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We study the heat current flowing between two baths consisting of harmonic oscillators interacting
with a qubit through a spin-boson coupling. An explicit expression for the generating function of
the total heat flowing between the right and left baths is derived by evaluating the corresponding
Feynman-Vernon path integral by performing the non-interacting blip approximation (NIBA). We
recover the known expression, obtained by using the polaron transform. This generating function
satisfies the Gallavotti-Cohen fluctuation theorem, both before and after performing the NIBA. We
also verify that the heat conductance is proportional to the variance of the heat current, retrieving
the well known fluctuation dissipation relation. Finally, we present numerical results for the heat
current.

I. INTRODUCTION

The flow of a non-vanishing macroscopic current of en-
ergy, charge, matter or information, that breaks time-
reversal invariance, is a fingerprint of non-equilibrium
behavior. A paradigmatic model for such a situation con-
sists in a small system, with a finite number of degrees
of freedom, that connects two large reservoirs in differ-
ent thermodynamic states. The ensuing stationary state
can not be described by the standard laws of thermody-
namics: in particular, the steady-state statistics is not
given by a Gibbs ensemble. The theoretical analysis of
simple models, whether classical or quantum, provides us
with a wealth of information about far-from-equilibrium
physics and has stimulated numerous studies in the last
two decades [1–8].

Quantum systems based on nano-scale integrated cir-
cuits are very effective for the study of quantum phenom-
ena and are good candidates for possible applications.
This is due to their macroscopic size and the ensuing
ability to manipulate them. For any application mini-
mizing or controlling the heat flow is essential. There-
fore there has been a great deal of experimental [9–16]
and theoretical interest [17–20] in studying the heat flow
in such circuits. The vast majority of theoretical studies
has been focused on the weak coupling regime, for which
well-controlled approximation schemes are available. For
example, in the case of a small system interacting with
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an environment, it is possible to integrate out the bath
from the full dynamics and express the resulting system
dynamics in terms of a Lindblad equation [3, 4, 21]. In
this case, heat currents can be studied in terms of energy
changes of the system. However, the weak coupling as-
sumption deviates from exact treatments quantitatively
and qualitatively already at moderately low couplings
[22].

There have been various earlier studies in the strong
coupling regime. Based on the polaron transform, the
authors of [23] obtained an analytical expression for
the heat current through an N level system. The
polaron transform provides a shortcut for the Non-
Interacting Blip Approximation (NIBA) [24, 25]. The
full generating function for a spin-boson system was de-
rived, using the polaron transform, in [26, 27] and re-
viewed in [28]. The authors of [29–31] derived a non-
equilibrium polaron-transformed Redfield equation that
unifies strong and weak-coupling behavior. In [32–34]
the authors start from the generating function of the
heat current to study its first moment. Numerical
studies include simulations based on hierarchical equa-
tions of motion [35–40] the quasi-adiabatic propagator
path integral (QuAPI)[41, 42], the iterative full count-
ing statistics path integral [43], the multi-configuration
time-dependent Hartree (MCTDH) approach [44], the
Stochastic Liouvillian algorithm [45], and other Monte
Carlo approaches [46]. Other recent contributions are
[15, 47–52].

In this paper we consider a qubit coupled to two (or
more) thermal baths. We derive the full generating func-
tion for the spin-boson by directly applying the non-
interacting blip approximation (NIBA), without passing
through the polaron transform as was done in the original

ar
X

iv
:1

91
1.

00
42

7v
3 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

0 
M

ar
 2

02
0

mailto:eaurell@kth.se
mailto:brecht.donvil@helsinki.fi
mailto:kirone.mallick@ipht.fr


2

derivation [26, 27]. We show that we recover the result by
[26, 27]. Following [34], this generating function can be
written explicitly as Feynman-Vernon type path integral.
Relying on a modified version of the NIBA, an expres-
sion for the first moment of the generating function, i.e.
the average heat current, was obtained by directly ap-
plying the NIBA in [34]. Furthermore, we discuss the
Gallavotti-Cohen relation (see [7, 53–57] and references
therein), which holds before after the NIBA, as derived in
[26, 27], in terms of an explicit time reversal. Finally, we
find a fluctuation-dissipation relation between the vari-
ance of the heat current and the thermal conductance.

The paper is structured as follows. In section II, we
briefly introduce the spin-boson model that we shall an-
alyze. In section III, the generating function of the heat
current is calculated after performing the NIBA approx-
imation. In section IV we discuss the Gallavotti-Cohen
relation before and after the NIBA. In section V we in-
vert the Laplace transform of the generating functions for
small α and obtain a fluctuation-dissipation relation be-
tween the variance of the heat current and the heat con-
ductance. Finally, in section VI we numerically evaluate
the first moment of the generating function. Technical
details are provided in the appendices.

II. THE MODEL

The spin-boson model is a prototype for understand-
ing quantum coherence in presence of dissipation [58–
62]. It can be viewed as variant of the Caldeira-Leggett
model in which a quantum particle interacts with a bath
of quantum-mechanical oscillators. In the spin-boson
model, a two-level system modeled by a spin-1/2 de-
gree of freedom is put in contact with one or more heat-
baths. The literature in the subject is vast and we refer
the reader to some reviews and to the references therein
[2, 62–64].

In this paper, we shall study two baths made of har-
monic oscillators that interact with a qubit via the spin-
boson interaction. Although there is no direct interaction
between the baths, energy will be transferred through the
qubit. The Hamiltonian governing the total evolution of
the qubit and of the baths is given by

H = HS +HL +HR +HLS +HRS . (1)

The qubit Hamiltonian is given by

HS = −~∆

2
σx +

ε

2
σz. (2)

The left bath and right bath Hamiltonians are given by

HL =
∑
b∈C

p2
b,L

2mb,L
+

1

2
mb,Lω

2
b,Lq

2
b,L (3)

HR =
∑
b∈R

p2
b,R

2mb,R
+

1

2
mb,Rω

2
b,Rq

2
b,R. (4)

Finally, the system-bath interactions are of the spin-
boson type [62]

HLS = −σz
∑
b∈L

Cb,Lqb,L (5)

HRS = −σz
∑
b∈H

Cb,Rqb,R. (6)

The effects of the environment are embodied in the
spectral density of the environmental coupling [2] (one
for each bath):

JR/L(ω) =
∑
b∈R/L

(C
R/L
b )2

2mbωb
δ(ω − ωb) . (7)

We shall assume a Ohmic spectrum with an exponential
cut-off determined by the frequency Ω

JR/L(ω) =
2

π
ηR/Lω exp

(
−ω

Ω

)
(8)

We denote by Ut the unitary evolution operator of the
total system and assume that the baths are initially at
thermal equilibrium and are prepared in Gibbs states at
different temperatures. For an initial state of the qubit
|i〉 and a final state |f〉, the generating function of the
heat current is defined as

