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Abstract. In the hydrodynamic regime, the evolution of a stochastic lattice gas

with symmetric hopping rules is described by a diffusion equation with density-

dependent diffusion coefficient encapsulating all microscopic details of the dynamics.

This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In

practice, even when the equilibrium properties of a lattice gas are analytically known,

the diffusion coefficient cannot be computed except when a lattice gas additionally

satisfies the gradient condition. We develop a procedure to systematically obtain

analytical approximations for the diffusion coefficient for non-gradient lattice gases

with known equilibrium. The method relies on a variational formula found by Varadhan

and Spohn which is a version of the Green-Kubo formula particularly suitable for

diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-

spaces allows one to perform the minimization and gives upper bounds for the diffusion

coefficient. We apply this approach to a kinetically constrained non-gradient lattice

gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

1. Introduction

Deriving a hydrodynamic limit is an important challenge in non-equilibrium statistical

physics going back to Maxwell and Boltzmann. The derivations of this limit for

molecular gases with deterministic dynamics, which originally triggered the development

of kinetic theory, remain heuristic and incomplete [1, 2]. The situation is much better

for stochastic variants of molecular gas dynamics, see e.g. [3–7]. For stochastic lattice

gases with symmetric hopping, the hydrodynamic description is particularly simple: the

coarse-grained density ρ(r, t) satisfies the (non-linear) diffusion equation

∂tρ = −∇ · J , J = −D(ρ)∇ρ . (1)

In d dimensions, D(ρ) is generally a symmetric d× d invertible diffusion matrix. In the

simplest models D(ρ) = D(ρ)1 where 1 is the unit matrix, so to probe the relaxation on

the hydrodynamic level one must know a single diffusion coefficient D(ρ) encapsulating

the microscopic hopping rules.
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The calculation of D(ρ) is a challenging problem. First of all, even for very simple

interacting lattice gases the equilibrium is unknown‡ in d ≥ 2 dimensions. Further,

even if the equilibrium properties of the lattice gas are known (this may occur in

one dimension, or in higher dimensions for lattice gases with trivial equilibrium), the

calculation of D(ρ) is feasible only when a stochastic lattice gas satisfies the gradient

condition [3,6]. This special property states that the microscopic current is the gradient

of a local function, i.e., loosely speaking, the Fick law J = −D(ρ)∇ρ is already valid at

the discrete microscopic level. The simplest lattice gas obeying the gradient property is

a collection of non-interacting random walkers, whereas the simplest interacting gradient

lattice gas is the symmetric simple exclusion process [3, 6, 12]; in these two models the

diffusion coefficient does not depend on the density. Usually in a gradient lattice gas

the diffusion coefficient depends on the density; some examples of such gradient lattice

gases are the Katz-Lebowitz-Spohn model with symmetric hopping [13, 14], repulsion

processes [15], a lattice gas of leap-frogging particles [16, 17], and an exclusion process

with avalanches [18]. However, generic interacting lattice gases do not satisfy the

gradient condition.

The goal of this paper is to develop a procedure allowing one to probe the density

dependence of the diffusion coefficient in non-gradient lattice gases. The basic tool

which we use is the variational formula for the diffusion coefficient derived by Varadhan

and Spohn, see [3] and also [6,19,20]. This variational formula is a version of the Green-

Kubo formula which is particularly suitable for diffusive lattice gases and is generally

valid regardless of the presence of phase transitions and of the gradient condition.

The Varadhan-Spohn formula requires one to minimize a functional over an infinite-

dimensional function space. We recently demonstrated [21] that the Varadhan-Spohn

variational formula can be used as a tool to derive explicit (albeit approximate) formulas

for the diffusion coefficient. Essentially, we employed the Ritz method, namely we

performed the minimization over finite-dimensional sub-spaces. The resulting minima

give upper bounds for the diffusion coefficient. A similar approximation scheme has

been used in [22] for the computation of the thermal conductivity in stochastic energy

exchange models [23].

The complexity of the calculations increases with the dimension of the space of test

functions and with the spatial dimension of the model. Therefore in [21] we studied

a one-dimensional lattice gas, namely we considered a generalized exclusion process

with maximal occupancy equal to 2. Generalized exclusion processes [19, 20, 24–27] are

parametrized by hopping rates depending on the number of particles in the departure

site and the (neighboring) target site and generically these lattice gases are non-gradient,

although they contain a sub-class of gradient lattice gases (the misanthrope process [28]).

Increasing the dimensionality of the sub-space of the test functions we obtained more

‡ For instance, the equilibrium behavior of the lattice gas with infinitely strong repulsion between

particles occupying neighboring sites and zero interaction otherwise depends only on the density (the

temperature is irrelevant), yet a phase transition between a low density disordered state and a high

density ordered state is not fully understood even on the square lattice [8–11].
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and more accurate results. The simplest ‘mean-field’ prediction is already very accurate

and after a few iterations we obtained a precision of the order of one part in a million.

For the misanthrope process, which is gradient, the simplest approximation yields the

exact result for the diffusion coefficient.

In this article we extend the method of Ref. [21] to non-gradient lattice gases

in higher dimensions. The dynamical properties of a lattice gas obviously cannot be

understood if its equilibrium properties are unknown. An interesting class of non-

gradient lattice gases which by construction have trivial equilibrium states are kinetically

constrained lattice gases. These lattice gases were proposed [29, 30] as toy models of

the dynamics of structural glasses and, indeed, some of their properties, such as non-

exponential relaxation and aging, do resemble those of glasses (see [31,32] for a review).

An accurate computation of the diffusion coefficient for a kinetically constrained lattice

gas may therefore be useful from the point of view of applications to the dynamics

of structural glasses. The calculations are quite laborious, so we limit ourselves to a

specific kinetically constrained lattice gas in two dimensions, the Kob-Andersen (KA)

model [29] on the square lattice.

The remainder of this work is organized as follows. In the next section, we give

the precise definition of the KA model on the square lattice, and review some of its

basic properties. In section 3, we present the approximation scheme of computing the

upper bounds for the diffusion coefficient. In section 4 we describe upper bounds and

in section 5 we compare these bounds with numerical results extracted from simulating

of the steady state in a system with open boundaries. We investigate the high-density

limit in section 6. Simulations are performed in an open system, namely on a cylinder

connected to reservoirs with fixed densities; the set-up is explained in section 7. We

conclude with a discussion (section 8). The details of the calculations are relegated to

the Appendices.

2. The model

Kinetically constrained models are lattice models without static interactions other than

hard core exclusion. These models have been originally proposed to mimic the dynamics

of structural glasses. By design, the equilibrium state in these modes is trivial making

them relatively tractable. The dynamics of these models are interesting e.g. they exhibit

non-exponential relaxation, aging and other dynamical properties of glasses. One of the

first kinetically constrained lattice gases, the Kob-Andersen (KA) model [29], can be

defined on any hyper-cubic lattice Zd as well as on other lattices, e.g., on the triangular

lattice [30]. The KA model is an exclusion process, that is, each site is occupied by at

most one particle. Hopping to nearest-neighbor sites is assumed to be stochastic and

symmetric. We set the hopping rate to any of the 2d neighbors to unity, so that the

total hopping rate is 2d. The jump cannot occur when the destination site is occupied

(exclusion). The key feature of the KA model is that the jump is allowed only if before

and after the jump the particle has at least m empty neighbors. The allowed range of
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Figure 1. Illustration of the hopping rules of the KA model on the square lattice.

Particles hop with unit rate to neighboring empty sites and a hop is possible if before

and after the hop the particle has at least two empty neighbors. In the presented

examples the particle (shown as •) attempts to jump rightward, other occupied sites

are shown by ◦. The local environment is too congested in the two examples on the

right, so the attempted rightward jump is forbidden.

the parameter m is 1 ≤ m ≤ 2d. The case m = 1 is the symmetric simple exclusion

process for which the diffusion coefficient is identical to the hopping rate. When m > d,

the dynamics is too constrained, e.g. the hypercube can never be broken up. Thus the

interesting range is 2 ≤ m ≤ d. On the square lattice the only interesting possibility is

therefore m = 2.

We limit ourselves to the KA model with m = 2 on the square lattice and call

it, for brevity, the KA model. The process occurs on the infinite square lattice Z2; in

simulations we treat finite lattices. The element τi,j of a configuration τ represents the

state of site (i, j) of the lattice; it is either empty (τi,j = 0) or occupied by a particle

(τi,j = 1). The relaxation in the KA model is very slow in the ρ → 1 limit and earlier

simulations [29, 33, 34] suggested the break of ergodicity at a certain ρc < 1; another

seemingly pathological feature of the KA model is that a fully occupied double column

which spans the lattice can never be destroyed. It was proved [35, 36], however, that

the KA model on the infinite lattice is ergodic and exhibits a hydrodynamic behavior

for any ρ < 1.

