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ABSTRACT

Asteroseismology provides global stellar parameters such as masses, radii, or surface gravities using mean global seismic parameters
and effective temperature for thousands of low-mass stars (0.8 M� < M < 3 M�). This methodology has been successfully applied to
stars in which acoustic modes excited by turbulent convection are measured. Other methods such as the Flicker technique can also
be used to determine stellar surface gravities, but only works for log g above 2.5 dex. In this work, we present a new metric called
FliPer (Flicker in spectral power density, in opposition to the standard Flicker measurement which is computed in the time domain);
it is able to extend the range for which reliable surface gravities can be obtained (0.1 < log g < 4.6 dex) without performing any
seismic analysis for stars brighter than Kp< 14. FliPer takes into account the average variability of a star measured in the power
density spectrum in a given range of frequencies. However, FliPer values calculated on several ranges of frequency are required to
better characterize a star. Using a large set of asteroseismic targets it is possible to calibrate the behavior of surface gravity with
FliPer through machine learning. This calibration made with a random forest regressor covers a wide range of surface gravities from
main-sequence stars to subgiants and red giants, with very small uncertainties from 0.04 to 0.1 dex. FliPer values can be inserted
in automatic global seismic pipelines to either give an estimation of the stellar surface gravity or to assess the quality of the seismic
results by detecting any outliers in the obtained νmax values. FliPer also constrains the surface gravities of main-sequence dwarfs using
only long-cadence data for which the Nyquist frequency is too low to measure the acoustic-mode properties.
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1. Introduction

The precise knowledge of stellar parameters is crucial for a
very broad range of fields in astrophysics. It helps us under-
stand stellar evolution; this knowledge also provides important
information needed for planetary searches and for studying the
chemical and dynamical evolution of our Galaxy. In the last
decade, the NASA mission Kepler (Borucki et al. 2013) contin-
uously collected very high-quality photometric data for almost
200 000 stars (Mathur et al. 2017) over ∼4 years. These obser-
vations not only revolutionized the search for exoplanets, but
also opened a window into stellar physics. Asteroseismology
proved to be a very powerful tool able to better characterize
the stars in terms of mass, radii, and age (Metcalfe et al. 2010;
Mathur et al. 2012; Silva Aguirre et al. 2017; Serenelli et al.
2017), and also in terms of their rotation and magnetic activity
(McQuillan et al. 2014; García et al. 2014a; Davies et al. 2015;
Ceillier et al. 2017; Kiefer et al. 2017). However, stellar oscilla-
tions have not been detected in all red giant (RG) stars (∼16 000
reported out of the ∼24 000 in the latest Kepler star-properties
catalog Mathur et al. 2017) or in all the main-sequence (MS)

solar-like stars. Around 135 000 MS dwarfs have only been
observed in long cadence (LC) with a sampling time of 29.4 min,
by Kepler preventing any direct asteroseismic analyses because
their acoustic-mode frequencies are well above the Nyquist fre-
quency and can only be seismically studied with short-cadence
(SC) data with a sampling time of 58.85 s (Chaplin et al. 2011b).

To circumvent this, new techniques are being developed
to extract precise surface gravities (log g) directly from the
photometric data. This is the case of the Flicker method, i.e.,
the measurement of the brightness variations on timescales
shorter than 8 h (Bastien et al. 2013, 2016), the variance in the
flux (Hekker et al. 2012), and the granulation (Mathur et al.
2011; Kallinger et al. 2014), and the analysis of the timescales
of convective-driven brightness variations (Kallinger et al.
2016). However all these techniques have limitations. Flicker is
restricted by construction to stars with 4500 < Teff < 7150 K
and 2.5 < log g < 4.6 dex, preventing the study of high-
luminosity red-giant branch (RGB) and asymptotic red-giant
branch (AGB) stars. To obtain the granulation properties it is
necessary to fit a complicated model including different scales of
convection with many free parameters (for more details see the
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discussions in Mathur et al. 2011; Kallinger et al. 2014;
Corsaro et al. 2017). The final method requires that the oscil-
lation signal be temporally resolved, which prevents extending
the analysis to MS dwarfs only observed in LC data. It has also
been shown that instead of using classic seismic methods, it
is possible to apply machine learning algorithms directly on
the data. For instance, Hon et al. (2018a) apply a convolutional
neural network on spectra to classify stars. This method gives
good results for about 99% of their sample of RGs, including
some stars that were not already characterized with seismic
pipelines. A random forest regression model (Breiman 2001)
applied directly on the photometric light curves of variable
stellar sources can also estimate their surface gravity with a
0.42 dex uncertainty (Miller et al. 2014).

