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ABSTRACT

The NASA Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount
of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude more than the number of
stars observed by the Convection, Rotation and planetary Transits satellite (CoRoT), and NASA Kepler and K2 missions. We aim at
automatically classifying the newly observed stars with near real-time algorithms to better guide the subsequent detailed studies. In
this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators. This algorithm relies
on the global amount of power contained in the power spectral density (PSD), also known as the flicker in spectral power density
(FliPer). Because each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different
frequencies can be used to characterise the type of pulsating star. The FliPer classifier (FliPercy,) uses different FliPer parameters
along with the effective temperature as input parameters to feed a ML algorithm in order to automatically classify the pulsating
stars observed by TESS. Using noisy TESS-simulated data from the TESS Asteroseismic Science Consortium (TASC), we classify
pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest
for a further seismic analysis of these stars, which are like our Sun. Similar results are obtained when we trained our classifier and
applied it to 27-day subsets of real Kepler data. FliPercy,s, is part of the large TASC classification pipeline developed by the TESS

Data for Asteroseismology (T’DA) classification working group.
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1. Introduction

Starting with the Convection, Rotation and planetary Transits
satellite (CoRoT), and showing its full potential with Kepler,
asteroseismology is now the most precise way to obtain esti-
mates of masses and radius of field stars (e.g. Lebreton & Goupil
2014), except for eclipsing binaries, for which spectroscopy pre-
vails. Asteroseismic parameters such as the frequency of max-
imum power vp.x and the large frequency separation Av of
the oscillation modes of solar-like pulsators (i.e. with modes
excited by turbulent convection, Goldreich & Keeley 1977) are
obtained from the power density spectrum using global seismic
pipelines (e.g. Mosser & Appourchaux 2009; Huber et al. 2009;
Mathur et al. 2010, etc.). These global seismic parameters are
key constraints for stellar evolution models: using them leads to
age estimates that are much more precise than estimates obtained
with other classical methods (e.g. Lebreton & Goupil 2014).
The Transiting Exoplanet Survey Satellite (TESS), launched
on 18 April 2018, conducts a photometric survey of 90% of the
sky during its two-year nominal operations (Ricker et al. 2014).
It will search for extrasolar planets that mostly orbit M-type
stars. The TESS fields cover 26 sky sectors that each cover four
24° x 24° areas from the galactic pole to nearly the ecliptic
plane. Each field of view remains unchanged for 27 continu-
ous days. The satellite will specifically observe no fewer than
200 000 main-sequence dwarf stars, 30—100 times brighter (with

an apparent magnitude lower than ~10, Stassun et al. 2018) than
those observed by the Kepler satellite. All these conditions are
suitable for seismic detections in solar-like stars, mostly in high-
luminosity main-sequence (MS) and subgiant stars (a detailed
study of the potential asteroseismic yields of the TESS mis-
sion is given by Campante et al. 2016). In addition, more than
400 million stars will be observed in the full-frame images with
a 30 min observational cadence.

The first step for the large asteroseismic survey analysis is
to distinguish solar-like pulsators from all other pulsating stars.
An accurate stellar classification can be computationally expen-
sive, but efforts have been made to classify CoRoT and Kepler
targets (Debosscher et al. 2009; Molnér et al. 2018). For exam-
ple, Mathur et al. (2016a) showed three years after the end of the
Kepler main mission that more than 800 red giants (RGs; cor-
responding to about 3% of the total number of observed RGs)
were still misclassified as cool dwarfs (see also Hon et al. 2019).
However, no public real-time automatic algorithm was devel-
oped to classify stars that wereobserved during these missions.
In view of the huge amount of data to be delivered by TESS, it
would be advantageous to have an automatic method to classify
solar-like stars, and even other pulsator types.

FliPer is a method for estimating surface gravities (from
0.3 to 4.5dex) or vy, of solar-type stars (Bugnet et al. 2018a,
2017). It relies on the use of the global amount of power con-
tained in the power spectrum density (PSD) of a solar-type
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pulsator, which depends on its evolutionary state (Mathur et al.
2011; Kallinger et al. 2016). The method is automatic, and takes
advantage of a random forest ML regressor (Breiman 2001) to
estimate precise surface gravities. The algorithm is trained to
learn how to predict log g from thousands of precise seismic esti-
mates made with the A2Z seismic pipeline (Mathur et al. 2010).
In this way, FliPer gives estimates with a precision that is better
than can be obtained from spectroscopy alone.