Gi,f (~α, t) = trR,L〈f |ei(αRHR+αLHL)/~Ute
−i(αRHR+αLHL)/~

×
(
ρβL ⊗ ρβR ⊗ |i〉〈i|

)
U†t |f〉, (9)

with ~α = (αR, αL). The trace is taken over all the de-
grees of freedom of the baths. This generating function
will allow us to calculate all the moments of the heat
current: for example, by taking the first derivative of αL
and setting ~α to zero gives the change in expected energy
of the cold bath

−i~∂αLGi,f (~α)
∣∣
~α=0

= trR,L(HLρ(t))− tr(HLρ(0))

= ∆EL. (10)

III. CALCULATION OF THE GENERATING
FUNCTION

The full generating function (9) was calculated in [26,
27] using the polaron transform. In this section we aim to
perform this calculation by explicitly applying the NIBA
to (9). The first step of the calculation is to rewrite the
trace in equation (9) as a Feynman-Vernon type path-
integral [2]. After integrating over the left and the right
bath, see Appendix A, the expression for the generating
function is given by [34]

Gi,f (~α, t) =

∫
i,f

DX DY e
i
~S0[X]− i

~S0[Y ]F~α[X,Y ], (11)
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where F~α is the influence functional. The paths X and
Y are the forward and backwards path of the qubit, they
take values ±1. The forward path X corresponds to the
forward evolution operator Ut in (11), and Y corresponds

to U†t . In the absence of interactions with the baths, the
dynamics of the qubit are fully described by the free qubit
action S0

S0[X] = − ε
2

∫
dtX(t)− i log(i∆dt/2)

∫
|dX(t)| (12)

The integral
∫
|dX(t)| counts the amount of jumps in

the path. Thus, when the path X makes n jumps, the
second term gives the weight (i∆dt/2)n. The effect of the
influence functional is to generate interactions between
the forward and backward paths; it also embodies the
dependence on the parameters ~α.

F~α[X,Y ] = e
i
~ (SCi,αL

[X,Y ]+SRi,αR
[X,Y ])

×e− 1
~ (SCr,αL

[X,Y ]+SRr,αR
[X,Y ]), (13)

where the real part of the interaction action is given by
[65]

SR/Lr,αR/L
[X,Y ] =

∫ tf

ti

dt

∫ t

ti

ds

(
(XtXs + YtYs)k

R/L
r (t− s)

−XtYsk
R/L
r (t− s+ αR/L)−XsYtk

R/L
r (t− s− αR/L)

)
(14)

and the imaginary part is defined as

S
R/L
i,αR/L

[X,Y ] =

∫ tf

ti

dt

∫ t

ti

ds

(
(XtXs − YtYs)kR/Li (t− s)

+XtYsk
R/L
i (t− s+ αR/L)−XsYtk

R/L
i (t− s− αR/L)

)
(15)

The kernels that appear in these expressions are

kji (t− s) =
∑
b

(Cjb,j)
2

2mb,jωb,j
sin(ωb,j(t− s)) (16)

and

kjr(t− s) =
∑
b

(Cjb,j)
2

2mb,jωb,j
coth

(
~ωb,jβj

2

)
× sin(ωb,j(t− s)), (17)

for j = R,L. The integral of the bath degrees of freedom
being performed, the generating function is given as the
qubit path-integral (11) over two binary paths. This re-
maining expression can not be calculated exactly; in the
next section, we shall evaluate the generating function
by resorting to the Non-Interacting Blip Approximation
(NIBA).

A. Performing the NIBA

Originally, the idea of the NIBA was proposed in [66],
see also [62], to compute transition probabilities between
states of the qubit: this corresponds to taking α = 0 in
(9). The paths X and Y being binary, there are only
two possibilities at a given time: either X = Y , this
is a Sojourn or X = −Y , this is a Blip. The NIBA
approximation relies on two assumptions (explained in
[62]):

(i) The typical Blip-interval time ∆tB is much shorter
than the typical Sojourn-interval time ∆tS : ∆tB � ∆tS .

(ii) Bath correlations decay over times much smaller
than the typical Sojourn interval ∆tS .

For an Ohmic spectrum (8), these assumptions are
valid for two regimes: (a) for ε = 0 and weak coupling
and (b) for large damping and/or at high temperatures
[2].

Under these assumptions, the only nonzero contribu-
tions to the time integrals in the interaction part of the
action (14) and (15) are obtained when

a. t and s are in the same Blip-interval

b. t and s are in the same Sojourn-interval

c. t is in a Sojourn and s is an adjacent Blip interval

d. t and s are both in Sojourn-intervals separated by
one Blip.

Other terms cannot contribute since then t and s will be
situated in intervals separated by at least one Sojourn,
which does give a contribution under assumption (ii).

The strategy to perform the NIBA is to break up the
integrals (14) and (15) over the whole time interval into
a sum of the surviving parts, which can be evaluated
separately.

In the present work, we extend the NIBA to include
nonzero α (see also [34]), which leads to a time shift in
some of the Kernels in the action (14) and (15). In the
framework of our approximation, we consider values of
αR/L, such that αR/L � ∆tS . Following the same rea-
soning as for αR/L = 0, it is clear that under said ad-
ditional assumption, the same terms as before have a
chance of being nonzero. In Appendix B, we explicitly
calculate the five different surviving terms [67] after the
NIBA. The resulting expression for the generating func-
tion can be written in terms of a transfer matrix M(α, t):

G↑↑(~α, t) +G↑↓(~α, t) =
(
1 1

) +∞∑
n=0

(−1)n
(

∆

2

)2n

×
∫

dt1 . . . dt2nM(α,∆t2n)M(α,∆t2n−2) . . .M(α,∆t2)

(
1
0

)
(18)

where ∆t2j = t2j−t2j−1. The transfer matrix M is given
by

M(~α, t) = 2

(
A(t) −B(~α, t)
−C(~α, t) D(t)

)
(19)
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Note that only the off-diagonal elements of the transfer
matrix depend on α. The functions A,B,C and D that
appear as matrix elements in M are determined once the
NIBA has been performed. Their values are given by

A(t) = cos
1

~
(
Z+
L (t) + Z+

R (t)− εt
)
e−

1
~ (Γ+

L(t)+Γ+
R(t))

(20a)

B(~α, t) = e−
1
~ (Γ−

L (αL,t)+Γ−
R(αR,t)+2i(RL(αL,t)+RR(αR,t))

× cos
1

~
(
Z−L (αL, t) + 2iFL(αL, t) + Z−R (αL, t)

+ 2iFR(αL, t) + εt
)

(20b)

C(~α, t) = e−
1
~ (Γ−

L (αL,t)+Γ−
R(αR,t)+2i(RL(αL,t)+RR(αR,t))

× cos
1

~
(
Z−L (αL, t) + 2iFL(αL, t) + Z−R (αL, t)

+ 2iFR(αL, t)− εt
)

(20c)

D(t) = cos
1

~
(
Z+
L (t) + Z+

R (t) + εt
)
e−

1
~ (Γ+

L(t)+Γ+
R(t))

(20d)
All the auxiliary functions Z±j ,Γ

±
j , Rj and Fj , where the

index j = L,R refers to the left or the right bath, are
determined in the Appendix B. Assuming a Ohmic spec-
tral density with exponential cut-off with frequency Ω
(7), the explicit expressions of these functions are given
in the following equations:

Z+
j (t) =

2ηj
π

∫ ∞
0

dω
sin(ωt)

ω
e−ω/Ω (21a)

Z−j (αj , t) =
2ηj
π

∫ ∞
0

dω
sin(ωt)

ω
cos(ωαj)e

−ω/Ω (21b)

Γ+
j (t) =

2ηj
π

∫ ∞
0

dω
1− cos(ωt)

ω
coth

(
ω~βj

2

)
e−ω/Ω

(22a)

Γ−j (αj , t) =
2ηj
π

∫ ∞
0

dω

(
1− cos(ωt) cos(ωαj)

ω

× coth(
ω~βj

2
) e−ω/Ω

)
(22b)

Rj(αj , t) =
ηj
π

∫ ∞
0

dω
sin(ωαj)

ω
cos(ωt)e−ω/Ω (23a)

Fj(αj , t) =
ηj
π

∫ ∞
0

dω
coth

(
ω~βj

2

)
ω

sin(ωt) sin(ωαj)e
−ω/Ω

(23b)

The behaviour of these functions is shown in figure 1.
We shall denote by φ̃ the Laplace transform of a func-

tion φ(~α, t), defined as follows:

φ̃(~α, λ) =

∫ ∞
0

dt e−λtφ(~α, t). (24)

0 1 2 3 4 5
0

1

2

3

4

5

t (s)

Γ+

Γ−

Z+

Z−

F
R

FIG. 1: Behaviour of the functions (22) appearing in
the definitions of the matrix elements (20) for α = 1,

η = 1 and β = (0.1 KkB)−1.

Then, taking the Laplace transform of (18) leads us to

G̃↑↑(~α, λ) + G̃↑↓(~α, λ) =

λ−1
(
1 1

)(+∞∑
n=0

(−1)n
(

∆

2

)2n

λ−nM̃n(α, λ)

)(
1
0

)
(25)

We call λ+(~α, λ) and λ−(~α, λ) the eigenvalues of the 2 by

2 matrix M̃(~α, λ), with corresponding left eigenvectors
v+(~α, λ) and v−(~α, λ) and right eigenvectors w+(~α, λ)

and w−(~α, λ). We can write M̃n in terms of it eigenvec-
tors and eigenvalues as

M̃n = λn+(~α, t)w+(~α, t)vT+(~α, t)+λn−(~α, t)w−(~α, t)vT−(~α, t)
(26)

We have

λ±(~α, λ) = Ã(λ) + D̃(λ) (27)

±
√

(Ã(λ)− D̃(λ)2 + 4B̃(~α, λ)C̃(~α, λ)

Finally, the Laplace transform of the generating function
takes a simpler form in the eigenbasis of M̃:

G̃↑↑(~α, λ) + G̃↑↓(~α, λ)

=
Q+(~α, λ)

λ+
(

∆
2

)2
λ+(~α, λ)

+
Q−(~α, λ)

λ+
(

∆
2

)2
λ−(~α, λ)

, (28)

where we defined the amplitudes

Q± =
(
1 1

)
w±v

T
±

(
1
0

)
. (29)

Using the relations

2Rj(αj , t)± Z−(αj , t) = Z+(αj ± t) (30a)

2Fj(αj , t)± Γ−(αj , t) = Γ+(αj ∓ t). (30b)
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one can check that equation (28) recovers the result de-
rived by [26, 27]

IV. THE FLUCTUATION THEOREM PRE-
AND POST-NIBA

The authors of [26] proved a fluctuation relation for the
generating function after the NIBA was performed. They
showed that the leading eigenvalue of the transfer matrix
M̃ is invariant under ~α → i(βL, βR) − ~α. Here we show
said fluctuation relation directly on M by considering a
proper time reversal.

A. Time Reversal

There are multiple ways to define a time reversal for
a stochastic process, see [68]. In this work, we define a
reversal for the qubit state paths X(t) and Y (t) as

XR(t) = Y (tf + ti − t) (31a)

YR(t) = X(tf + ti − t), (31b)

see figure 2. In the time reversed path the forward and
backward path interchange and run from tf to ti. To
illustrate this time reversal, let us note that for ~α = 0,
the generating function (9) can be written as

Gi,f (0) = trR,C(ρβL ⊗ ρβR〈i|U |f〉〈f |U†|i〉) (32)

Expressing the trace as a path integral and computing
the trace over the bath variables gives

Gi,f (~0) =

∫
i,f

DX DY e−
i
~S0[X]+ i

~S0[Y ]FR[X,Y ], (33)

With influence functional

FR[X,Y ] = e
i
~ (SLi,R+SRi,R)[X,Y ]− 1

~ (SLr,R+SRr,R)[X,Y ], (34)

where we defined the real part of the action as

S
R/L
r,R [X,Y ] =

∫ tf

ti

dt

∫ t

ti

ds

(
(XtXs + YtYs)k

R/L
r (t− s)

−XtYsk
R/L
r (t− s)−XsYtk

R/L
r (t− s)

)
(35)

and the imaginary part

S
R/L
i,R [X,Y ] =

∫ tf

ti

dt

∫ t

ti

ds

(
(YtYs −XtXs)k

R/L
i (t− s)

+XtYsk
R/L
i (t− s)−XsYtk

R/L
i (t− s)

)
(36)

Now taking X(t) → XR(t) and Y (t) → YR(t), retrieves
the expression for the generating function (11) for ~α = 0.

X(t)

Y (t)

〈f |Ut|i〉

〈i|U†
t |f〉

i f

XR(t)

YR(t)

〈i|Ut|f〉

〈f |U†
t |i〉

f i

ti tf

FIG. 2: Illustration of the (top) forward spin-state
paths and the (bottom) time reversed paths.

B. The Gallavotti-Cohen symmetry

Let us define the time reversed generating function as

GRfi(αR, αL, t) = trR,L〈i|ei(αRHR+αLHL)/~U†t

× e−i(αRHR+αLHL)/~(ρβL ⊗ ρβR ⊗ |f〉〈f |)Ut|i〉. (37)

Before performing the NIBA, it is straightforward to
show from the definition of the generating function (11)
and (37) that the Gallavotti-Cohen relation holds:

Gif (iβR~− αR, iβL~− αL, t) = GRfi(αR, αL, t), (38)

see [69] for a detailed discussion on the Gallavotti-Cohen
relation for interacting systems. After integrating out the
bath, the above equation can be checked using the time
reversal defined in (31).

It is possible to show that the Gallavotti-Cohen rela-
tion (38) still holds after performing the NIBA. In order
to do so we perform the NIBA on the time-reversed gen-
erating function GRfi(αR, αL, t) following the same proce-
dure as outlined in Subsection III A. The result is of the
form (18), with transfer matrix

M̄(~α, t) = 2

(
D(t) −C(~α, t)
−B(~α, t) A(t)

)
, (39)

on the other hand, one can calculate that

M(i~(βR, βL)− ~α, t) = 2

(
A(t) −C(~α, t)
−B(~α, t) D(t)

)
. (40)

Note that in the time reversal (31), we interchange
the meaning of X and Y , as illustrated in figure
2. Interchanging the roles of X and Y means flip-
ping the diagonal elements in transfer matrix. Thus
M(i~(βR, βL) − ~α, t) and M̄(~α, t) are equivalent, prov-
ing that the Gallavotti-Cohen relation remains true after
the performing the NIBA, as was shown by [26].