We present here a new metric called FliPer (Flicker in power,
in opposition to the standard Flicker measurement which is com-
puted in the time domain), which links the variability of a star to
its surface gravity in a wider range than Flicker, starting at a
log g ∼ 0.1 and similar effective temperatures (4500 < Teff <
7150 K) covering solar-like pulsating stars. We are limited in the
0.1 < log g < 4.6 dex range of surface gravity because of the
lack of information we have on extreme surface gravity solar-like
stars. There is no intrinsic limits of applicability to the FliPer cal-
culation. We decide to combine powerful methods: we include
FliPer values from different lower frequency boundaries into a
supervised machine learning random forest algorithm in order
to get even more accurate results on the surface gravity estima-
tion. This way, we obtain information about the impact of the
lower frequency boundaries and the effective temperature on the
estimation of surface gravity.

2. Observations, data selection, and preparation

In this work, LC data (Gilliland et al. 2010) obtained by NASA’s
Kepler main mission are used. The light curves have been
corrected and the different quarters concatenated following
García et al. (2011). Two high-pass filters have been used with
cutoff frequencies corresponding to 20 and 80 days. To mini-
mize the effects of the gaps in the observations (García et al.
2014b) the missing observations have been interpolated using
inpainting techniques (Pires et al. 2015). The power spectrum
density is then computed for each star (calibrated as a single-
sided spectrum). Data are corrected for apodization following
Chaplin et al. (2011a).

We selected ∼15 000 RG stars among the ones in
Mathur et al. (2017) showing stellar pulsations and characterized
using the A2Z asteroseismic pipeline (Mathur et al. 2010). These
stars have 0.1 < log g < 3.4 dex and 3285 K<Teff < 7411 K.
In addition, 254 MS stars with 4951 K<Teff < 6881 K are used
to extend the study towards a higher surface gravity range,
reaching 4.5 dex. These stars have Kepler magnitudes brighter
than 14 (Kp< 14).

It is important to note that the values of νmax computed
by A2Z do not show any systematic biases at a level of
∼1% when compared to other seismic pipelines as shown by
Pinsonneault et al. (2018).

3. The new metric: FliPer

The complete power spectrum contains contributions from the
stellar variability at all timescales, such as oscillation modes,
surface granulation, and rotation. We define FliPer as

Fp = PSD − Pn, (1)

where psd represents the averaged value of the power spectrum
density from a given frequency (see Sect. 3.1) to the Nyquist
frequency and Pn is the photon noise. This noise can be calcu-
lated by taking the average value of the psd over a range of fre-
quencies close to the Nyquist frequency, but this method leads
to biased estimation of FliPer for stars that oscillate with a fre-
quency close to the Nyquist frequency, as explained in detail
by Bugnet et al. (2017). Then the photon noise is computed
following the empirical expression obtained by Jenkins et al.
(2010).

The value of FliPer is dominated by a combination of the
granulation and the oscillation modes, which both depend on
the evolutionary stage of the star. The more evolved the star,
the larger their oscillation and granulation amplitudes (e.g.,
Mosser et al. 2012; García & Stello 2015), while the frequency
of maximum power νmax decreases (e.g., Bedding 2014).

It is important to note that the signature of strong rotation
(and its harmonics) would bias FliPer. This does not have a
large impact in the case of RGs because a very small fraction
of them show signatures of the rotation in the PSD, as shown
by Ceillier et al. (2017), but needs to be studied in detail for MS
solar-like stars (see Sect. 3.3).

3.1. Computing FliPer from data

The observational frequency range used to compute psd is lim-
ited at high frequency by the Nyquist frequency. For most
stars (those observed in LC) we cannot get information above
∼283 µHz. Therefore, we selected a first set of calibrator stars
including a RG pulsating at a frequency lower than 300 µHz and
for which asteroseismic parameters were available. A second set
of known seismic MS dwarfs was used to study FliPer with LC
data only.