Machine-learning methods such as neural networks (e.g.
Baietal. 2005), algorithms based on decision trees (e.g.
Pérez-Ortiz et al. 2017; Veljanoski et al. 2019), or AdaBoost
(e.g. Viquar et al. 2018) already give good results for character-
ising the stars. For instance, Hon et al. (2018) showed that they
were able to distinguish core helium-burning clump stars from
hydrogen shell-burning RG stars using a convolutional neural
network. In our study, we use FliPer parameters to classify solar-
like pulsators from among all pulsating stars: instead of using a
regressor (see Bugnet et al. 2018a) to estimate physical parame-
ters, we use a classifier algorithm trained with the FliPer param-
eters and the effective temperature of each star. After describing
the data in Sect. 2, we explain in Sect. 3 how the FliPercy,ss algo-
rithm uses FliPer parameters (F},;) along with the effective tem-
perature to distinguish between the different pulsator types. Then
we present results from the classification of TESS-simulated
data and of a known sample of Kepler main mission data.

2. Data preparation

In order to test the algorithms, the T’ DA working group simu-
lated datasets of TESS observations' (Lund et al. 2017). We used
10812 simulated stars that can be studied with a stellar signal
alone (designated as ‘“clean” data), with additional white noise
(“noisy” data), or with both additional white noise and instru-
mental systematics (‘“sysnoisy” data). Because systematics can be
corrected (using methods similar to those applied to the K2 data,
Aigrain et al. 2016), we chose to focus our study on the “noisy”
dataset. The sample is described in Table 2. Part of the y-Doradus
sample is constituted of y-Doradus and d-Scuti hybrid stars.

To determine the reliability of our method on real data, we
also used power spectrum densities of a sample of 1442 Kepler
targets observed in the long-cadence observation mode (corre-
sponding to an acquisition every 30min) for which we know
the classification. Table 2 displays the number of stars in the
Kepler sample belonging to each classification (Reed et al. 2018;
McNamara et al. 2012; Li et al. 2019; Balona et al. 2011; Balona
2013; Sachkov 2014; Smalley et al. 2015; Serenelli et al. 2017).
Long-period variability stars are not represented in the Kepler
sample because they can be easily classified by using the effec-
tive temperature alone (the FliPerc), is not required for these
stars). The Kepler light curves (calibrated following Garcia et al.
2011) considered in this work were observed for approximately
four years. This results in a much higher frequency resolution in
the PSD than what is expected for most TESS targets, which are
observed for only 27 days. To test our method on data that are
representative of the first sector of TESS data, we computed the
PSD of each star based on randomly extracted 27-day periods of
time from the full Kepler time series. We also used the effective
temperatures from Mathur et al. (2017) for the sample of Kepler
stars.

! Datasets can be downloaded after registration on the TESS Asteroseis-
mic Science Operations Center (TASOC) website at https://tasoc.
dk/wg®/SimData
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Table 1. Composition of the samples from T’DA simulated dataset and
real Kepler data.

Type of star TESSgimulaed _ Kepler
Solar-like (SL) 3668 802
Subdwarf B (sdBV) 129 8
B-Cephei (8-Cep) 298 5
Slowly pulsating B-type (SPB) 1846 26
o-Scuti 115 358
y-Doradus (y-Dor) 1569 202
Rapidly oscillating Ap (roAp) 287 3
RRLyrae 646 36
Long-period variable (LPV) 965 0
Cepheid 1289 2

3. Fliperciass: a tool for classifying pulsating stars

FliPer (Bugnet et al. 2018a) is a method for estimating the surface
gravity of solar-like pulsating stars based on the measure of the
amount of power in their PSD. For solar-type pulsators, the PSD
is dominated by the power of the convective background, stellar
oscillation modes, and the rotation period signals. All these effects
vary when the star evolves from the MS to the red giant branch
(RGB). FliPer thus gives constraints on the evolutionary stage of
the solar-like pulsator. We define the FliPer metric as
F, =PSD - P,, 1)
where PSD represents the averaged value of the PSD from a
given frequency to the Nyquist frequency, and P, is the photon
noise (see Bugnet et al. 2017, for more information).