V. FLUCTUATION-DISSIPATION RELATION

In this section we aim to calculate first and second mo-
ment of the heat current in the steady state. In steady
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state we only need to focus on one bath as the magnitude
of the heat current is the same for both baths. There-
fore, let us set αR = 0 and write α = αL. We invert the
Laplace transform of the generating function up to sec-
ond order in α. This allows us direct access to the first
and second moment of the heat current. In order to be
self-contained, in Appendix C we present a derivation of
the thermal conductance κ (C16), which will appear in
the fluctuation-dissipation relation.

Concretely, we look for poles of equation (28), by con-
structing a function

λ(α) = λ0 + λ1α+ λ2α
2 +O(α3). (41)

which solves

λ(α) +

(
∆

2

)2

λ−(α, λ(α)) = 0 (42)

at all orders in α. Hence for small α, we have, in the long
time limit

Gi,f (α, t) =Res

(
eλtQ−(α, λ)

λ(α) +
(

∆
2

)2
λ−(α, λ)

, λ(α)

)

=
eλ(α)tQ−(α, λ(α))

1 +
(

∆
2

)2
λ̇−(α, λ(α))

(43)

(Note that in the large time limit the contribution of the
λ+ is exponentially subdominant). Keeping in mind that
λ−(0, λ) = 0, the zeroth order of equation (42) gives.

λ0 = 0. (44)

Equation (42) to the first order in α translates to

λ1 +

(
∆

2

)2

λ′−(0, λ0) +

(
∆

2

)2

λ̇−(0, λ0)λ1 (45)

where the accent denotes the derivative to α the first
variable and a dot a derivative to λ. The steady state
heat current is given by −i~λ1. After some algebra we
find that

λ1 = i

(
∆

2

)2
p+ π↓ + p−π↑
~(p+ + p−)

, (46)

where we defined

CL(t) = e−
1
~ Γ+

L(t)+ i
~Z

+
L (t) (47a)

CR(t) = e−
1
~ Γ+

R(t)+ i
~Z

+
R (t) (47b)

and ĈL(ω), ĈR(ω) their Fourier transforms. The frac-
tions p±/(p+ + p−) give the steady state population for
the qubit in the up/down state, with

p+ =

∫ ∞
−∞

dtCL(t)CR(t)eiεt (48a)

p− =

∫ ∞
−∞

dtCL(t)CR(t)e−iεt, (48b)

and the power emitted from the up π↓ and down state
π↑

π↑ =
~

2π

∫ ∞
−∞

dω ωĈL(ω)ĈR(ε− ω) (49a)

π↓ =
~

2π

∫ ∞
−∞

dω ωĈL(ω)ĈR(−ε− ω). (49b)

The convolution in the first line can be interpreted as
the sum over qubit relaxation rates with energy ω going
to the left bath and −ω + ε to the right bath, and the
second line similarly in terms of a qubit excitation [26].
Additionally, we define

Σ+ =
~2

2π

∫ ∞
−∞

dω ω2ĈL(ω)ĈR(ε− ω) (50a)

Σ− =
~2

2π

∫ ∞
−∞

dω ω2ĈL(ω)ĈR(−ε− ω) (50b)

Similarly, an expression can be obtained for λ2. In equi-
librium, when βR = βC ,

λ2 = −∆2

4~2

p−Σ+ + p+Σ− + 4π↑π↓
p+ + p−

. (51)

Writing the explicit expression for Q−(α, λ(α)),
straightforward algebra shows that

Q−(α, λ(α)) = 1 +O(α3), (52)

and we obtain that the generating function is given by

Gi,f (α) = e(λ1α+λ2α
2+O(α3))t×{

1−
(

∆

2

)2

(λ̇′−(0, 0) + λ′′−(0, 0)λ1)α

+

((
∆

2

)2

λ̇′−(0, 0)

)2

α2 −
(

∆

2

)2

λ̇′′−(0, 0)α2 +O(α3)

}
The first moment of the heat current is

〈∆E〉 = −i~tλ1 (53)

which correctly leads to the heat current defined in (C3).
The variance of the heat current is then given by

Var[∆E] = −~2t(2λ2−2(λ̇′−(0, 0)+λ′′−(0, 0)λ1))λ1)+O(t).
(54)

In equilibrium, λ1 = 0, we find that

lim
t→∞

1

t
Var[∆E] = −2~2λ2 (55)

=
∆2

2

p−Σ+ + p+Σ− + 4π↑π↓
p+ + p−

. (56)

Comparing to (C16), we find the following identity

lim
t→∞

1

t
Var[∆E] = 2κ, (57)

which proves the fluctuation-dissipation relation.
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VI. NUMERICAL EVALUATION OF THE
GENERATING FUNCTION

In this section we numerically study the heat current
predicted by (18), earlier numerical studies on the spin-
boson model include e.g. [23, 26–31, 70, 71].

The heat current (C3) is completely determined by the
functions Z+

L/R(t) and Γ+
L/R(t), defined in (22) and (21).

For the Ohmic spectral density J(ω) with exponential
cut-off (8), these functions have analytic solutions [62]

Z+
j (t) = ηj tan−1(Ωt) (58)

Γ+
j (t) =

1

2
ηj log

(
1 + Ω2t2

)
+ ηj log

(
~βj
πt

sinh
πt

~βj

)
,

(59)
with j = L, R.

For our numerical analysis we consider the parameters
ε = 1 K × kB , ~∆ = 0.01ε and Ω = 100ε/~. Figure 3
shows the absolute value of the heat current to the left
bath for a positive temperature gradient ∆T = TR −
TL = 0.1K (full line) and for a negative gradient −0.1K
(dashed line) in function of the coupling strength ηR,
with ηL = ~ constant. The curves show rectification of
the heat current, as was already observed by [23, 70]: the
current changes direction when the temperatures of the
bath are exchanged, but the magnitudes are not equal.

Let PL be the power to the left bath and PRL be the
power to the left bath as the temperatures of the baths
are exchanged. To quantify the amount of rectification,
we define the rectification index as [16]

R =
max(|PL|, |PRL |)
min(|PL|, |PRL |)

. (60)

The rectification index is shown in figure 4 for different
range of temperatures of the right bath in function of the
coupling parameter ηR. Larger temperature gradients
lead to higher rectification.