The low-frequency limit of psd is given by the cutoff fre-
quency used in the calibration of the data. For most of the stars, a
20-day high-pass filter light curve is used. The associated cutoff
frequency of the signal is 0.58 µHz. We thus establish a low-
frequency limit for the analysis at 0.7 µHz. As MS stars can
rotate with a period shorter than 20 days, FliPer is computed with
a low-frequency limit at 7 µHz (i.e., ∼1.6 days) avoiding most
of the pollution induced by rotation signals (see Sect. 3.3). For
stars showing rotation harmonics at higher frequencies, the low-
frequency boundary should be taken even higher (e.g., 20 µHz)
to avoid any additional impact on FliPer from the peaks associ-
ated with rotation. Finally, a small number of RGs in our sample
are either high-luminosity RGB or AGB stars (log g < 1.2 dex)
pulsating at frequencies smaller than the 20-day cutoff frequency
of the calibrated data. For these stars, an 80-day filter is used in
the calibration process. It allows us to properly measure the stel-
lar signal down to 0.2 µHz (which is the limit frequency utilized
in this analysis) and to include oscillation-mode power into the
FliPer value.

3.2. First surface gravity estimator

For stars with solar-like oscillations, seismic surface gravities
are directly obtained from the frequency of maximum oscilla-
tion power νmax computed with the A2Z pipeline (Mathur et al.
2010) and effective temperatures from the Kepler DR25 cata-
log (Mathur et al. 2017). Knowing seismic surface gravities with
their uncertainties allows us to study the behavior of FliPer with
the evolutionary state of the stars using only LC light curves even
for MS stars. It is important to note that for MS stars the seismic
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Fig. 1. Seismic log g vs FliPer for ∼15 000 stars observed with Kepler long-cadence observational mode (black dots). The gray, red, and blue
shaded regions correspond to MS and subgiant stars, RG, and high-luminosity RG stars or AGB, respectively. White diamonds represent the
weighted mean value of log g (see Eq. (2)) computed with 30 MS stars and 300 RGs each. The white area delimits the location where 68% of
the stars in our sample are around the mean value. The white boundary represents the equivalent of a 1σ uncertainty (standard deviation) on the
surface gravity obtained from FliPer.

log g has been seismically inferred using SC data although FliPer
has been computed using LC data.

In Fig. 1 the seismic log g is represented as a function of
FliPer (black dots). Three different areas have been identified
depending on the evolutionary state of the star: MS and subgiant
stars (gray shaded region), RG (red), and high-luminosity RG
stars from the branch and from the asymptotic branch (blue).
For each of these star categories FliPer was computed with a
different low-frequency limit of 7 µHz (avoiding in most cases
the region of possible pollution by rotation signatures present
on data filtered with a high-pass filter at 20 µHz), 0.7 µHz (20-
day filter), and 0.2 µHz (80-day filter), respectively. The color
scheme is the same in the captions.

In order to characterize the relationship between FliPer and
log g represented in Fig. 1, we calculate an average value of log g
for each bin of n stars (n = 300 for RG and n = 30 for MS and
subgiant stars) as

log g =

∑n
i=1

1
δlog gi

× log gi∑n
i=1

1
δlog gi

, (2)

where log gi represents the value of surface gravity for each star
and δlog gi the corresponding uncertainty.

These values are represented by the white diamonds, and are
located at the averaged value of FliPer over each bin. To define
the 1σ uncertainties, we compute the area containing 68% of
the stars of the sample (marked by a white contour region in
Fig. 1). Mean values and their corresponding ±1σ uncertainties
are given in Table. A.1. By using these mean values it is possi-
ble to estimate the stellar surface gravity directly from the FliPer
estimator. The uncertainties obtained on log g extend from 0.05 to
0.2 dex, depending on the evolutionary state of the star. Because
of the calculation of the mean values, the boundaries in log g are
reduced to the range 4.35–0.38 dex, as shown in Table A.1.

3.3. Disentangling main-sequence stars from red giants

As defined, FliPer is mostly dominated by a combination of the
power coming from granulation and oscillation modes (when the
latter are below the Nyquist frequency). The limitation in the use
of the calibrated values from Table A.1 to directly estimate sur-
face gravity of stars appears when the spectrum shows a specific
behavior that strongly modifies the mean value of the power den-
sity. For instance, in stars showing large excess of power (e.g.,
due to spikes at thrusters frequency in K2 data or to pollution
from a background binary), the value of FliPer is biased towards
high power density (Bugnet et al. 2017). On the contrary, in stars
with a low signal-to-noise ratio the value of FliPer is biased
towards lower values because most of the spectrum is dominated
by the instrumental noise. As a consequence, FliPer is higher
than expected for fast rotating MS stars due to the rotation peaks
and their harmonics, which can be particularly high for young
MS dwarfs. For these stars, the log g inferred from Table A.1
could be such that it corresponds to a RG star and not to a MS
star, even if we calculate FliPer with the 7 µHz frequency limit.