3.1. FliPer parameters: Fp;

For each star we calculated different FliPer parameters, Fp;, as
the FliPer metric starting from different lower frequency bound-

aries (i € [0.7, 7,20, 50] «Hz) in the calculation of PSD. The four
different frequency domains used for the F,; calculation are rep-
resented by the coloured area in Fig. 1. By combining these dif-
ferent F, ;, we extracted information from different regions of the
PSD of the star. A previous study (see Bugnet et al. 2017) indi-
cated that the two F, o7 and F', ; parameters are easily dominated
by rotation peaks for MS stars, but are perfectly suitable to take
the power of the modes for high-luminosity giants into account.
The other parameters, F, 29 and Fj, 50, allow precise estimates for
MS stars but they do not take the mode power in high-luminosity
RGs into account. FliPer gives great results when MS stars are dis-
tinguished from RGs by estimating their surface gravity, as dis-
cussed in Bugnet et al. (2018a). By combining the different Fy,;
for all stellar types, we attempted to classify not only solar-like
stars, but all pulsator types.

Each pulsator type has a typical amount of power associ-
ated for a given frequency range in the PSD. Figure 1 shows the
TESS-simulated PSD for six different pulsator types. First, we
observe that each type of star presents a characteristic signature
in the PSD.

By calculating F, o7 (red areas on Fig. 1), it is easy to distin-
guish a solar-like star from a long-period variable (LPV) because
their granulation power differs by several orders of magnitude.
However, it is harder to distinguish a Cepheid from a RRLyrae
using only F, o7 because they both present a PSD background
with the same order of magnitude. With a higher frequency
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Fig. 1. PSD of six different simulated stars belonging to different classes (solar-like, S-Cephei, y-Dor, RRLyrae, LPV, and Cepheid) as described
by the y -axis labels of each panel. Coloured areas (red, grey, orange, and green) represent the different ranges of frequency used for the
Fy; calculation (from 0.7, 7, 20, and 50 uHz, respectively, to the Nyquist frequency). Coloured circles represent the class identifiers used

in Fig. 2.

boundary such as 50 uHz for the F,; calculation, we can dis-
tinguish a Cepheid well from a RRLyrae. However, by simulta-
neously using the different Fy; , it is possible to distinguish the
different types of stellar pulsators.

As previously discussed, the type of variability shown by the
star affects the range of values that it can have for each Fp;.
Figure 2 represents the total sample of TESS-simulated data in
the log(Tef) versus F,; diagram for i = 0.7 uHz (left panel) and
i = 20uHz values (right panel). In addition, the stars shown
in Fig. 1 are represented in the diagrams with stars with the
same colour code as in Fig. 2. We also represent the first planet
star host observed by TESS in the 7-Mensae system with a star
(Huang et al. 2018; Gandolfi et al. 2018). This star is properly
classified as a solar-like pulsator based on its FliPer values, as
shown in Fig. 2.

Using the TESS simulated dataset, we note that each type of
star covers a given region of the Tey versus F,; diagrams. This
means for instance that using only one F,;, solar-like pulsators
are already well separated from Cepheids and RRLyrae. How-
ever, we extended the analysis of Fig. 1 and show with Fig. 2
that using only one F}; does not allow us to clearly distin-
guish between Cepheids and RRLyrae. In addition, we observe
by comparing the two panels of Fig. 2 that the area corre-
sponding to a given type of star changes when a different F,;
is used: each pulsator type evolves differently in the diagram
when we modify the starting frequency of the F, je[0.7,7,20,501 cal-
culation (when we switch from the left to the right panel in
Fig. 2). We therefore expect to be able to separate RRLyrae from
Cepheids by comparing their different Fy; (i € [0.7,7,20,50]
uHz).