In the standard exclusion process, a particle at site (i, j) jumps to neighboring

“target” sites (i ± 1, j), (i, j ± 1) with unit rate if the target site is empty, otherwise

the rate is zero. The hopping of the particle is not affected by the states of other sites.

In the KA model, the hopping is kinetically constrained. The rate is still set to unity

whenever the hopping is allowed, i.e., if at least 2 neighbors of the departure site are

empty and at least 2 neighbors of the target site are empty. In figure 1, we show some

examples. In the two cases on the left, the hopping is allowed; in the other cases, three

neighboring sites are occupied before or after the hopping.

The instantaneous rightward current P
(1,0)
i,j (τ) can be written as

P
(1,0)
i,j (τ) = τi,j(1− τi+1,j)Hi,j(τ). (2)

The terms τi,j(1−τi+1,j) are the same as in the simple exclusion process, while the factor

Hi,j(τ) = (1− τi,j+1τi−1,jτi,j−1)(1− τi+1,j+1τi+2,jτi+1,j−1) (3)
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is either 1 or 0 depending on whether the hopping is allowed or not. The instantaneous

leftward current P
(−1,0)
i,j (τ) from site (i+ 1, j) to (i, j) is given by

P
(−1,0)
i,j (τ) = τi+1,j(1− τi,j)Hi,j(τ), (4)

with the same factor Hi,j as it follows from the definition of the KA model. Similarly

the instantaneous upward and downward currents are given by

P
(0,1)
i,j (τ) = τi,j(1− τi,j+1)Vi,j(τ) (5a)

P
(0,−1)
i,j (τ) = τi,j+1(1− τi,j)Vi,j(τ) (5b)

with factor

Vi,j(τ) = (1− τi+1,jτi,j−1τi−1,j)(1− τi+1,j+1τi,j+2τi−1,j+1) (6)

playing the same role as Hi,j(τ) in (2) and (4). The KA model satisfies the detailed

balance condition due to the crucial requirement that the minimal number m of empty

neighbors of the departure site and of the target site (after the jump) is the same. The

detailed balance condition implies that the KA model (and other kinetically constrained

lattice gases) has simple equilibrium described by the product measure. Therefore for

a given average density ρ, any correlation function factorizes at equilibrium:

〈τi1,j1 · · · τin,jn〉 = ρn. (7)

Here we assume that (iα, jα) 6= (iβ, jβ) for α 6= β; the factorization formula is not true

if (iα, jα) = (iβ, jβ) for some α 6= β, for instance 〈τ 2i,j〉 = 〈τ 3i,j〉 = · · · = ρ. Thanks to the

product measure, the compressibility reads

χ = 〈τ 2i,j〉 − 〈τi,j〉2 = ρ(1− ρ). (8)

Our goal is to quantitatively probe hydrodynamic characteristics of the KA model.

Specifically, we focus on the diffusion coefficient. We now estimate it, using mean-field

arguments. One may regard the KA model as a symmetric simple exclusion process with

effective hopping rates Hi,j and Vi,j given by equations (3) and (6). When the system

is in a hydrodynamic regime, i.e., the spatial density profile varies slowly in space and

time, one replaces τi,j+1 by ρ, etc. Then the effective rates become (1− ρ3)2. Recalling

that the diffusion coefficient of the symmetric simple exclusion process is given by its

hopping rate, one would expect that

D = (1− ρ3)2 . (9)

This is a mean-field type approximation [37]. In section 4 and Appendix A we

show that (9) follows from the variational formula if one performs the minimization

over low-dimensional subspaces. Therefore (1− ρ3)2 is actually an upper bound for the

diffusion coefficient.
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3. Variational formula

For stochastic lattice gases with symmetric dynamics, the diffusion coefficient can be

expressed as an integral of a current-current correlation function [3]. It is convenient to

recast the computation of the integral into solving a variational problem; this was first

realized by Varadhan and is presented in the book of Spohn [3] (see also [6, 20]).

Before proceeding, we emphasize that for lattice gases with symmetric hopping,

the hydrodynamic behavior is believed to be diffusive. For various lattice gases with

symmetric hopping, the diffusive behavior has been rigorously established (see e.g. [3–7]),

but even for the simplest models it was not proved that the diffusive behavior is isotropic

on the macroscopic scale. Thus a diffusion matrix underlies the hydrodynamic behavior.

This matrix is symmetric and hence in d dimensions it contains d(d+ 1)/2 independent

elements. For the hyper-cubic lattice Zd, the diagonal elements are equal and all non-

diagonal elements are identical, thus there are just two independent elements§. Hence,

for the KA model on the square lattice

D(ρ) =

[
D(ρ) N(ρ)

N(ρ) D(ρ)

]
(10)

In the following we shall discuss only the diagonal component D(ρ) which we call

the diffusion coefficient. More precisely, we use the Varadhan-Spohn variational formula

to compute D11(ρ). This variational formula can be written in a neat form [3]

D =
1

2χ
inf
ϕ
〈Q(ϕ)〉 . (11)

Here χ is the compressibility, equation (8), which is usually known only if we understand

the equilibrium properties of the lattice gas. The infimum is taken on the space of local

functions ϕ(τ) that depend only on a finite number of sites of the configuration τ .

In our case of the lattice gas on the square lattice, the functional Q(ϕ) appearing

in (11) can be expressed as a sum of four functionals

Q(ϕ) = Q(1,0)(ϕ) +Q(−1,0)(ϕ) +Q(0,1)(ϕ) +Q(0,−1)(ϕ) . (12)

Each Q(α,β) is a quadratic functional on the space of functions ϕ(τ). The expectation

value 〈·〉 in equation (11) is taken with respect to the equilibrium measure on the

configuration space. The functionals Q(α,β) depend on the microscopic dynamical

rules [3]. For the KA model (and generally for exclusion processes) each site can be

in two states, τi,j = 0 or τi,j = 1, and the functionals Q(α,β) read

Q(α,β) = P
(α,β)
0,0 (τ)

[
α−

∑
(u,v)∈Z2

{
ϕ
(
Au,v τ

(α,β)
)
− ϕ(Au,v τ)

}]2
. (13)

§ We tacitly assume that each particle occupies a single lattice site; if a particle occupies a few lattice

sites and its shape is not symmetric with respect to the symmetries of the Zd lattice, the diffusion

matrix may have more independent elements.
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Here τ (α,β) describes the change of the configuration τ after the single particle hop in

the (α, β) direction. More precisely

(
τ (±1,0)

)
i,j

=


τ0,0 ∓ 1 (i, j) = (0, 0),

τ1,0 ± 1 (i, j) = (1, 0),

τi,j otherwise,

(14)

and

(
τ (0,±1)

)
i,j

=


τ0,0 ∓ 1 (i, j) = (0, 0),

τ0,1 ± 1 (i, j) = (0, 1),

τi,j otherwise.

(15)

The operator Au,v shifts the configuration(
Au,v τ

)
i,j

= τi−u,j−v . (16)

The Varadhan-Spohn formula (11) is compact, but it is generally impossible to find

the true minimum and hence to establish the true diffusion coefficient. The explicit

computations are possible for lattice gases satisfying the gradient property. For such

lattice gases the minimum is reached on a low-dimensional sub-space of test functions

and explicit results for the diffusion coefficient are possible.

The idea of [21,22] is to use the variational formula on restricted finite-dimensional

subspaces of test functions. In [21] we applied this method to a class of one-dimensional

generalized exclusion processes where each site can accommodate at most two particles.

A similar systematic approximation scheme has been used to compute the thermal

conductivity of stochastic energy exchange models in [22].

In this work, we follow the logic of Refs. [21,22] and consider the restricted version

of the variational problem (11), namely we perform the minimization over a restricted

set of functions. Specifically we seek the minimum

q[S] = min
ϕ∈S
〈Q(ϕ)〉, D[S] =

1

2χ
q[S], (17)

where S denotes a class of functions specified by the finite subset S ⊂ Z2. By evaluating

(17), we derive an upper bound on the diffusion coefficient of the KA model. Note that

we only restricted the function space, but equations (12)–(16) are unchanged.

The definition (17) leads to the inequalities D[S] ≤ D[S ′] for S ⊃ S ′, meaning

that the larger subset S, the more precise upper bound we get. These upper bounds

are explicit and provide good quantitative approximations as long as the density is not

too large. Practical calculations remain limited to small sets S, because the number of

configurations in 〈Q〉 grows roughly as 24|S| (see section 6 for a more precise discussion).