To avoid this problem and to disentangle any MS stars from
RGs, we need an additional parameter that takes into account the
power due to rotation. The simplest solution is to combine differ-
ent FliPer values, including some at higher frequencies than the
7 µHz limit. For each star in our sample, we then calculate FliPer
with several low-frequency limits (e.g., Fp0.2

from 0.2, Fp0.7
from

0.7, Fp7
from 7, Fp20

from 20, and Fp50
from 50 µHz). For MS

stars with small rotation signatures the value of FliPer is almost
the same for all the low-frequency boundaries (see panel a in
Fig. 2). However, when rotation peaks are present, there is a large
difference between the FliPer parameters, depending on the fre-
quency of the rotational peaks (see Fig. 2). This is the case for the
stars KIC 8298090 and KIC 5357446 represented in panels b and
c. In panel b all the rotational components are below the 0.7 µHz
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Fig. 2. Impact of the lower frequency limit in the FliPer calculation on the estimation of surface gravity for different types of star. Left panels:
power density spectra of four Kepler targets. Colored areas (blue, red, black, orange, and green) represent the different ranges of frequency used
for FliPer calculation (respectively from 0.2, 0.7, 7, 20, and 50 µHz to the Nyquist frequency). The color scheme is the same in the captions. Right
panels: all studied Kepler stars from Fig. 1 are represented in gray in the log g V.S FliPer diagram. Colored stars (blue, red, black, orange, and
green) show the positions in the diagram of the four stars from the left panels with their color corresponding to the low-frequency boundaries used
to compute the FliPer value. Panel a represents a MS star without any visible rotation component, panel b a MS star showing rotation, panel c a
high-frequency rotating MS star, and panel d a RG star.

boundary, meaning that parameters Fp20
and Fp50

were not nec-
essary to classify this star as a MS star. However, in panel c the
rotation peaks reach higher frequencies; in order to estimate the
surface gravity of this star the two new high-frequency parame-
ters are needed. Panel d shows a RG star for comparison. In the
regime of RG stars, all the FliPer values are very similar, except
the lowest ones coming from the calculation with the high-pass
filter that does not include the range of frequency of oscillation
modes. By comparing the values of FliPer computed with differ-
ent low-frequency limits, it is then possible to disentangle MS
stars with a high rotation signature from RG stars. This can be
done in a star-by-star analysis (see Fig. 2). However, it is possi-
ble to automatize this procedure, as is explained in the following
section.

4. Seismic independent surface gravity prediction
from 0.1 to 4.5 dex

The direct estimation of surface gravity from Table A.1 gives
good results only when the evolutionary state of the star is
already known, and when the spectrum does not show a specific
behavior that strongly modifies the mean value of the power den-
sity (e.g., when the PSD is polluted by spikes of a background
binary or a classical pulsator). The reason is that we only use one
value of FliPer computed from one lower frequency limit. Esti-
mating surface gravities of unclassified or complex stars requires
a different use of the FliPer method.

4.1. Using machine learning

As explained above, combining different FliPer values is a pow-
erful way to detect MS stars showing high rotation signal among
RGs. It also means that by using different high-pass filters in the
calculation of FliPer we are sensitive to different physical sig-
natures in the PSD. Combining them in the study thus improves
the characterization of the star, and we intend to use this wisely
to predict surface gravities. To do so, we train a random forest

regressor algorithm (Breiman 2001) on a random subsample rep-
resenting 80% of our set of stars. The random forest method is
based on the aggregation of a large number of decision trees (see
Appendix B for a description of the method) that has already
been proved to be useful in asteroseimology (e.g., Miller et al.
2014). The trees are constructed from a training data set and
internally validated to give a prediction based on the predic-
tor for future observations. The random forest method not only
allows the use of a large number of parameters but also esti-
mates their individual impact on the regression. The parameters
used to estimate surface gravities are Fp0.2

, Fp0.7
, Fp7

, Fp20
, Fp50

,
Teff, and Kp. They represent the values of FliPer calculated from
a low-frequency limit (0.2, 0.7, 7, 20, 50 µHz), the effective tem-
perature, and the Kepler magnitude of the star.