The influence of a third bath, with temperature TE ,
weakly coupled to the qubit on the rectification index R
is shown in figure 5. The left bath has constant coupling
ηL = ~, the third bath has coupling ηE = 0.1~ and the
coupling of the right bath ranges from 0~ to 1.5~. The
presence to the third bath leads to PR 6= −PL, which
causes changes in the behaviour of the rectification index
R. The black (full) line in figure 5 displays the rectifica-
tion index without the third bath, the other curves show
the rectification under the influence of the third bath.
There are two clear qualitative deviations from the two-
bath situation. First, the rectification no longer reaches
a minimum at ηR = 1, the minima are shifted to other
values of ηR and even additional minima appear. Sec-
ondly, divergences occur when the presence of the third
bath leads to PL = 0 and PRL 6= 0, or the other way
around. For example, at ηR = 0 and TE = 0.1 K the
power PL = 0, since TE = TL and there is no interac-
tion with the right bath. When the temperatures are

0 0.5 1 1.5 2
0

20

40

60

80

ηR/h̄

|P
L
|/
ε

(s
−
1
)

TR − TL = 0.1K
TR − TL = −0.1K

FIG. 3: Numerical evaluation of the heat current (C1).
The purple lines are for TR = 0.2 K, TL = 0.1 K and the

blue lines for TR = 0.1 K, TL = 0.2 K. The other
parameters in the model are ε = 1 K× kB , ~∆ = 0.01ε,

Ω = 100ε/~ and ηL = ~.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

ηR/h̄

R

TR = 0.20K
TR = 0.15K
TR = 0.14K
TR = 0.13K
TR = 0.12K
TR = 0.11K

FIG. 4: Rectification index R, as defined in (60), for
different values of TR and TL = 0.1 K. The other
parameters are given in the caption of figure 3

reversed, TE 6= TRL = TR leading to PRL 6= 0. Theoretical
studies of electronic systems have show similar effect on
the rectification due the influence of a third bath [72, 73],
earlier numerical studies for the three bath model in the
spin-boson case are [71].
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

ηR/h̄

R
TE = 0.05K
TE = 0.10K
TE = 0.15K
TE = 0.20K
TE = 0.25K
ηE = 0

FIG. 5: Influence of a third bath on the rectification
index R, as defined in (60). The coupling to the third
bath is ηE = 0.1~, TL = 0.1 K and TR = 0.2 K. The
other parameters are given in the caption of figure 3

VII. DISCUSSION

In this paper we have studied the heat current through
a qubit between two thermal baths. Earlier studies per-
formed calculations were done using the polaron trans-
form [23, 26–31], or when explicitly performing the non-
interacting blip approximation (NIBA) were focussed on
the first moment [34]. Here we rederived the explicit ex-
pression for the generating function of the heat current
by directly performing the NIBA. The Laplace transform
of the cumulant generating function of the heat current
is a large deviation function (or rate function) that al-
lows one to quantify rare events. In equilibrium, it can
be shown that rate functions are simply related to the
traditional thermodynamic potentials such as entropy or
free energy [74]. Far from equilibrium, large deviation
functions can be defined for a large class of dynamical
processes and are good candidates for playing the role of
generalized potentials [7].

In classical physics, a few exact solutions for the large
deviations in some integrable interacting particles models
have been found and a non-linear hydrodynamic theory,
known as macrocoscopic fluctuation theory, has been de-
veloped [7, 8]. In the quantum case, the role of large
deviation functions is played by the full counting statis-
tics (FCS) [75–80] for which a path integral fomulation
akin to macrocoscopic fluctuation theory has been formu-
lated [81]. The FCS exhibits universal features and phase
transitions [82] and obeys the Fluctuation Theorem [83–
86]. However, in the quantum realm, exact results for
interacting systems are very rare, amongst the most no-
ticeable is a series of remarkable calculations performed
for the XXZ open spin chain interacting with boundary
reservoirs within the Lindblad framework [87, 88].

In the present work, our aim was to study the heat
transport in the spin-boson model, starting from the mi-
croscopic model that embodies the qubit and the reser-
voirs. We hence do not rely on a Markovian assumption,
but eventually that the tunelling element is small, as is
inherent to the NIBA.

Our analysis begins with the exact expression of the
generating function in terms of a Feynman-Vernon type
path integral from which we derived a full analytical for-
mula for the generating function of the heat current. We
recover the earlier results derived using the polaron trans-
form [26, 27].

As a numerical example we studied the first moment of
the generating function, the heat current. We saw that
this shows rectification when the coupling strength of the
qubit to both baths is not equal, as was already found
by [23, 70]. When the temperature gradient is flipped,
the current changes direction, but it does not have the
same magnitude in both directions and therefore breaks
the Fourier Law of heat conduction.

A very important property satisfied by the generat-
ing function is the Gallavotti-Cohen fluctuation theorem
that embodies at the macroscopic scale the time-reversal
invariance of the microscopic dynamics. The fluctuation
theorem implies in particular the fluctuation-dissipation
relation and the Onsager reciprocity rules when different
currents are present [53, 54, 57, 89, 90].

The fact that the formal definition of generating func-
tion does obey the Gallavotti-Cohen symmetry is rather
straightforward to obtain. This relation remains true af-
ter the NIBA [26, 27]. This means that NIBA respects
the fundamental symmetries of the underlying model, or
equivalently, that the spin-boson problem with NIBA is
by itself a thermodynamically consistent model. One
consequence is that the fluctuation-dissipation relation
is retrieved under the NIBA. Indeed, we explicitly cal-
culated the first and second moment of the heat. When
the temperature difference between the baths is small,
we found the heat conductance κ as the first moment
of heat per unit time divided by temperature difference.
The variance of the heat at equilibrium, when both tem-
peratures are the same, is then per unit time proportional
to κ. We emphasize that the Gallavotti-Cohen relation
is valid far from equilibrium and it implies relations be-
tween response coefficients at arbitrary orders [91].
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Appendix A: Derivation of the equation (11)

The expression for the generating function (9) can be rewritten by defining

H̄ = ei(αRHR+αLHL)/~He−i(αRHR+αLHL)/~ = HS +HL +HR + H̄SL + H̄SR (A1)

with

H̄SL/R = −σz
∑
b∈L/R

Lb

√
~

2mωb,L/R
(bbe

−iωbαL/R + b†be
iωbαL/R). (A2)

Let Ūt,αR,αL be the corresponding evolution operator, the generating function (9) is

Gi,f (~α, t) = tr〈f |Ūt,αR,αL
(
ρβL ⊗ ρβR ⊗ |i〉〈i|

)
U†t |f〉, (A3)

With this expression the influence functional can be derived in the usual way [2], leading to (13).