4. Upper bounds for the diffusion coefficient

The simplest example is the empty set S = ∅. The minimization is not needed in this

case as the corresponding functions are constant. The functionals are Q(±1,0) = P (±1,0)
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and Q(0,±1) = 0. One finds

〈Q〉 =
〈
P (1,0)

〉
+
〈
P (−1,0)〉 = 2ρ(1− ρ)(1− ρ3)2 . (18)

Using D[∅] = (2χ)−1〈Q〉 and the expression (8) for the compressibility we recover the

mean-field prediction (9). For the simplest non-empty set S = � (i.e., S is a single site)

the computations are more involved (see Appendix A), but the outcome still coincides

with the mean-field prediction:

D[∅] = D[�] = (1− ρ3)2 . (19)

In principle, one can consider arbitrary finite subsets S ⊂ Z2. Among sets of the

same size |S|, connected sets provide better approximations. It is also useful to choose

sets invariant under rotations by 90◦. To appreciate this we recall that equations (12)–

(16) determine the D11 element of the diffusion matrix D(ρ); the variational formula

for D22 is essentially the same in the general case when the minimization is performed

over all functions. The restricted minimization which is performed in (17) yields the

bound on D11, but if the set S is not invariant under rotations by 90◦, the bound on

D22 may differ. Let us consider hard rods. There are two types on the square lattice,

horizontal and vertical, schematically and in the case of hard rods of length two.

Using (17) we obtain the bounds on D11. It is clear that the bound on D11 for one set

gives the bound on D22 for another set. The detailed calculations are quite involved

even in the case of hard rods of length two, so we just describe the outcome. For hard

rods of length up to three, the bounds coincide and are both equal to (1− ρ3)2.
For the hard rods of length four, we obtain an improved bound

D[ ] = D11[ ] = (1− ρ3)2 − 2(1− ρ)2ρ10

11− 10ρ2 − 2ρ3 + 2ρ4 + 2ρ5 − ρ6
, (20)

see figure 2. The other diagonal element is still the same D22[ ] = (1 − ρ3)2, or

equivalently we have

D

[ ]
= D11

[ ]
= (1− ρ3)2. (21)

The computations quickly become very cumbersome as the size |S| increases, so it is

crucial to choose sets of such shapes that the bounds are really improving when the size

increases. We have found that it is profitable to choose sets which are invariant under

rotations by 90◦, and also under vertical or horizontal reflections. Furthermore, we

restrict our consideration to convex shapes. The symmetric convex sets are numerous.

We show some examples in figure 2, where the sets in the nth column have the span (i.e.

the maximal horizontal and vertical size) n. One generic property of symmetric convex

sets is that |S| ≡ 0(mod4) when n is even and |S| ≡ 1(mod4) when n is odd.

The most obvious infinite family of symmetric convex sets is the family of squares;

in figure 2 we show n×n squares with n ≤ 6. We already know the bound (19) implied
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Figure 2. The ratio of the upper bounds given by (20)–(23) to the mean-field bound

(19) as a function of density (from top to bottom).

Figure 3. Examples of symmetric convex shapes S. For each S, the number of sites

|S| is indicated. We show the shapes with span n in the nth column. The set in the

bottom are squares, the set on the left in each row is a rhombus.

by the 1 × 1 square. For the 2 × 2 square, calculations are already very involved (see

Appendix B for details). The outcome

D
[ ]

= (1− ρ3)2 − 2(1− ρ)2ρ4

4− ρ− 2ρ3
(22)

is an improvement over (19), and it is also notably better (see figure 2) than the bound

(20) for the rod with the same number of elements as the 2× 2 square.

Another simple infinite family of symmetric convex sets consists of “rhombi”. The

sizes of rhombi are |S| = n2+1
2

with n = 1, 3, 5, 7, . . .; in figure 3 we show rhombi with

n = 1, 3, 5. The rhombus of unit size is S = �, so the bound is given by (19). The next

rhombus has size |S| = 5 and the corresponding upper bound is (see Appendix C for
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the derivation)

D
[ ]

= (1− ρ3)2 − 2

3
ρ4(1− ρ)2 − 2

3
ρ3(1− ρ)2

U

V
(23)

with

U = 141 + 117ρ+ 36ρ2 − 94ρ3 − 70ρ4 + 44ρ5 − 36ρ6 − 6ρ7 − 2ρ8 + 6ρ9, (24a)

V = 423 + 384ρ− 368ρ2 − 578ρ3 − 296ρ4 + 273ρ5

+ 216ρ6 + 98ρ7 − 42ρ8 − 30ρ9 − 12ρ10. (24b)

The bound (23) is better than the bounds (19), (20) and (22), see figure 2.

5. Simulation results

We perform Monte Carlo simulations on a finite square lattice with 1 ≤ i ≤ L − 1

and 1 ≤ j ≤ Ly. This two-dimensional lattice is connected to reservoirs with constant

densities at the left and right ends, and periodic in the vertical direction (a cylinder), see

figure 4. The ‘virtual’ sites (0, j), (−1, j), (L, j) and (L+ 1, j) are regarded as particle

reservoirs. In order to realize the boundary densities ρ0 and ρL, we impose injection

and extraction of particles at sites (1, j) and (L − 1, j) (1 ≤ j ≤ Ly), see section 7 for

details.

We simulate the system long enough, so that a steady state is reached. Essentially

nothing is known about this steady state, e.g. in contrast to the equilibrium the

correlation functions do not factorize, otherwise the mean-field expression (9) for the

diffusion coefficient would be exact.

The steady state helps to appreciate why the diffusion is isotropic. By the

construction we have the density gradient only in the horizontal direction. According

to the Fick law, the current in the vertical direction is given as N(ρ) dρ
dx

(x = i/L). One

expects this current to be equal to zero, which implies that N(ρ) ≡ 0. Thus the diffusion

matrix (10) is expected to be diagonal for the KA model, and actually for any exclusion

process on the square lattice with hopping rules compatible with the symmetries of the

square lattice.

Figure 5 shows simulation results for the diffusion coefficient for sufficiently low

densities where the agreement with theoretical bounds is very good. The explicit

approximate forms of the diffusion coefficients are useful to predict the stationary density

profile. Recall that the diffusion coefficient characterizes the relationship between the

density and the current in the horizontal direction,

J = − 1

L
D(ρ)

dρ

dx
, (25)

Hereinafter x = i/L is the scaled spatial coordinate. In the stationary state, the current

J is independent of the position x because of the conservation of particles in the bulk.
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Figure 4. Illustration of the boundary conditions used in simulations. The left and

right reservoirs have densities ρ0 and ρL. Our two-dimensional system is periodic in

the vertical direction, i.e., the top sites are neighbors of the corresponding bottom

sites.

Figure 5. The diffusion coefficient versus ρ extracted from simulations with boundary

densities ρ0 = 0.6 and ρL = 0 and system size (L,Ly) = (256, 200). The lines

(dashed, dotted and solid) are theoretical upper bounds corresponding respectively

to equations (19), (22) and (23).

Thus we have

d

dx

[
D(ρ)

dρ

dx

]
= 0. (26)

The density profile ρ(x) should be the solution to this equation with the boundary

conditions ρ(0) = ρ0 and ρ(1) = ρL. The implicit form of the solution reads∫ ρ(x)

ρ0

D(ρ)dρ = x

∫ ρL

ρ0

D(ρ)dρ. (27)

Replacing D by approximation formulae we numerically plot ρ(x) versus the horizontal

coordinate x. For the theoretical lines in figure 6, we used D[∅] = (1− ρ3)2 and D
[ ]

as given by (23).



Bulk diffusion in a kinetically constrained lattice gas 12

Figure 6. The density profile ρ(x) in the open system with boundary densities

ρ(0) = 0.6 and ρ(1) = 0. Simulation results for the open system with the size

(L,Ly) = (256, 200) are shown by the thick line for the entire range 0 < x < 1

(top) and near the middle 0.45 < x < 0.55 (bottom). The theoretical predictions are

derived using the integral formula (27). The dashed line corresponds to the choice of

equation (19) for D(ρ), and the thin line corresponds to the choice of equation (23).

The measurement of the density profile from simulations is straightforward. We

observe τi,j and take the average over j and over a time window. Comparing the theory

with simulation result, one finds that the simplest mean-field approximation already

gives a visually nice curve (see the top panel). However there is a systematic deviation

from simulations (see the bottom panel). We find that D
[ ]

indeed better agrees

with the density profile in the middle of the system.