4.2. Building training and test sets of parameters for the
random forest algorithm

We intend to take into account the uncertainties on the parame-
ters during the testing of the algorithm to estimate the intrinsic
bias and/or uncertainties of our methodology. The uncertain-
ties on effective temperature δTeff are taken directly from the
Mathur et al. (2017) catalog. The error on the surface gravity
δlog g comes from the uncertainty on νmax from the seismic anal-
ysis of the stars. We can estimate the uncertainty due to the pho-
ton noise in the spectra (following a chi-squared distribution with
two degrees of freedom) impacting the determination of FliPer
by considering negligible the uncertainty made on the photon
noise. Hence, the uncertainty on FliPer can be explicitly written
as

δFp =

√
δPSD

2
=
δPtot

Nbin
=

√∑
i δP2

i

Nbin
, (3)

where δPi stands for the error made on the power contained in
each bin and Nbin is the total number of bins in the power den-
sity spectrum. The individual δPi cannot be extracted directly
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Fig. 3. Left panel: importance of the different parameters Fp0.2 , Fp0.7 , Fp7 , Fp20 , Fp50 ,Teff, and Kp in the training process. The color scheme is the
same in the captions. Middle panel: histogram of the residuals of the estimated log gRF values from the references log gA2Z. Right panel: histogram
of the mean absolute deviation from the expected value MAD(log gA2Z − log gRF).

because the χ2
2 noise distribution does not have Gaussian errors.

We thus use the central limit theorem and we rebin the spectrum
by a factor of n = 50. The total amount of power in the spectrum
is then expressed as

Ptot =
∑

j

Pn, j, (4)

where Pn, j follows a quasi-normal distribution with 2n degrees
of freedom. This assumes that the signal does not change dra-
matically over this range of 50 bins, which is consistent with the
shape of the spectra in solar-like stars. The uncertainty on the
mean from each n bins is then expressed as

δPn, j = 2 ×
Pn, j

2n
×
√

n, (5)

leading to a global uncertainty on FliPer values of

δFp =

√∑
j

(
2 × P50, j

2n ×
√

n
)2

Nbin
· (6)

Then we include the effect of these errors on the different param-
eters on the testing of the algorithm. To do so, we perform a
Monte Carlo simulation by generating for each star in our test
sample (representing 20% of the total number of stars in our
study) 100 artificial sets of parameters from their correspond-
ing normal distributions. With G0≤i≤100 being 100 random val-
ues following the standard distribution, we calculate for each X
parameter (Fp0.2

, Fp0.7
, Fp7

, Fp20
, Fp50

,Teff, and log g) 100 new
values X0≤i≤100 following Eq. (7) below. However, the Kepler
magnitude of the star remains constant as it has no uncertainties,
and it completes each of the 100 new sets of parameters:

X0≤i≤100 = X + δX × G0≤i≤100. (7)

Each new group of 100 sets of parameters is considered in the
following study as a representation of a hundred stars to test the
algorithm.

4.3. Impacts of parameters on the training

We used 80% of our stars to train the algorithm to estimate the
surface gravity. The remaining 20% was used to test the perfor-
mance of the algorithm by taking into account uncertainties on
the different parameters as explained in Sect. 4.2. The impacts of
the different parameters on the training process are represented
in Fig. 3 A.

A predictable result is that the Fp0.7
parameter largely dom-

inates the training. It comes from the fact that this is the most
suitable parameter to study RG, representing more than 90% of
the total number of stars. Other relevant values of the filtering
appear to be 7 and 0.2 µHz. Indeed, Fp7

plays an important role
in the training because of its ability to distinguish MS stars from
RGs, and the Fp0.2

parameter helps in the prediction of surface
gravity for high-luminosity stars. The other parameters Fp20

and
Fp50

have lower impacts on the training, but still help the learn-
ing for high rotating MS stars. Impacts of the effective temper-
ature and Kp do not exceed a small fraction. We confirm from
Fig. 3 that combining different lower frequency boundaries in
the FliPer calculation makes a great difference for the estimation
of robust surface gravities.

4.4. Results

To evaluate the performance of the algorithm, the estimate of
surface gravity from the test sample is compared to the corre-
sponding A2Z estimation of surface gravity. The mean absolute
deviation (MAD) of the random forest surface gravities from ref-
erence values is reported in Table 1. This estimator of the devi-
ation is chosen to be robust against outliers to avoid any issue
coming from an eventual remaining error in the A2Z estimation
of surface gravity.