Appendix B: Surviving terms of the NIBA

It is convenient to define the Sojourn-index

χt = Xt + Yt (B1)

such that during a Sojourn Xt = Yt = 1
2χt and the blip-index

ξt = Xt − Yt. (B2)

such that during a blip Xt = −Yt = 1
2ξt. Since we will be performing two time integrals, we will be needing the

second primitive functions K
R/L
i , K

R/L
r of k

R/L
i (t− s) and k

R/L
r (t− s). The second primitive is defined as

K
R/L
i/r =

∫
dtds k

R/L
i/r (t− s) (B3)

Note that the primitive functions have an extra minus sign, due to the fact that we are integrating over −s

K
R/L
i (t) =

∑
b

(Cb,R/L)2

2mbω3
b,R/L

sin(ωb,R/Lt) (B4a)

KR/L
r (t) =

∑
b

(Cb,R/L)2

2mbω3
b,R/L

coth

(~ωb,R/LβR/L
2

)
cos(ωb,R/Lt) (B4b)

1. Blip-Blip

We consider a blip interval that runs from a time t∗ to t∗ + ∆tb.
a. Imaginary part of the action Notice that in the same blip interval Xt = Xs = −Yt = −Ys, hence XtXs =

YtYs = 1 and XtYs = YtXs = −1. This means that the term proportional to XtXs − YtYs in the imaginary part of
the action (15) will not contribute. The remaining terms which we denote by R(~α, t) = RR(αR, t) +RL(αL, t), give

Rj(αj , t)−
1

2
Kj
i (αj) = −1

4

∫ t∗+∆tB

t∗

∫ t∗+∆tB

t∗
dtds kji (t− s+ αj)

=
1

4
(Kj

i (∆tB + αj) +Kj
i (−∆tB + αj)− 2Kj

i (αj))

=
1

2

∑
b

C2
b,j

2mb,jω3
b,j

sin(ωbαj) cos(ωb,j∆tB)− 1

2
Kj
i (αj), (B5)

where j = R or L. We isolated the 1
2K

j
i (αj) term to anticipate a cancellation with Sojourn-Sojourn terms.
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b. Real part of the action For the real part, all terms contribute. The result is C(~α,∆tB) = CR(αR,∆tB) +
CL(αL,∆tB), with

Cj(α,∆tB) ≡ 1

4

∫ t∗+∆tB

t∗

∫ t

t∗
dtds(2kjr(t− s) + kr(t− s+ α) + kr(t− s− α))

=
1

4
(−2Kj

r (∆tB) + 2Kj
r (0)−Kj

r (∆tB + α)−Kj
r (∆tB − α) + 2Kj(α))

=
1

2

∑
b

C2
b,j

2mb,jω3
b,j

coth

(
ωb,j~β

2

)
[cos(ωb,jα) + 1][1− cos(ωb,j∆B)] (B6)

2. Blip-Sojourn

We consider a blip interval running from t∗ −∆tb to t∗ and the ensuing Sojourn interval from t∗ to t∗ + ∆ts.
a. Imaginary part The contribution from the imaginary part of the action is χξX−(~α,∆tB), X−(~α,∆tB) =

XR
−(αR,∆tB) +XL

−(αL,∆tB) with

Xj
−(α,∆tB) =

1

4

∫ t∗+∆tS

t∗
dt

∫ t∗

t∗−∆tB

ds (2kji (t− s)− kji (t− s+ α)− kji (t− s− α))

=
1

4

(
2Kj

i (∆tS)− 2Kj
i (∆tS + ∆tB) + 2Kj

i (∆tB)− 2Kj
i (0)

−Kj
i (∆tS + α) +Kj

i (∆tS + ∆tB + α)−Kj
i (∆tB + α) +Kj

i (α)

−Kj
i (∆tS − α) +Kj

i (∆tS + ∆tB − α)−Kj
i (∆tB − α) +Kj

i (−α)

)
(B7)

Following the NIBA, we have Ki(∆tS) = Ki(∆tS + ∆tB) = Ki(∆tS + ∆tB + α), which leads to a significant
simplification in the above equation, we find

Xj
−(α,∆tB) =

1

4
(2Kj

i (∆tB)−Kj
i (∆tB − α)−Ki(∆tB + α)) (B8)

=
1

2

∑ C2
b,j

2mb,jω3
b

sin(ωb,j∆tB)[1− cos(ωb,jα)] (B9)

b. Real part The real part gives χξF−(~α,∆tB), F−(~α,∆tB) = FR− (αR,∆tB) + FL−(αL,∆tB)

F j−(α,∆tB) =
1

4
χξ

∫ t∗+∆tS

t∗
dt

∫ t∗

t∗−∆tB

ds (kjr(t− s+ α)− kjr(t− s− α))

=
1

4
χξ

(
Kj
r (∆tS + α) +Kj

r (∆tB + α)−Kj
r (∆tB + ∆tS + α)−Kj

r (α)

−Kj
r (∆tS − α)−Kj

r (∆tB − α) +Kj
r (∆tB + ∆tS − α) +Kj

r (−α)

)
(B10)

Under the same argument as for the imaginary part, we get

F j−(α,∆tB) =
1

4

(
Kj
r (∆tB + α)−Kj

r (∆tB − α)

)
(B11)

=− 1

2

∑
b

(Cjb )2

2mbω3
b

coth

(
ωb~β

2

)
sin(ωb∆tB) sin(ωbα) (B12)

3. Sojourn-Blip

The blip interval runs from t∗ −∆ts to t∗ and the blip interval t∗ to t∗ + ∆tb.
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a. Imaginary part This calculation is similar to the Blip-Sojourn term, but with less cancellations.

Xj
+(α,∆tb) =

1

4

∫ t∗+∆tB

t∗
dt

∫ t∗

t∗−∆tS

ds (2kji (t− s) + kji (t− s+ α) + kji (t− s− α))

=
1

4

(
2Kj

i (∆tS)− 2Kj
i (∆tS + ∆tB) + 2Kj

i (∆tB)− 2Kj
i (0)

+Kj
i (∆tS + α)−Kj

i (∆tS + ∆tB + α) +Kj
i (∆tB + α)−Kj

i (α)

+Kj
i (∆tS − α)−Kj

i (∆tS + ∆tB − α) +Kj
i (∆tB − α)−Kj

i (−α)

)
(B13)

Again, under NIBA, we have Kj
i (∆tS) = Kj

i (∆tS) = Kj
i (∆tS + ∆tB)Kj

i (∆tS + ∆tB + α), which gives

X+(α,∆tb) =
1

4
(2Kj

i (∆tB) +Kj
i (∆tB − α) +Kj

i (∆tB + α))

=
1

2

∑ (Cjb )2

2mbω3
b

sin(ωb∆tB)[1 + cos(ωbα)]. (B14)

b. Real part

F j+(α,∆tb) =
1

4
χξ

∫ t∗+∆tS

t∗
dt

∫ t∗

t∗−∆tB

ds (−kjr(t− s+ α) + kjr(t− s− α))

= χξ
1

4

(
−Kj

r (∆tS + α)−Kj
r (∆tB + α) +Kj

r (∆tB + ∆tS + α) +Kj
r (α)

+Kj
r (∆tS − α) +Kj

r (∆tB − α)−Kj
r (∆tB + ∆tS − α)−Kj

r (−α)

)
(B15)

Under the same argument as for the imaginary part, we get

F j+(α,∆tb) =
1

4

(
−Kj

r (∆tB + α) +Kj
r (∆tB − α)

)
=

1

2

∑ (Cjb )2

2mbω3
b

coth

(
ωb~β

2

)
sin(ωb∆tB) sin(ωbα). (B16)

Note that F+ = −F−.

