jk =0 or the kth component a jk is A, we also have a jk a j k = 0. Thus the left hand side is 0. The right hand side is also 0 thanks to a jk = a jk = 0.