3.2. FliPergyass Classification algorithm

In the previous section we explained that stars can be manu-
ally classified according to their F cf0.7,7,20,501- In view of the
amount of TESS data to be released, the classification of each
individual pulsator has to be automatic. A random forest classi-
fier (Breiman 2001) is a supervised machine-learning (ML) algo-
rithm that classifies data from a given set of input parameters
(see Appendix A for more details about the classifier). Random
forest algorithms have been proven to be efficient in distinguish-
ing between MS stars and RGs (Bugnet et al. 2018a) when Fj,;
(i €[0.7,7,20,50] uHz) is used as input parameters.

We classified the pulsators using the “RandomForestClas-
sifier” function from the “sklearn.ensemble” Python library
(Pedregosa et al. 2011). We split the simulated dataset into two
random samples. The training set contains 80% of the total num-
ber of stars, while the test sample contains the remaining 20%
of the stars. The same method was applied to the Kepler set.
The supervised classifier FliPercj,s was trained on the training
dataset to learn how to predict the output classification using Fp;
(i € [0.7,7,20,50] uHz) and T.g as input parameters for each
star. The maximum number of features considered at each split
point is p = +/m because we consider m = 5 input parameters
(see Appendix A for details about the classifier). The previously
trained algorithm, along with the code to use it, can be down-
loaded from GitHub?. Each parameter has a different effect on
the training process, which is represented in Fig. 3 for the TESS-
simulated dataset. Feature importance is the number of times a
feature is used to split a node normalised by the total number of

2 https://github.com/lbugnet/FLIPER_CLASS
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Fig. 2. Left panel: representation of the total sample of simulated TESS stars in the log (T.) vs. log(F}.7) diagram. Each stellar type is associated
with a unique colour and symbol reported at the side legend. In addition, the positions of the stars shown in Fig. 1 are added to the diagram and
are represented with circles. The white star represents the position in the diagram of the TESS target TIC 261136679. Right panel: same as the left

panel, but for F, 5.

Table 2. Confusion matrix of the TESS-simulated data test sample.

Predicted
True

Solar-like

sdBV

B-Cep

SPB

o-Scuti

y-Dor

roAp

RRLyrae

LPV

Cepheid

Notes. Values represent the number of stars, and italic numbers in parentheses represent the percentage accuracy for the class. The
colour code is the same as in Fig. 2 and is normalised for each row by the total number of stars in each true class. Numbers that do
not belong to the diagonal represent classification errors by FliPercygs.

nodes. Uncertainties are calculated by taking the standard devi-
ation of each feature importance from the individual trees. The
effective temperature has the highest weight in classifying the
type of stars. However, all input parameters are useful regarding
the importance of the other F,; parameters. This shows that Fy,;
parameters, coupled with T.g, are suitable parameters for classi-
fying stars. Similar results are obtained when the Kepler training
sample was used.
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4. Classification of TESS-simulated data

We obtained an out-of-bag (OOB) error of the training on TESS-
simulated data of about 0.011. This number gives estimates of
the error rate of the classifier when n, = 200 trees are used by
classifying a sub-sample of stars that were not used in the build-
ing of the last learner. The OOB error can be biased depend-
ing on the hyperparameters of the algorithm (number of trees
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(n), number of features considered at each split point (m), etc.,
Mitchell 2011). This study thus provides another estimate of the
classification accuracy using the TESS test sample to examine
the performance of the trained algorithm.

The ~2000 stars that belong to the TESS test sample were
automatically classified amongst the classes reported in Table 2
by FliPercy, trained on the training sample. The results are
represented in Table 2: the numbers in each row represent for
a given pulsator class the number of stars that were classified
in each output class by FliPercj,ss. The higher the value on the
diagonal (a high value corresponds to a dark-coloured cell), the
more accurate the algorithm for the corresponding class. From
this table, we first conclude that ~98% of stars in the test set are
well characterised by the algorithm.