4. Sojourn-Sojourn

The first Sojourn interval runs from t∗ to t∗ + ∆tS1
and the blip interval t∗ + ∆tS1

to t∗ + ∆tS1
+ ∆tS2

.

a. Imaginary part We find

Bj(α) ≡1

4

∫ t∗+∆tS

t∗

∫ t∗+∆tS

t∗
dtds kji (t− s+ α)

=
1

4
(2Kj

i (α)−Kj
i (∆tS + α)−Kj

i (−∆tS + α))

=
1

2
Kj
i (α)

=
1

2

∑
b

(Cjb )2

2mbω3
b

sin(α) (B17)
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b. Real part

Dj(α) =
1

4

∫ t∗+∆tS

t∗
dt

∫ t

t∗
ds (2kjr(t− s)− kjr(t− s+ α)− kjr(t− s− α))

=
1

4

(
2Kj

r (0)− 2Kj
r (∆tS) +Kj

r (∆tS + ~α)−Kj
r (α) +Kj

r (∆tS − ~α)−Kj
r (−α)

)
=

1

2
(Kj

r (0)−Kj
r (α)) (B18)

=
1

2

∑ (Cjb )2

2mbω3
b

coth

(
ωb~βj

2

)
[1− cos(α)] (B19)

There will also be cancellations between D and C.

5. Sojourn-(Blip)-Sojourn

The first Sojourn interval runs from t∗ to t∗ + ∆tS1
and the second Sojourb interval from t∗ + ∆tS1

+ ∆tB to
t∗ + ∆tS1

+ ∆tB1
+ ∆tS2

, where ∆tB is the duration of the blip.
a. Imaginary part

Λj(α,∆tB) =
1

4

∫ t∗+∆tS1+∆tB+∆tS2

t∗+∆tS1+∆tB

dt

∫ t∗+∆tS1

t∗
ds (kji (t− s+ α)− kji (t− s− α))

=
1

4
(−Kj

i (∆tB + α) +Kj
i (∆tB − α))

= −1

2

∑
b

(Cjb )2

2mbω3
b

cos(ωb∆tB) sin(ωbα) (B20)

b. Real part

Σj(α,∆tB) =
1

4

∫ t∗+∆tS1+∆tB+∆tS2

t∗+∆tS1+∆tB

dt

∫ t∗+∆tS1

t∗
ds (2kjr(t− s)− kjr(t− s+ α)− kjr(t− s− α))

=
1

4
(Kj

r (∆tB + α) +Kj
r (∆tB − α)− 2Kj

r (∆tB))

=
1

2

∑ (Cb,j)
2

2mb,jω3
b,j

coth

(
ωb,j~βj

2

)
cos(ωb,j∆tB)[cos(ωb,jα)− 1] (B21)

6. Transfer matrix

The generating function, using the terms calculated in the last subsections, is

GS→S(α) =

+∞∑
n=0

(−1)n
(

∆

2

)n ∫
dt1 . . . dt2n

∑
χ1,...,χn=±1,
ξ1,...,ξn=±1

exp

(
− i

~
ε
∑
i

ξi(t2i − t2i−1)

)

× exp

(
i

~
∑
j=R,L

∑
i

χiξi+1X
j
+(αj ,∆2i+2) + χiξiX

j
−(αj ,∆2i) + χiχi+1Λj(α,∆2i+2) +Rj(α,∆2i)

)

× exp

(
− 1

~
∑
j=R,L

∑
i

χjξi+1F
j
+(αj ,∆2i+2) + χiξiF

j
−(αj ,∆2i) + χiχi+1Σj(αj ,∆2i+2) + C ′(αj ,∆2i)

)
(B22)

To express the resulting generating function in terms of a transfer matrix, it is convenient to first define for j = R or
L

Z+
j (t) = Xj

+(α, t) +Xj
−(α, t) =

2ηj
π

∫ Ω

0

dω
1

ω
sin(ωt) (B23a)
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Z−j (α, t) = Xj
+(α, t)−Xj

−(α, t) =
2ηj
π

∫ Ω

0

dω
1

ω
sin(ωt) cos(ωα) (B23b)

and

Γ+
j (t) = Cj(α, t) +Dj(α, t) + Σ(α, t) =

2ηj
π

∫ Ω

0

dω
1

ω
coth

(
ω~βj

2

)
(1− cos(ωt)) (B24a)

Γ−j (α, t) = Cj(α, t) +Dj(α, t)− Σ(α, t) =
2ηj
π

∫ Ω

0

dω
1

ω
coth

(
ω~βj

2

)
(1− cos(ωt) cos(ωα)) (B24b)

which allows us to write the generating function as (18).

Appendix C: Heat current

In this section we are interested in studying the heat current between the two baths. The heat current is defined as

Π(βC , βR) = lim
t→∞

〈∆Ec〉
t

(C1)

where βL and βR are the inverse temperatures of respectively the left bath and the right bath, and Ec is the energy
of the left bath.

To our knowledge the results in this section were first obtained in [92] although only stated for the case of zero
level splitting. Here we we-derive them using the same notation as in the main body of the paper. We will show that
Π(β, β) = 0, which one would physically expect. It means that in the steady state there is no heat transfer between
two baths with the same temperature. Furthermore, we calculate the thermal conductance κ which is defined by the
expansion for small temperature differences ∆β in both baths

Π(β, β + ∆β) = κ∆β +O(∆β2). (C2)

Our starting point is a result by the authors of [34] for the form of the heat current

Π = (
∆

2
)2

(
p−

p+ + p−
π↑ +

p+

p+ + p−
π↓

)
, (C3)

where p−
p++p−

is the steady state population of the lower qubit state and (∆
2 )2π↑ the heat current related to this state.

Let us introduce the characteristic functions

CL(t) = e−
1
~ Γ+

L(t)+ i
~Z

+
L (t) (C4)

CR(t) = e−
1
~ Γ+

R(t)+ i
~Z

+
R (t), (C5)

which allows us to conveniently write the coefficients of (C3)

p+ =

∫ ∞
−∞

dtCL(t)CR(t)eiεt (C6a)

p− =

∫ ∞
−∞

dtCL(t)CR(t)e−iεt, (C6b)

π↑ = −i~
∫ ∞
−∞

dt
dCL(t)

dt
CR(t)eiεt (C7a)

π↓ = −i~
∫ ∞
−∞

dt
dC+

L (t)

dt
C+
R (t)e−iεt, (C7b)

and

Σ+ = −~2

∫ ∞
−∞

dt
d2CL(t)

dt2
CR(t)eiεt (C8a)

Σ− = −~2

∫ ∞
−∞

dt
d2CL(t)

dt2
CR(t)e−iεt (C8b)
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1. Two baths with the same temperatures

When both baths have the same temperatures, we expect the steady state heat transfer to be zero

Π(β, β) = 0 (C9)

Via an analytic continuation argument outlined in Appendix D, we find that

p+(βL, βR) =
1

2

∫
dtCL(t+ i∆β~)CR(t)e−

i
~ εte−εβR (C10)

and

π↓(βC , βR) = i~
∫
dt
dCL(t+ i∆β~)

dt
CR(t)e

i
~ εteεβR (C11)

with ∆β = βC − βR. When both temperatures are equal, these relations transform to

p+(β, β) = e−εβp−(β, β) (C12)

and

π↑(β, β) = −e−εβπ↓(β, β). (C13)