We now discuss the behavior of the diffusion coefficient D(ρ) in the ρ → 0 limit.

The small density behavior of the upper bounds (19)–(23) is

1−D(ρ) = Aρ3 +O(ρ4)

with A = 2 for the bounds (19)–(22) and A = 20
9

= 2.222 . . . for the bound (23).

Therefore one anticipates the expansion of the form

1−D(ρ) =
∑
ν≥3

Aνρ
ν . (28)
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Figure 7. The behavior of (1−D)/ρ3 as a function of ρ3. The solid line was obtained

by fitting the simulation data to the two-term expansion (29), viz. D = 1−a1ρ3−a2ρ6
with a1 ≈ 2.25 and a2 ≈ −0.953. The inset confirms the low density asymptotic:

1−D ∼ ρ3.

Figure 8. Plots of −(1 − ρ3) lnD versus ρ3. The solid line corresponds to a fitting

curve −(1− ρ3) lnD(ρ) = a1ρ
3 − (a1 − a21/2− a2)ρ6 + cρ9 with c ≈ 0.796.

In the bounds (20) and (22), the sub-leading term in the expansion (28) does not

vanish, A4 6= 0, but our simulations indicate that A4 = 0 and even A5 = 0, see

figure 7. Furthermore, simulation data support a tantalizing conjecture that the diffusion

coefficient D(ρ) is an analytical function of ρ3 (figures 7 and 8), and hence suggest the

small density expansion

1−D(ρ) =
∑
µ≥1

aµρ
3µ. (29)

One would like to compute at least the leading term in the expansion (29). The

upper bound (23) yields the lower bound a1 ≥ 20
9

for the amplitude. To determine better

bounds one can try to extract upper bounds for the diffusion coefficient corresponding

to larger sets than that we considered before. The first new set to consider is the 3× 3

square and since this set includes the rhombus , the corresponding bound is certainly

better than the bound (23).
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Although we have not been able to determine D[3× 3] in the entire density range,

we combined our restricted minimization procedure with perturbation techniques using

ρ as a small parameter and extracted the amplitude

a1[3× 3] =
65031366433372758107

29102666440685008803
= 2.23455 . . . . (30)

For the 4× 4 square we similarly obtained

a1[4× 4] =
r

s
= 2.24065 . . . . (31)

The numbers r and s are 238 digits integers (see Appendix D). Thus a1 ≥ 2.24065 . . . ,

and this lower bound is just 0.4% smaller than the estimate a1 ≈ 2.25 obtained by

fitting simulation data.

6. Asymptotic behavior in the high-density limit

Our formulas for the diffusion coefficient provide excellent approximations as long as the

density is not too high. When ρ → 1, however, the predictions based on the restricted

minimization become very bad. For S = ∅, and we obtain the high-density

expansions

D[∅] = 9v2 − 18v3 + 15v4 − 6v5 + v6,

D
[ ]

= 7v2 + 4v3 − 163v4 + 1384v5 − 10843v6 +O(v7),

D
[ ]

= 7v2 − 77
34
v3 − 168851

2312
v5 − 71610651

157216
v5 + 23879122075

10690688
v6 +O(v7),

where v = 1− ρ. In all these examples the diffusion coefficient vanishes algebraically in

the v → 0 limit, more precisely as v2. Simulations indicate, however, that the diffusion

coefficient decays much faster than v2.

The v → 0 behavior of the KA model is very interesting. Earlier simulations led

to the conjecture [29, 33, 34] about the break of ergodicity at a certain ρc < 1 and non-

standard mechanism for the glass transition. It has been later understood that the KA

model on the square lattice is ergodic [35, 36]. (The same is true for the KA models

on hyper-cubic lattices [35, 36] and for other kinetically-constraint lattice gases [38].)

The KA model apparently exhibits the hydrodynamic behavior in the entire density

range 0 < ρ < 1. (Most rigorous analyses of the KA models were actually focused

on the behavior of a tagged particle at equilibrium, rather than on the relaxation to

equilibrium, and it was demonstrated [35,36] that the tracer behaves diffusively.)

The relationship between the self-diffusion coefficient D(ρ) and the diffusion

coefficient D(ρ) is generally unknown. In the symmetric simple exclusion process, the

self-diffusion coefficient satisfies D(ρ) < D(ρ) = 1. It seems plausible that this inequality

D(ρ) < D(ρ) (32)

holds for general exclusion processes including the KA model.
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The dependence of the self-diffusion coefficient of the KA model on the density

has attracted considerable attention [35, 38] and it was shown that the self-diffusion

coefficient vanishes faster than any power of v in the v → 0 limit. An interesting

connection between the KA model and bootstrap percolation together with exact results

for the latter [39,40] lead to a more precise prediction [35]

lim
ρ→1

(1− ρ) lnD(ρ) = −π
2

9
(33)

One could anticipate a similar asymptotic behavior of the diffusion coefficient:

lim
ρ→1

(1− ρ) lnD(ρ) = −C (34)

Our simulations indeed support (34), see figure 8. Assuming additionally the inequality

(32) one arrives at the inequality C < π2

9
. The fitting curve in figure 8 indicates

C ≈ 0.79, satisfying C < π2

9
= 1.0966 . . . .

Our restricted minimization procedure requires solving a finite number of linear

equations. The total number of equations is 2|S|. In the class of symmetric convex sets,

we performed exact minimizations when |S| = 1, 4, 5, but we have not succeeded for the

next symmetric convex set, namely for the 3×3 square. The difficulty in the computation

is as follows: One has to calculate 〈Q〉, the expectation value of the functional Q in the

equilibrium state. In other words, one calculates
∑

(weight)×Q over all configurations

of a certain finite subset of Z2, e.g. 2n(2n − 1) sites in the case of the n × n square

(with n ≥ 2). Therefore the number of summands in 〈Q〉, 22n(2n−1), dwarfs the number

of equations, 2n
2
, see Appendix B. For n = 3, the number of terms 230 is already huge.

One gets the same problem for other large sets.

It might be possible to deal with the sum 〈Q〉 by devising a more efficient algorithm.

We leave this for the future, and here we show how to handle larger sets if we merely

want to extract the behavior in the ρ → 1 limit. We accomplish this by combining

the variational method with perturbation techniques. We use the density v = 1 − ρ of

vacancies as the small parameter. The basic idea is to obtain the expansion of q[S] in

powers of v. First we expand the test function

ϕ(τ) = ϕ0(τ) + vϕ1(τ) + v2ϕ2(τ) + · · · (35)

and the functional

〈Q(ϕ)〉 = Q3v
3 +Q4v

4 +Q5v
5 + · · · (36)

We notice that the expansion (36) begins from the cubic term. This is due to the fact

that the hopping in our model is allowed only if there are more than two vacant sites.

Then we perform minimizations, term by term, starting from Q3. The biggest advantage

of the perturbation approach is that the effective numbers of summands in Qj (j ≥ 3)

are much smaller than the number of terms in the full average 〈Q(ϕ)〉. In principle one

can choose any S. We argued before in favor of choosing symmetric convex sets. Squares
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constitute one simple class of such sets. In the case of the n × n square, the numbers

of non-zero terms in Q3, Q4, and Q5 are 36, ' 144n2, and ' 288n4, respectively, much

smaller than 2|S| = 22n(2n−1).

Performing minimizations for Q3 and Q4, we obtained the following asymptotic

behaviors of the upper bounds (see Appendix D for details):

D[2× 2] = 7v2 + 4v3 +O(v4),

D[3× 3] = v2 + 14408
307

v3 +O(v4),

D[4× 4] = 0v2 + 453068679808
66311971451

v3 +O(v4),

D[5× 5] = 0v2 + 1
2
v3 +O(v4),

D[6× 6] = 0v2 + 0v3 +O(v4).

(37)

Thus the upper bound vanishes as v2 when n = 1, 2, 3; as v3 when n = 4, 5; and at

least as v4 when n ≥ 6. These observations suggest that the true diffusion coefficient

vanishes faster than algebraically as v → 0.

7. Details of simulations

For the Monte Carlo simulations, we imposed cylindrical boundary conditions on a finite

square lattice, as illustrated in figure 4. We think that the virtual sites are in equilibrium

with densities ρ0 and ρL. The transition rates on the left boundary are

τ1,j = 0→ 1 with rate ρ0(1− ρ30)

if at least one of the sites (1, j ± 1) and (2, j) is empty, and

τ1,j = 1→ 0 with rate (1− ρ0)(1− ρ30)

if at least one of the sites (1, j±1) and (2, j) is empty. Similarly on the right boundary:

τL−1,j = 0→ 1 with rate ρL(1− ρ3L)

if at least one of the sites (L− 1, j ± 1) and (L− 2, j) is empty, and

τL−1,j = 1→ 0 with rate (1− ρL)(1− ρ3L)

if at least one of the sites (L− 1, j ± 1) and (L− 2, j) is empty.