The estimation of surface gravity resulting from the machine
learning on the test sample has an averaged deviation of
∼0.046 dex from our reference values (see Table 1). We also
obtain surface gravity deviation and errors from the reference
values for different ranges of surface gravity in Table 1. We con-
clude that for all our stars, the new method gives a very good pre-
cision on surface gravity; the Flicker method in the range of log g
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Table 1. Summary of statistical results on the test set from Fig. 3.

log g range (dex) log gA2Z − log gRF (dex) MAD (dex)

ALL −4.5 × 10−4 0.046
[0−0.5] −0.061 0.067
[0.5−1] −0.007 0.089
[1−1.5] 0.005 0.069
[1.5−2] 0.000 0.057
[2−2.5] −0.008 0.043
[2.5−3] 0.003 0.046
[3−3.5] 0.032 0.041
[3.5−4] 0.060 0.060
[4−4.5] 0.016 0.077

Notes. MAD is the mean absolute deviation.

of 2.5−4.6 dex has typical errors between 0.1 and 0.2 dex. Here,
errors are in the range from ∼0.04 dex for RGs to ∼0.09 dex
for high-luminosity stars (see Fig. 3 right panel). Our estimates
are on average centered around the log g reference values (see
Table 1). There is a small bias for HL and MS stars (see Fig. 3
middle panel) because the estimation of extreme surface gravi-
ties is the hardest for the algorithm, which sometimes becomes
slightly biased by the presence of many RGs in the sample. This
bias, which depends on the evolutionary state of the star, should
be taken into account, but it remains smaller than the uncertain-
ties on the original surface gravity values.

Our algorithms are available on GitHub1 where the func-
tions to calculate FliPer and the random forest algorithm are
provided. We also provide the already trained algorithms for the
estimation of surface gravities. They can be directly applied to
any solar-type star to estimate its surface gravity from 0.1 to
4.6 dex.

5. Discussion and conclusion

In this work we present a new method used to estimate surface
gravity of solar-like stars that extracts information from global
power in their spectra. The sample of ∼15 000 stars is consti-
tuted of MS and subgiant stars, stars on the red-giant branch
(RGB) and clump stars, and also high-luminosity stars on the
asymptotic giant branch (AGB). This way, we study stars with
0.1 < log g < 4.5 dex in which mode oscillations are expected
to arise from surface convection. Power spectra should then
present patterns of granulation power, rotation components, and
oscillation-mode power.

FliPer values are calculated by taking the average power
density normalized by the photon noise of the star from differ-
ent lower frequency limits to the Nyquist frequency. Our first
method consists of calibrating surface gravity of stars from their
FliPer value with a 1σ uncertainty (see Table A.1). We explained
how these values can be used directly to give a first estimate
of surface gravity; however, it works well only on stars that are
already characterized. The evolutionary state has to be known
or the star must have a weak rotational signature in order to
distinguish MS stars from RGs. To give estimations of surface
gravities for any star, we introduce a second method. A random
forest regressor algorithm is trained to estimate surface gravity
on a sample of our stars. We use FliPer values computed with

1 https://github.com/lbugnet/FLIPER

different frequency ranges, spectroscopic effective temperatures,
and seismic surface gravities. This way, stars are better char-
acterized during the process, and no additional information is
needed to provide accurate estimations of surface gravity, even
for highly rotating MS stars. By testing the algorithm on the
rest of our sample, we obtain estimates of surface gravity with
a mean absolute deviation of 0.046 dex from seismic log g. The
training relies on seismic observations of solar-like stars repre-
senting 80% of our sample. However, there is no need for addi-
tional seismic measurements to obtain precise estimations of sur-
face gravities on the test set of stars. The uncertainty on our
results largely improves upon previous non-seismic estimations
of surface gravity. Spectroscopic estimations are known to have
0.1–0.3 dex error bars (Frasca et al. 2016; García Pérez et al.
2016). Recent methods such as Flicker (Bastien et al. 2016) give
estimates with errors higher than 0.1 dex, while the study of the
granulation timescale (Kallinger et al. 2016) is limited to stars
showing a visible oscillation pattern but with better uncertain-
ties, around 0.018 dex. In addition, FliPer is extended to a wider
range of surface gravities, reaching log g as small as 0.1 dex with
a mean absolute deviation of 0.046 dex comparable to the other
RGs.