Equations (C12) and (C13) directly give us

Π(β, β) =

(
∆

2

)2
1

p+ + p−
(p−π↑ + p+π↓)

=

(
∆

2

)2
e−εβ

p+ + p−
(−p−π↓ + p−π↓) = 0 (C14)

2. Thermal Conductance

The obtain an explicit formula for the thermal conductance κ one should expand (C3) in the difference between
the temperature of both baths ∆β = βL − βR. Differentiating the denominator (A + D) gives no contribution as it
multiplies a parenthesis Dπ↑ +Aπ↓, which vanishes to zeroth order. We can therefore write

κ =

(
∆

2

)2
1

p+ + p−

(
∂βL(p−)π↑ + p−∂βL(π↑)

+∂βL(p+)π↓ + p+∂βL(π↓)
)

(C15)

All terms on the right hand side are evaluated at βL = βR = β.
The calculation of κ is presented in Appendix E. The idea of the calculation is to write out ∂β(p−)π↑ and p−∂β(π↑),

and to keep track how the terms generated in the partial derivatives ∂β(p−) and and ∂β(π↑) change as the integral
variable t is shifted to t+ i~β. The result is

κ =

(
∆

2

)2
1

p+ + p−
(p+Σ− + 4π↓π↑ + p−Σ+), (C16)

where C̃ and D̃ are the Laplace transforms of the matrix elements defined in equation (20) and the accent denotes
the derivative to the first variable.

Appendix D: Analytic continuation

Suppose that all functions are analytical in the strip 0 ≤ =t ≤ ~βR (note that in Appendix E of [62] the authors
assume an analytic continuation to negative imaginary values of t; however they consider the function G(t) related to
the function C(t) by G(t) = e−C(t)). Then any of the integrals, say D, can be written as

p+ =

∫
dtCL(t+ iβR~)CR(t+ iβR~)e

i
~ ε(t+iβR~) (D1)
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The exponents in CL and CR are sums over bath oscillators. Each oscillator b contributes

Term =
1

2mbωb

(
− coth

ωb~β
2

(1− cosωbt) + i · sinωbt
)

(D2)

where β is βR or βL. Evaluating first oscillators in the right bath gives

cosωb (t+ i~β) = cosωbt cosh ~ωbβ − i sinωbt sinh ~ωbβ (D3)

sinωb (t+ i~β) = sinωbt cosh ~ωbβ + i cosωbt sinh ~ωbβ (D4)

which with coth ωb~βR
2 from above can be combined into

cosωbt

(
coth

ωb~βR
2

cosh ~ωbβR − sinh ~ωbβR
)

= cosωbt coth
ωb~βR

2
(D5)

i sinωbt

(
− coth

ωb~βR
2

sinh ~ωbβR + cosh ~ωbβR
)

= −i sinωbt (D6)

Hence

CR(t+ iβR~) = CR(t) = CR(−t) (D7)

For the oscillators in the left bath we consider (∆β = βL − βR)

CL(t+ iβR~) = CL(t− i~∆β + iβL~) = LC(t− i~∆β) = CL(−t+ i~∆β) (D8)

Inserting back into the expression for D this means

p+(βL, βR) =

∫
dtCL(−t+ i∆β~)CR(−t)e i~ εte−εβR

(D9)

Appendix E: Thermal Conductance

a. The partial derivative of D

For p+ one finds

∂βLp+ =

∫
dt∂βL (logCL(t))βL=β CL(t)CR(t)e

i
~ εt (E1)

where

∂βC logCL(t) =
∑
b∈C

1

2mbωb
(1− cosωbt)

1

sinh2 ωb~βC
2

ωb~
2

Changing t to t+ i~β will change CL(t)CR(t)e
i
~ εt to CL(−t)CR(−t)e− i

~ ε(−t)e−εβ , similarly as in Appendix D.
The logarithmic derivative on the other hand changes in the convenient way:

∂βL logCL(t+ i~β;βL = β) =
∑
b∈L

ωb~
4mbωb

(1− cosωbt)
1

sinh2 ωb~β
2

+
∑
b∈L

ωb~
4mbωb

cosωbt(−2)

+
∑
b∈L

ωb~
4mbωb

sinωbt(2i) coth
ωb~β

2
(E2)

The two last terms can be compared to

∂t logCL(t) = ∂t

(∑
b∈L

1

2mbωb

[
−(1− cosωbt) coth

ωb~β
2

+ i sinωbt

])

=
∑
b∈L

1

2mbωb

[
(−ωb sinωbt)ωb coth

ωb~β
2

+ iωb cosωbt

]
(E3)
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Eq. (E2) can therefore be rewritten as

∂βL logCL(t+ i~β;βL = β) = ∂βL logCL(−t;βL = β) + i~∂s logCL(s;βL = β)|s=−t (E4)

We can now change the integral variable from t to −t which gives

∂β(p+)π↓ = −∂β(p−)π↑ − ~2

∫
dt∂t (CL(t))CR(t)e

i
~ εt

∫
dt∂t (CL(t))CR(t)e−

i
~ εt (E5)

The sign is determined as follows: π↑ changes sign when it goes to π↓, but D does not. There is factor i~ in the
definition of π↑ and another one in the second term in ∂βL logCL(t+i~β). Taken together this gives −(i~)(−i~) = −~2.

b. The partial derivative of π↑

This term can be evaluated in practically the same way as the other one. One starts from

∂βπ↓ = −i∂β
(∫
· · · ∂t(CL(t)) · · ·

)
= −i

(∫
· · ·CL(t)∂β(logCL(t))∂t(logCL(t)) · · ·

)
−i
(∫
· · ·CL(t)∂2

tβ(logCL(t)) · · ·
)

(E6)

One now treats ∂β(logCL(t)) in the same way as in (E4). The first term will then give something proportional to
(∂t(logCL(t)))2 and the second something proportional to ∂tt(logCL(t)). Combining we have

CL
(
(∂t(logCL(t)))2 + ∂tt(logCL(t))

)
= ∂ttCL (E7)

This means that we can write

p+∂β(π↓) = −p−∂β(π↑)− ~2

∫
dt∂tt (CL(t))CR(t)e

i
~ εt

∫
dtCL(t)CR(t)e−

i
~ εt (E8)

The sign is determined as follows: π↓ changes sign when it goes to π↑, but the terms with two time derivates do not
change sign. The factors i~ and −i~ are the same as before.

c. Combination

Inserting (E5) and (E8), using that

1

2

∫
dt∂tt (CL(t))CR(t)e

i
~ εt = C̃ ′′(0, 0) (E9)

1

2

∫
dt∂tt (CL(t))CR(t)e

−i
~ εt = B̃′′(0, 0) (E10)

and symmetrizing one has

κ = − (~∆)2

4(p+ + p−)
(p+B̃

′′(0, 0) + 4B̃′(0, 0)C̃ ′(0, 0) + p−C̃
′′(0, 0)) (E11)
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