In simulations, we chose the following boundary densities, which were used to plot

the numerical data of the diffusivity in the previous sections:

marker ρ0 ρL time average

0.6 0 t0 ≤ t ≤ 3t0
0.8 0.5 t0 ≤ t ≤ 5t0
0.9 0.7 t0 ≤ t ≤ 7t0
0.95 0.8 t0 ≤ t ≤ 9t0
0.97 0.85 t0 ≤ t ≤ 11t0
0.98 0.88 t0 ≤ t ≤ 13t0
0.99 0.9 t0 ≤ t ≤ 15t0
0.99 0.91 t0 ≤ t ≤ 16t0
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Here the intervals over which we took average are also shown with t0 = 5 × 106. Note

that longer simulation times are needed for higher boundary densities to obtain accurate

results. Indeed, the diffusion coefficient is extremely small as ρ → 1, therefore the

current is very small and relative statistical errors become large, as compared to low-

density cases. Concerning the system size, we fixed the vertical length, Ly = 200,

and varied the horizontal length: L = 16, 32, . . . , 512. For the plots, we used the data

corresponding to L = 256.

The equilibrium stationary state in the infinite lattice or in the periodic boundary

conditions (torus) is simply described by the product measure. In our cylindrical

boundary conditions, however, details of the stationary state are highly non-trivial

except for the special case ρ0 = ρL, where the same product measure with density

ρ = ρ0 = ρL is valid. When ρ0 6= ρL, the horizontal current does not vanish even

in the stationary state. By taking an average of the difference between the rightward

and leftward instantaneous currents (2), (4), we find that the current in the horizontal

direction has the form

Ji,j =
〈
P

(1,0)
i,j (τ)− P (−1,0)

i,j (τ)
〉

=
〈
(τi,j − τi+1,j)Hi,j(τ)

〉
(38)

with H defined in equation (3). The current of vertical direction vanishes because of

the symmetry.

We extract the density profile ρ(x) from simulations and then numerically evaluate
dρ
dx

. The current, that is the expectation value (38), is also directly observed. Using data

for J and dρ
dx

we evaluate the diffusion coefficient via D(ρ(x)) = −JL
/[

dρ
dx

(x)
]

following

from the Fick law (25). This method was used in preparing figures 5, 7, 8.

8. Discussion

In a previous study [21] we developed an approximation scheme that yields upper bounds

for the diffusion coefficient of lattice gases with known equilibrium properties, specifically

we used a one-dimensional generalized exclusion processes with maximal occupancy

number 2. The scheme is based on the exact variational formula for the diffusion

coefficient, so it is a variant of the Ritz method as the minimization is performed on

finite-dimensional sub-spaces.

In this article we showed how to apply this scheme to two-dimensional lattice gases.

As an example, we chose the Kob-Andersen with m = 2 on the square lattice: A hop

to an empty site is allowed only if before and after the hop the particle has at least

m = 2 empty neighbors. This lattice gas does not satisfy the gradient property, and

therefore the diffusion coefficient is impossible to obtain analytically. The KA model is

a very useful toy model mimicking dynamics of glasses. The model exhibits extremely

slow ‘glassy’ relaxation in the ρ → 1 limit, e.g. the coefficient of self-diffusion vanishes

faster than any power of the density v = 1− ρ of vacancies, see (33). This suggests that

the diffusion coefficient can also be anomalously small when v � 1 which we indeed
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confirm numerically. Overall, the KA model provides a stringent test for approximation

approaches since these approaches cannot detect a non-analytic behavior.

We derived upper bounds for the diffusion coefficient of the KA model with

d = m = 2, by using the variational approach. For some simple sets S ⊂ Z2, e.g.

S = ∅,�, and vertical hard rods, the upper bounds coincide with the naively derived

diffusivity (1 − ρ3)2 under the mean-field assumption. We performed calculations for

symmetric convex finite sets S, which give improved bounds. The results are very

accurate for moderate densities, e.g. for ρ ≤ 0.5.

The dimension of the sub-space of functions over which we perform the minimization

is 2|S|, where |S| is the cardinality of the set S. Performing the minimization is formally

simple since the functional is quadratic, so one ends up with linear equations. The

number of equations grows as 2|S|. The chief numerical obstacle is that the number of

summands in 〈Q〉 grows much faster than 2|S|. For instance, for the n × n square the

dimension of the number of equations is 2n
2
, while the number of summands in 〈Q〉 is

22n(2n−1). For the 3× 3 square the number of summands is 230 which is already on the

verge of what is feasible using straightforward algorithms.

As expected, in the v → 0 limit the relative discrepancy between the bounds and

the diffusion coefficient (determined through simulations) is huge. The cause of the

problem is that the dimensionality of the ‘relevant’ sub-space diverges as v → 0. To

probe the behavior in the v → 0 limit we combined the variational approach with

perturbation techniques (using v as a small parameter). This allowed us to reduce

the number of summands and gave a power series expansion of D for larger sets S.

Specifically, we extracted the expansions for n × n squares with n ≤ 6. The resulting

upper bounds vanish algebraically, but with exponents growing with n. This provides

an indication that the actual behavior might be non-analytic, and perhaps D indeed

vanishes according to equation (34) resembling the behavior of the coefficient of self-

diffusion.

The diffusion coefficient appears to admit an expansion in powers of ρ3 rather than

ρ. Although we do not have theoretical evidence in favor of this tantalizing property,

it is supported by our simulation results. If this conjecture is true, the self-diffusion

coefficient is probably also a function of ρ3.

In this article, we limited ourselves to the simplest non-trivial KA model, viz. the

KA model on the square lattice with m = 2. For the KA models on Zd, the interesting

range is 2 ≤ m ≤ d. For S = ∅, the upper bound is the same as the mean-field prediction,

which can be obtained by straightforward extension of the argument presented at the

end of section 2. The answer is particularly simple for the KA model on Zd with m = 2:

D =
(
1− ρ2d−1

)2
.

The mean-field prediction for general d and m is

D =

[
1−

m−1∑
k=0

(
2d− 1

k

)
ρ2d−1−k(1− ρ)k

]2
. (39)
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On the cubic lattice, the two interesting cases are m = 2 and m = 3 (originally

considered by Kob and Andersen [29]), where the corresponding predictions are

D =

{
(1− ρ5)2 m = 2 ,

(1− 5ρ4 + 4ρ5)
2

m = 3 .

We anticipate that the result of the minimization coincides with (39), when one

chooses the class S of functions depending on one site. To perform a minimization

procedure relying on symmetric convex sets one should probably start with (non-trivial)

“hyper-rhombus” for which |S| = 2d + 1. For instance, the hypercube of length two

has cardinality |S| = 2d which is larger than 2d + 1 for d ≥ 3. We expect that the

minimization over hyper-rhombus functions with |S| = 2d + 1 gives a better explicit

upper bound than (39).

It would be interesting to establish connection with other variational approaches

(see e.g. [41]) applied to the calculation of the diffusion coefficient in lattice gas models.

Finally, we mention that there is a variational formula for the self-diffusion coefficient [3].

This more special transport coefficient is unknown even in the simplest gradient lattice

gases such as the symmetric simple exclusion process in two dimensions, so it would be

interesting to obtain upper bounds for the self-diffusion coefficient using the procedure

described in this paper.

Acknowledgements

We are grateful to G. Biroli for discussions and to S. Mallick for a careful reading of the

manuscript.

Appendix A. 1× 1 square

For the 1× 1 square, schematically S = �, functions ϕ depend on one site τ0,0 and we

shortly write ϕ(τ) = ϕ(τ0,0). The expectation value 〈Q(±1,0)〉 reads

〈Q(±1,0)(ϕ)〉 =
∑

a,...,h∈{0,1}

Wa · · ·Wh P
(±1,0) [±1− Φ±(a, b)

]2
(A.1)

where we replaced τ0,0, τ1,0, . . . by letters a, b, . . . as shown in figure A1 (left) and denoted

by W0 [resp. W1] the probability that the site is empty [resp. occupied], that is

W0 = 1− ρ, W1 = ρ. (A.2)

We also used the shorthand notation

Φ±(a, b) = ϕ(a∓ 1)− ϕ(a) + ϕ(b± 1)− ϕ(b).