For MS stars that oscillate at high frequency (above the
Kepler LC Nyquist frequency), FliPer computed from LC data
does not contain mode power, but only granulation-related
power (Corsaro et al. 2017) and rotation signals. However, Fig. 1
clearly shows that FliPer values for MS stars are still correlated
with surface gravity. This is new evidence of the link between
granulation and asteroseismic properties (Mathur et al. 2011;
Kallinger et al. 2014), allowing us to estimate νmax or rather sur-
face gravities on LC data for which high-frequency modes are
not measured. Thus, proper surface gravities can be precisely
inferred for any Kepler LC solar-like target, from MS to high-
luminosity stars, without using direct seismic analysis.

Lots of studies concern the estimation of seismic parameters
of stars with new techniques directly from the properties of the
time series or the power spectrum density (Bugnet et al. 2017;
Hon et al. 2018b; Pande et al. 2018; Bell et al. 2018). We thus
adapt our methodology to estimate νmax instead of the surface
gravity based on the same sample of stars (see Appendix C). The
results are of course very similar to those on the surface gravity,
with uncertainties on νmax about 0.044 dex and a mean distance
to references νmax values (∼1.3×10−3 dex) negligible. Moreover,
FliPer has already been included by Bell et al. (2018) as a valida-
tion procedure to their seismic results and it is also being imple-
mented as one of the parameters to be used in the classification
algorithm that is being developed for the NASA TESS mission
(Ricker et al. 2014) using a random forest classifier (Tkachenko
et al., in prep.).
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Appendix A: Surface gravity as a function of FliPer

Table A.1. Weighted mean value of log g (diamonds in Fig. 1) with their
1σ uncertainties for each bin of 30 (for MS and HL stars) or 300 (for
RGs) stars.

log(FP) log g (dex) −1σ (dex) +1σ (dex)

0.54 4.35 0.06 0.13
0.77 4.23 0.09 0.09
0.91 4.18 0.12 0.06
0.98 4.12 0.15 0.13
1.04 4.07 0.09 0.10
1.08 4.06 0.14 0.10
1.14 4.02 0.13 0.14
1.20 3.95 0.08 0.12
1.25 3.98 0.12 0.08
1.32 3.92 0.13 0.15
1.37 3.86 0.09 0.11
1.48 3.79 0.12 0.11
1.65 3.57 0.03 0.28
2.09 3.33 0.15 0.02
2.33 3.07 0.15 0.13
2.41 3.01 0.14 0.16
2.46 3.01 0.16 0.13
2.51 2.97 0.18 0.15
2.56 2.92 0.19 0.14
2.61 2.92 0.20 0.13
2.65 2.87 0.19 0.12
2.70 2.83 0.16 0.12
2.73 2.78 0.16 0.13
2.77 2.74 0.15 0.12
2.81 2.72 0.14 0.12
2.84 2.68 0.13 0.12
2.87 2.64 0.10 0.13
2.90 2.63 0.09 0.11
2.93 2.61 0.09 0.09
2.95 2.60 0.09 0.08
2.97 2.58 0.08 0.09
2.98 2.58 0.10 0.09
3.00 2.57 0.08 0.08
3.01 2.55 0.08 0.09
3.03 2.54 0.08 0.08
3.05 2.53 0.07 0.10
3.07 2.50 0.05 0.07
3.09 2.48 0.06 0.08
3.11 2.47 0.04 0.05
3.12 2.46 0.04 0.05
3.14 2.44 0.05 0.04
3.17 2.43 0.04 0.04
3.18 2.42 0.05 0.04
3.20 2.42 0.04 0.03
3.22 2.41 0.05 0.04
3.23 2.40 0.05 0.04
3.25 2.39 0.04 0.03
3.26 2.39 0.04 0.03
3.28 2.38 0.05 0.04
3.29 2.37 0.06 0.04
. . . . . . . . . . . .

Table A.1. continued.

log(FP) log g (dex) −1σ (dex) +1σ (dex)

. . . . . . . . . . . .
3.31 2.37 0.05 0.04
3.33 2.35 0.09 0.05
3.35 2.33 0.09 0.05
3.38 2.30 0.09 0.07
3.43 2.24 0.12 0.11
3.50 2.19 0.13 0.11
3.62 2.00 0.15 0.10
3.77 1.86 0.11 0.10
3.91 1.72 0.12 0.11
4.07 1.59 0.13 0.14
4.25 1.46 0.12 0.11
4.48 1.28 0.11 0.13
4.66 1.14 0.07 0.10
4.71 1.10 0.04 0.08
4.77 1.09 0.07 0.06
4.83 1.05 0.03 0.11
4.91 1.02 0.08 0.08
5.01 0.96 0.10 0.10
5.14 0.92 0.15 0.13
5.24 0.85 0.08 0.13
5.35 0.74 0.06 0.11
5.48 0.79 0.10 0.01
5.63 0.65 0.04 0.12
5.76 0.63 0.12 0.09
5.90 0.65 0.08 0.05
6.10 0.56 0.10 0.08
6.51 0.38 0.13 0.16