The leftward and rightward hopping rates can be written as

P (1,0) = a(1− b)(1− cde)(1− fgh),

P (−1,0) = b(1− a)(1− cde)(1− fgh).
(A.3)
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Figure A1. Notations for the formulas 〈Q(±1,0)〉 (left) and 〈Q(0,±1)〉 (right). We use

letters from a to h for the 1×1 square [equations (A.1) and (A.4)], and from a to ` for

the 2× 2 square [equations (B.1) and (B.3)]. We always set a = τ0,0, so e.g. ` = τ2,−1

on the left panel and ` = τ−1,2 on the right panel.

Figure A2. Illustration for the functionals Q(±1,0) given by (A.1). The summands

indexed by (u, v) = (0, 0) and (−1, 0) in (13) provide non-vanishing contributions. The

function ϕ
(
Au,v τ

(α,β)
)
− ϕ(Au,v τ) depends only on the shaded sites.

Only two summands indexed by (u, v) = (0, 0) and (−1, 0) in (13) contribute (see

figure A2). For any other pair of (u, v), we have ϕ
(
Au,v τ

(±1,0)) = ϕ(Au,v τ).

For the ‘vertical’ functionals, one finds

〈Q(0,±1)(ϕ)〉 =
∑

a,...,h∈{0,1}

Wa · · ·Wh P
(0,±1) [Φ±(a, b)

]2
. (A.4)

Here we transposed the alphabetic notations of the sites, see figure A1(right); the upward

and downward hopping rates are

P (0,1) = a(1− b)(1− cde)(1− fgh),

P (0,−1) = b(1− a)(1− cde)(1− fgh).
(A.5)

The sums in (A.1) and (A.4) are calculated to give 〈Q(±1,0)(ϕ)〉 = ρ(1− ρ)(1− ρ3)2 and

〈Q(0,±1)(ϕ)〉 = 0. Hence D[�] = (1 − ρ3)2 which is the same result as the mean-field

approximation (9).
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Figure B1. Illustration for the functionals Q(±1,0) in the case of the 2 × 2 square.

The shown six patterns correspond to non-vanishing ϕ
(
Au,v τ

(α,β)
)
− ϕ(Au,v τ) terms

in equation (B.1).

Appendix B. 2× 2 square

Here we consider the 2 × 2 square, schematically S = . Thus ϕ(τ) = ϕ
( τ0,1 τ1,1
τ0,0 τ1,0

)
.

The expectation values of the functionals for the horizontal directions are〈
Q(±1,0)(ϕ)

〉
=

∑
a,...,`∈{0,1}

P (±1,0)Wa · · ·W`

[
± 1−R(±1,0)(ϕ)

]2
, (B.1)

R(±1,0)(ϕ) = ϕ
(
i c
d a∓1

)
− ϕ

(
i c
d a

)
+ ϕ

(
c f

a∓1 b±1
)
− ϕ

(
c f
a b

)
+ ϕ

(
f k
b±1 g

)
− ϕ

(
f k
b g

)
+ ϕ

(
d a∓1
j e

)
− ϕ

(
d a
j e

)
+ ϕ

(
a∓1 b±1
e h

)
− ϕ

(
a b
e h

)
+ ϕ

(
b±1 g
h `

)
− ϕ

(
b g
h `

)
.

(B.2)

The notations are explained in figure A1 (left), and the transition rates are still given

by (A.3). We have a finite sum, because ϕ
(
Au,v τ

(±1,0)) − ϕ(Au,v τ) vanishes unless

u = −1, 0, 1 and v = 0, 1. The remaining cases are illustrated in figure B1.

The vertical ones are〈
Q(0,±1)(ϕ)

〉
=

∑
a,...,`∈{0,1}

P (0,±1)Wa · · ·W`

[
R(0,±1)(ϕ)

]2
, (B.3)

R(0,±1)(ϕ) = ϕ
(
e a∓1
j d

)
− ϕ

(
e a
j d

)
+ ϕ

(
a∓1 c
d i

)
− ϕ

(
a c
d i

)
+ ϕ

(
h b±1
e a∓1

)
− ϕ

(
h b
e a

)
+ ϕ

(
b±1 f
a∓1 c

)
− ϕ

(
b f
a c

)
+ ϕ

(
` g
h b±1

)
− ϕ

(
` g
h b

)
+ ϕ

(
g k
b±1 f

)
− ϕ

(
g k
b f

)
.

(B.4)

The notations are explained in figure A1 (right), the transition rates are given by (A.5).
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One wants to solve ∂
∂ξ
〈Q〉 = 0, where ξ = ϕ

(
γ δ
α β

)
for all α, β, γ, δ ∈ {0, 1}. The

solution space is characterized by the following nine relations

ϕ ( 0 0
0 0 ) + ϕ ( 1 1

1 1 ) = S↔ ( 1 0
1 0 ) = Sl ( 1 1

0 0 ) = Sl ( 1 0
0 1 ) ,

ϕ ( 0 0
0 0 ) + 3ϕ ( 1 1

1 1 ) = Sl ( 1 1
0 1 ) + Sl ( 1 1

1 0 ) ,

3ϕ ( 0 0
0 0 ) + ϕ ( 1 1

1 1 ) = Sl ( 0 1
0 0 ) + Sl ( 1 0

0 0 ) ,

Al ( 1 0
0 1 ) = Al ( 1 0

0 0 )− Al ( 0 1
0 0 ) = Al ( 1 1

0 1 )− Al ( 1 1
1 0 ) ,

2Al ( 1 1
0 0 ) = S↔ ( 0 0

1 0 )− S↔ ( 1 0
0 0 ) + S↔ ( 1 0

1 1 )− S↔ ( 1 1
1 0 ) ,

2A↔ ( 1 0
1 0 ) = A↔ ( 0 0

1 0 ) + A↔ ( 1 0
0 0 ) + A↔ ( 1 0

1 1 ) + A↔ ( 1 1
1 0 )− 2ρ

4− ρ− 2ρ3
,

(B.5)

where we used shorthand notations S and A for symmetric and asymmetric combinations

of ϕ, namely

S↔
(
γ δ
α β

)
= ϕ

(
γ δ
α β

)
+ ϕ

(
δ γ
β α

)
, Sl

(
γ δ
α β

)
= ϕ

(
γ δ
α β

)
+ ϕ

(
α β
γ δ

)
,

A↔
(
γ δ
α β

)
= ϕ

(
γ δ
α β

)
− ϕ

(
δ γ
β α

)
, Al

(
γ δ
α β

)
= ϕ

(
γ δ
α β

)
− ϕ

(
α β
γ δ

)
.

Substituting (B.5) into (B.1) and (B.3) and performing straightforward calculations

yield

q
[ ]

= 2ρ(1− ρ)(1− ρ3)2 − 4(1− ρ)3ρ5

4− ρ− 2ρ3
(B.6)

leading to the announced bound (22).

Appendix C. The simplest non-trivial rhombus

For the rhombus S = , functions ϕ depend on five sites: ϕ(τ) = ϕ
( τ0,1
τ−1,0 τ0,0 τ1,0

τ0,−1

)
.

The expectation values of the functionals for the horizontal directions read〈
Q(±1,0)〉 =

∑
a,...,r∈{0,1}

P (±1,0)Wa · · ·Wr

[
± 1−R(±1,0)]2, (C.1)

R(±1,0) = ϕ
(

c
d a∓1 b±1

e

)
− ϕ

(
c

d a b
e

)
+ ϕ

(
f

a∓1 b±1 g
h

)
− ϕ

(
f

a b g
h

)
+ ϕ

( m
i c f
a∓1

)
− ϕ

(
m

i c f
a

)
+ ϕ

(
i

n d a∓1
j

)
− ϕ

(
i

n d a
j

)
+ ϕ

(
a∓1

j e h
o

)
− ϕ

(
a

j e h
o

)
+ ϕ

( p
c f k
b±1

)
− ϕ

( p
c f k
b

)
+ ϕ

(
k

b±1 g q
`

)
− ϕ

(
k

b g q
`

)
+ ϕ

(
b±1

e h `
r

)
− ϕ

(
b

e h `
r

)
(C.2)

The notations are explained in figure C1(left); the transition rates are

P (1,0) = a(1− b)(1− cde)(1− fgh),

P (−1,0) = b(1− a)(1− cde)(1− fgh).
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Similarly for the vertical direction we have〈
Q(0,±1)〉 =

∑
a,...,r∈{0,1}

P (0,±1)Wa · · ·Wr

[
R(0,±1)]2, (C.3)

R(0,±1) = ϕ
(

b±1
e a∓1 c

d

)
− ϕ

(
b

e a c
d

)
+ ϕ

( g
h b±1 f
a∓1

)
− ϕ

(
g

h b f
a

)
+ ϕ

(
f

a∓1 c m
i

)
− ϕ

(
f

a c m
i

)
+ ϕ

(
a∓1

j d i
n

)
− ϕ

(
a

j d i
n

)
+ ϕ

(
h

o e a∓1
j

)
− ϕ

(
h

o e a
j

)
+ ϕ

(
k

b±1 f p
c

)
− ϕ

(
k

b f p
c

)
+ ϕ

( q
` g k
b±1

)
− ϕ

( q
` g k
b

)
+ ϕ

(
`

r h b±1
e

)
− ϕ

(
`

r h b
e

)
(C.4)

The notations are explained in figure C1(right); the transition rates are

P (0,1) = a(1− b)(1− cde)(1− fgh),

P (0,−1) = b(1− a)(1− cde)(1− fgh).