Appendix B: Random forest regressor

B.1. Supervised machine learning

A random forest algorithm is a supervised machine learning
(ML) method (Kotsiantis 2007). It learns how to predict an out-
put variable (Ypredicted) from some training data (X) for which the
corresponding result (Yknown) is already known. It thus learns a
mapping function f from the input(s) to the output:

Ypredicted = f(X) (B.1)

The algorithm iteratively makes predictions (Ypredicted) on the
training data (X). These predicted values are corrected to achieve
a maximum level of performance by comparing them with the
Yknown values. We use a supervised ML algorithm for our study
because we have input variables X (which are Fp0.2

, Fp0.7
, Fp7

,
Fp20

, Fp50
, Teff, and Kp) and an output variable Yknown (represent-

ing our surface gravity log g).

B.2. Regression trees

The regression tree method is part of the Classification and
Regression Trees (CART) introduced by Breiman (2001). A deci-
sion tree algorithm constructs a binary tree during the training,
with each node representing a split point on a single input variable
(X) (a numerical value for regression algorithms, or a class name
for classification algorithms). The leaf nodes of the tree contain
the output possible predictions (Ypredicted), as shown in Fig B.1.
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Fig. B.1. Schematic representation of a regression decision tree. At each
node (green points) one variable is split at a value such that the cost
function (see Eq (B.2)) is minimized.

The tree is built in such way that the cost function is mini-
mized. Equation (B.2) is the cost function used for the regressor,
with Ntraining being the number of stars in our training sample:

cost =

Ntraining∑
i=1

(Yknown − Ypredicted)2. (B.2)

Once the tree is built on the training sample, it is used to evaluate
Ypredicted for new Xnew data.

B.3. Ensemble method random forest regressor

An ensemble method combines the prediction from multiple ML
algorithms together. It aims to make even more accurate predic-
tions than any individual model. The random forest regressor is
an ensemble method that combines regression trees. It consists
in the following:

– Creating many subsamples of the training sample;
– Training a regression tree on each subsample, keeping a low

number of variables that can be looked at for each split point.
It aims to decrease the correlation between the different trees.
For a regression algorithm, the typical number of features
that can be searched is m =

p
3 with p the number of input (X)

variables;

– Calculating the average prediction from each model for the
new test sample: this averaged value is taken as the estimate
for the output variable (Ypredicted).
In our work we use the “RandomForestRegressor” function

from the “sklearn.ensemble” Python library (Pedregosa et al.
2011) to compute the training on surface gravity.

Appendix C: Automatic estimation of νmax

As a complementary study we also trained our algorithm to esti-
mate the frequency of maximum power νmax. The training is
made following Sect. 4 by using νmax instead of log g as the
predicted parameter Ypredicted. The training input values are com-
puted as in Sect. 4.2 by combining the νmax values estimated by
the A2Z global seismic pipeline for our sample of ∼15 000 stars
along with their uncertainties.

Results are very similar to the estimation of surface grav-
ity, and are given in Table C.1. The estimation of νmax can be
made for any star with solar-like oscillations with 0.1 < log g <
3.4 dex, 3285 < Teff < 7411 K, Kp< 14, and provide a very
good prior for any more complex seismic analysis of the star.
The complete algorithm for the νmax estimation can be found on
the Git repository1.

Table C.1. Summary of statistical results on νmax on the test set from
Fig. 3.

log(νmax) (dex) log (νmaxA2Z) − log (νmaxRF) (dex) MAD (dex)

ALL −0.3 × 10−3 0.044
[−1: − 0.5] −0.123 0.085
[−0.5:0] −0.011 0.081
[0:0.5] −0.0007 0.075
[0.5:1] −0.004 0.053
[1:1.5] −0.019 0.041
[1.5:2] 0.003 0.037
[2:2.5] 0.025 0.046
[2.5:3] −0.041 0.061
[3:3.5] 0.011 0.082

Notes. MAD is the mean absolute deviation.
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