We should solve ∂
∂ξ
〈Q〉 = 0, where ξ = ϕ

(
γ

δ α β
ε

)
for all α, β, γ, δ, ε ∈ {0, 1}. The

solutions are given by 19 homogeneous relations

ϕ
(

0
0 0 0
0

)
− ϕ

(
1

0 0 0
1

)
= ϕ

(
0

0 1 0
0

)
− ϕ

(
1

0 1 0
1

)
= ϕ

(
0

1 0 1
0

)
− ϕ

(
1

1 0 1
1

)
= ϕ

(
0

1 1 1
0

)
− ϕ

(
1

1 1 1
1

)
,

Al

(
0

0 0 1
1

)
+ Al

(
0

1 0 0
1

)
= 2Al

(
0

0 0 0
1

)
− Al

(
0

0 1 0
1

)
+ Al

(
0

1 1 1
1

)
= Al

(
0

0 0 0
1

)
+ Al

(
0

1 0 1
1

)
+ S↔

(
0

1 1 0
0

)
+ 2ϕ

(
0

0 0 0
0

)
− 3ϕ

(
0

0 1 0
0

)
− 2ϕ

(
0

1 0 1
0

)
+ ϕ

(
0

1 1 1
0

)
,

Al

(
0

0 1 1
1

)
+ Al

(
0

1 0 1
1

)
+ Al

(
0

1 1 0
1

)
− Al

(
0

0 0 0
1

)
− 2Al

(
0

1 1 1
1

)
= 3ϕ

(
0

0 0 0
0

)
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(
0
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0
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(
1
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(
1
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Al

(
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(
0
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(
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= Al

(
0

1 1 0
1

)
,

ϕ
(

0
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= Sl

(
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+ ϕ

(
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)
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(
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)
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ϕ
(

0
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= S↔

(
0

1 0 0
0
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− ϕ

(
0
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= Sl

(
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− ϕ

(
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ϕ
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0
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(
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− ϕ

(
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= Sl

(
0
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− ϕ

(
1
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)
,

ϕ
(

0
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)
+ ϕ

(
1

0 0 0
1

)
= 1

2
Sl

(
0
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1

)
+ 1

2
Sl

(
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)
= ϕ

(
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)
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(
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− ϕ

(
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,

ϕ
(

0
0 0 0
0

)
− 2ϕ

(
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Sl
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2
Sl
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,

ϕ
(

1
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)
= Sl

(
0
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1

)
− 2ϕ

(
0

0 0 0
0

)
+ ϕ

(
0

1 1 1
0

)
= Sl

(
0

1 1 1
1

)
− S↔

(
0

1 1 0
0

)
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(
0

0 1 0
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)
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Figure C1. The lattice sites that appear in the formulas for 〈Q(±1,0)〉 (left panel) and

〈Q(0,±1)〉 (right panel) in the case of the rhombus.

and 3 inhomogeneous relations

A↔

(
0

1 0 0
0

)
+ ϕ

(
1

1 0 1
1

)
= A↔

(
0

1 1 0
0

)
+ A↔

(
1

1 0 0
1

)
− A↔

(
1

1 1 0
1

)
− ϕ

(
0

0 1 0
0

)
+ ϕ

(
0

1 1 1
0

)
+ ϕ

(
1

0 0 0
1

)
− 2r1

= −A↔
(

1
1 0 0
1

)
− Sl

(
0

0 0 1
1

)
+ Sl

(
0

1 0 0
1

)
+ ϕ

(
0

1 0 1
0

)
− ϕ

(
0

1 1 1
0

)
+ ϕ

(
1

1 1 1
1

)
− 2r2,

A↔

(
0

1 1 0
0

)
+ A↔

(
1

1 1 0
1

)
+ Sl

(
0

0 1 1
1

)
− Sl

(
0

1 1 0
1

)
− 2Sl

(
0

1 1 1
1

)
= ϕ

(
0

0 1 0
0

)
− 3ϕ

(
0

1 0 1
0

)
+ 3ϕ

(
1

0 0 0
1

)
− 4ϕ

(
1

0 1 0
1

)
− ϕ

(
1

1 1 1
1

)
− 2r3.

To make above equations more compact we used shorthand notations S and A for

symmetric and asymmetric combinations of ϕ, namely

S↔

(
δ

α β γ
ε

)
= ϕ

(
δ

α β γ
ε

)
+ ϕ

(
δ

γ β α
ε

)
, Sl

(
δ

α β γ
ε

)
= ϕ

(
δ

α β γ
ε

)
+ ϕ

(
ε

α β γ
δ

)
,

A↔

(
δ

α β γ
ε

)
= ϕ

(
δ

α β γ
ε

)
− ϕ

(
δ

γ β α
ε

)
, Al

(
δ

α β γ
ε

)
= ϕ

(
δ

α β γ
ε

)
− ϕ

(
ε

α β γ
δ

)
.

The inhomogeneous terms are given by

r1V = 47 + 83ρ+ 43ρ2 − 116ρ3 − 63ρ4 − 9ρ5 + 30ρ6 + 10ρ7 − 2ρ9,

r2V = 3ρ+ 3ρ2 − 5ρ3 − 15ρ4 − 15ρ5 + 6ρ6 + 4ρ7 + 2ρ8,

r3V = 47 + 50ρ+ 10ρ2 − 49ρ3 − 40ρ4 − 18ρ5 + 14ρ6 + 10ρ7 + 4ρ8

with V determined by equation (24b).

Appendix D. Perturbative calculations near the maximal density

Here we describe in more detail the perturbation approach which we use to probe the

behavior of the diffusion coefficient in the 1 − ρ = v → 0 limit. For concreteness, we

choose squares as the basic symmetric sets used in our minimization procedure.
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The expectation values of the functionals (13) read

〈Q(α,β)(ϕ)〉 =
∑

a1,...,aN∈{0,1}

P
(α,β)
0,0 Wa1 · · ·WaN [α−R(ϕ)]2 (D.1)

with

R(ϕ) =
∑
(u,v)

{
ϕ
(
Au,va

(α,β)
)
− ϕ(Au,va)

}
. (D.2)

In the case of the n × n square, a = (a1, . . . , aN) is the shorthand notation of the

relevant part of the configuration τ , namely (τi,j) with −n ≤ i ≤ n and −n ≤ j ≤ n− 1

for (α, β) = (±1, 0), while when (α, β) = (0,±1), the indexes vary in the range

−n ≤ i ≤ n − 1 and −n ≤ j ≤ n. We also shortly write N = 2n(2n − 1). For

example, for n = 2 we used the letters a, . . . , ` in Appendix B; here we replace them by

a1, . . . , a12. The indexes (u, v) in the sum in equation (D.2) also run over −n ≤ u ≤ n

and −n ≤ v ≤ n− 1 for (α, β) = (±1, 0), and over −n ≤ u ≤ n− 1 and −n ≤ v ≤ n for

(α, β) = (0,±1).

We split the sum on the right-hand side of (D.1) into N − 3 sums according to the

number of empty sites:

〈Q(α,β)(ϕ)〉 =
N−1∑
`=3

Σ
(α,β)
` (ϕ) (D.3)

where

Σ
(α,β)
` (ϕ) =

∑
a1,...,aN∈{0,1}

#{ak=0}=`

P
(α,β)
0,0 Wa1 · · ·WaN [α−R(ϕ)]2. (D.4)

At least three empty sites and one occupied site are needed in order to have P
(α,β)
0,0 = 1;

otherwise P
(α,β)
0,0 = 0. Therefore terms with ` = 0, 1, 2, N vanish explaining the right-

hand side of (D.3).

Recalling the definition (A.2) we see that Wa1 · · ·WaN = v`(1 − v)N−` in the sum

in (D.4). Using this observation and inserting (D.3) into (12) we obtain

〈Q(ϕ)〉 =
N−1∑
`=3

v`(1− v)N−` Σ`(ϕ) (D.5)

where Σ`(ϕ) do not depend explicitly on v. We thus arrive at the small v expansion

〈Q(ϕ)〉 = Θ3(ϕ)v3 + Θ4(ϕ)v4 + Θ5(ϕ)v5 + · · · (D.6)

with

Θ3(ϕ) = Σ3(ϕ),

Θ4(ϕ) = Σ4(ϕ)− (N − 3) Σ3(ϕ),

Θ5(ϕ) = Σ5(ϕ)− (N − 4) Σ4(ϕ) + 1
2
(N − 3)(N − 4) Σ3(ϕ),



Bulk diffusion in a kinetically constrained lattice gas 26

etc. To obtain the true power series expansion of 〈Q(ϕ)〉 we have to take into account

the expansion

ϕ(c) = ϕ0(c) + vϕ1(c) + v2ϕ2(c) + · · · . (D.7)

The notation c in equation (D.7) we denotes the relevant part of the configuration τ , so

it is similar to a in equation (D.2). Using the expansion (D.7) we deduce the expansion

of Θ`(ϕ):

Θ`(ϕ) = Θ`(ϕ0) +
∑
c

[
vϕ1(c) + v2ϕ2(c) + · · ·

] ∂Θ`

∂ϕ(c)
(ϕ0)

+
1

2

∑
c,c′

[
vϕ1(c) + v2ϕ2(c) + · · ·

][
vϕ1(c

′) + v2ϕ2(c
′) + · · ·

] ∂2Θ`

∂ϕ(c)∂ϕ(c′)

(D.8)

There are no terms with higher derivatives since Θ`(ϕ) is quadratic. Substituting (D.8)

into (D.6) one obtains an expansion

〈Q(ϕ)〉 =
∑
`≥3

Q` v
` (D.9)

with

Q3 = Θ3(ϕ0), (D.10)

Q4 = Θ4(ϕ0) +
∑
c

ϕ1(c)
∂Θ3

∂ϕ(c)
(ϕ0), (D.11)

Q5 = Θ5(ϕ0) +
∑
c

ϕ1(c)
∂Θ4

∂ϕ(c)
(ϕ0) +

∑
c

ϕ2(c)
∂Θ3

∂ϕ(c)
(ϕ0)

+
1

2

∑
c,c′

ϕ1(c)ϕ1(c
′)

∂2Θ3

∂ϕ(c)∂ϕ(c′)
,

(D.12)

etc. We perform minimization at each power v`. The number of summands in Θ` is of

order N `−3, whereas that of the original 〈Q(ϕ)〉 is of order 2N . Therefore it is helpful

to use Θ` instead of 〈Q(ϕ)〉, in order to minimize computations. We start with v3. We

want to minimize Θ3(ϕ). One has to solve ∂
∂ϕ(c)

Θ3 = 0, which is a set of linear equations.

Let us denote by ϕ∗0 the function which minimizes Θ3. Note that ϕ∗0 is not unique. It is

convenient to write ϕ∗0(c) as polynomials of degree one in terms of a set of parameters

(d1, . . . , dn′) with some n′ ≤ 2n
2
. For n = 2, in particular, ϕ∗0 can be expressed through

n′ = 10 parameters, e.g.

ϕ∗0 ( 1 1
1 1 ) = d1, ϕ

∗
0 ( 1 1

1 0 ) = d2, ϕ
∗
0 ( 0 1

1 1 ) = d3,

ϕ∗0 ( 1 1
0 1 ) = d4, ϕ

∗
0 ( 1 0

1 1 ) = d5, ϕ
∗
0 ( 1 1

0 0 ) = d6, ϕ
∗
0 ( 0 0

1 0 ) = d7,

ϕ∗0 ( 0 0
0 0 ) = d8, ϕ

∗
0 ( 1 0

1 0 ) = d9, ϕ
∗
0 ( 0 1

0 1 ) = d10, ϕ
∗
0 ( 0 1

1 0 ) = −d1 + d2 + d3,

ϕ∗0 ( 1 0
0 1 ) = −d1 + d4 + d5, ϕ∗0 ( 0 0

1 1 ) = −d6 + d9 + d10,

ϕ∗0 ( 1 0
0 0 ) = −d2 + d5 + 2d6 + d7 − d9 − d10,

ϕ∗0 ( 0 0
0 1 ) = −1− d3 + d5 + d7 − d9 + d10,

ϕ∗0 ( 0 1
0 0 ) = −1− d4 + d5 + 2d6 + d7 − 2d9.
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Minimizing Θ3(ϕ) one gets Θ3(ϕ
∗
0) = 14.

Next we examine the coefficient of v4. Since we choose ϕ0 = ϕ∗0, the sum in

(D.11) vanishes, and the minimization should be performed for Θ4(ϕ
∗
0). The variables

are now (d1, . . . , dn′) and the minimum is reached on a certain ϕ∗∗0 = ϕ∗0|d→d∗ which is

convenient to express through parameters (e1, . . . , en′′). For example, for n = 2, we use

the parametrization

d∗k = ek (1 ≤ k ≤ 8)

d∗9 = −1
2

+ 2e1 − e2 − e3 − e4 + e6 + e7

d∗10 = 1
2
− 4e1 + 2e2 + 2e3 + 2e4 + e5 − e6 − e7

and find Θ4(ϕ
∗∗
0 ) = −6. In this way, one can obtain the high-density expansion of

q[S] up to the order v4. Dividing it by 2χ one gets Q[S] up to the order v3. Here we

summarize the results for 2 ≤ n ≤ 6:

q[2× 2] = 14v3 − 6v4 +O(v5),

q[3× 3] = 2v3 + 28202
307

v4 +O(v5),

q[4× 4] = 0v3 + 906137359616
66311971451

v4 +O(v5),

q[5× 5] = 0v3 + v4 +O(v5),

q[6× 6] = 0v3 + 0v4 +O(v5).

Dividing them by 2v(1− v) leads to the announced results (37).

We now shortly comment about the minimization of the coefficient of v5 in

equation (D.9). The first sum in (D.12) vanishes due to the same reason as for v4.

Thus we need to minimize

1

2

∑
c,c′

ϕ1(c)ϕ1(c
′)

∂2Θ3

∂ϕ(c)∂ϕ(c′)
+
∑
c

ϕ1(c)
∂Θ4

∂ϕ(c)
(ϕ∗∗0 ) and Θ5(ϕ

∗∗
0 )

by varying ϕ1(c)’s and (e1, . . . , eN ′′), respectively. For example, for n = 3 one finds

q[3× 3] = 2v3 + 28202
307

v4 − 37402727
94249

v5 +O(v6)

and then

D[3× 3] = v2 + 14408
307

v3 − 28556215
188498

v4 +O(v5).

Similar to perturbative calculations near the maximal density, one can perform

perturbative calculations near the minimal density using ρ as the small parameter.

Conceptually, the method is the same; in terms of ρ, equation (D.5) reads

〈Q(ϕ)〉 =
N−3∑
`=1

ρ`(1− ρ)N−` ΣN−`(ϕ), (D.13)
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and we use the test function in the form

ϕ(c) = ϕ0(c) + ρϕ1(c) + ρ2ϕ2(c) + · · · (D.14)

instead of (D.7). Then one arrives at the low-density expansion

〈Q(ϕ)〉 =
∑
`≥1

Q̂`ρ
`, (D.15)

which is similar to the high-density version (D.9). It is easy to see that Q̂1 = 2, so one

has to perform minimizations for Q̂` with ` ≥ 2. On the technical level the calculations

are much more demanding. For instance, for the 4× 4 square, the first non-trivial term

in the high density limit reads

D[4× 4] ' 453068679808

66311971451
v3,

while in the low density limit the leading behavior is

1−D[4× 4] ' r

s
ρ3

with 238 digits integers

r = 248318756234182766354371739342317168383056003090313982110925

074833032524417860592986034694101352022606656385591399542945

656491548986924927203322299708534738000477618692292211046227

8603484915853762583795345039758918839643321845429398375204,

s = 110824179824578186621743868088271852384672761259627636733420

515459361262628851512749048604531828435124815266426435799166

615188400510629974454741744199733440547604353419033690245066

5151170565082388955124113412600620784668852539083095494859.
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[30] J. Jäckle and A. Krönig, J. Phys.: Condens. Matter 6, 7633 (1994); A. Krönig and J. Jäckle, J.
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