Then, considering specifically the misclassified stars, we
show that most classification errors concern classical pulsators.
In particular, -Scutis are classified as y-Doradus, which can be
explained by the fact that there are not enough ¢-Scuti stars in
the sample for the algorithm to learn how to recognise this type
of star, and also because the y-Doradus training sample contains
some y-Doradus and §-Scuti hybrid stars. This misclassification
problem should be solved with real TESS data as the training of
the algorithm will be made on a larger set of stars that belong to
each of the categories, including new hybrid categories, which
will allow us to separate similar classes such as ¢-Scuti and
v-Dor well. From studying the spectra, we note that most mis-
classified solar-like and roAp stars show nearly flat power spec-
tra, except at very low frequency. It is already known from
Bugnet et al. (2018a) that FliPer, and thus FliPercj,ss, is not effi-
cient for this type of noise-dominated spectrum because it com-
pares the global amount of power in the power spectrum with the
power at high frequency (representing the photon noise).

5. Classification based on 27-day segments of real
Kepler data

To estimate the accuracy of the method on real data, we trained
(tested) the algorithm on 80% (20%) of the global set of Kepler
data. As the number of some types of classical pulsators (such as
sdBYV, B-Cep, RoAp, and Cepheid stars) observed by the Kepler
main mission is very small (see Table 1), it is too ambitious to
train and test the algorithm to recognise all different types of
stellar pulsators. To avoid misclassification due to the lack of
stars in the Kepler catalogue, we chose to group several pulsators
into categories dependent upon their position in the Hertzsprung-
Russell diagram:

— 0-Scuti, RoAp, and sdBV stars have a low luminosity
(10 Ly < L <100 Ly).

— fB-Cep and SPB stars have a high luminosity (100 Ly < L <
100000 L) and high effective temperatures (4< log;o(Tesr)
<4.5).

— Cepheids and RRLyrae have a high luminosity (30 L, <
L < 100000Ly) and low effective temperature (3.6 <
log,o(Terr) <3.9).

We then considered the five different classes reported in Table 3,
which represents the confusion matrix for stars in the Kepler test
set. Asin Table 2, values in each row represent for a given class the
number of stars classified in each output class by the FliPercjyss.
The accuracy of the classification of the Kepler test sample is
approximately 99%. We point out that all solar-like stars are cor-
rectly classified by the algorithm (which we recall was our main
goal). Most misclassifications concern classical pulsators, with
a low corresponding number of stars in the training set, which
means that the training was probably more difficult for these types
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Fig. 3. Significance of the different input parameters on the training pro-
cess based on the TESS-simulated dataset along with their uncertainties.

of stars. This problem should be solved by training the algorithm
on a much larger set of TESS observations.

5.1. Effect of the effective temperature for the classification

A distribution of input parameter importance very similar to that
shown in Fig. 3 was obtained when we trained on the 0 Kepler
sample. The effective temperature thus seems to play a much
larger role in the classification process than the different FliPer
parameters. We decided to show classification results when the
effective temperature was removed from the input parameters
in order to explain to which extent the effective temperature is
needed for the classification.

When the classifier is tested and trained on Kepler data and
the effective temperature is not used as an input parameter, the
classification only depends on the FliPer parameters. With this
configuration, we obtain a 96% accuracy on the classification of
the test set. Solar-like stars are still very well classified, and most
errors concern the SPB/B-Cephei class (see Table 4). Indeed
Fig. 1 shows that F},; (i € [0.7,7,20, 50] uHz) values for SPB/3-
Cephei are quite similar to those of solar-like stars and of §-Scuti,
RoAp, and sdBV.

With this study, we point out that the FliPer parameters alone
as input to the algorithm are enough to recognise all solar-like
stars. However, adding physical parameters (such as T.g) to the
classifier allows FliPercjyss to perform well for all pulsators, and
also to avoid false detection of solar-like stars, as shown in
Table 3.

5.2. Taking uncertainties on input parameters into account

In order to test the robustness of the classifier regarding uncer-
tainties on the input parameters, we tested the algorithm on the
Kepler dataset with modified input parameter values. Uncertain-
ties on FliPer arise from the photon noise in the spectra (fol-
lowing a chi-squared distribution with two degrees of freedom).
Hence, the uncertainty on the FliPer (see Bugnet et al. 2018a, for
more details) parameters can be explicitly written as

—— P
6F, = \PSD’ = .

bin

@)

We used the central limit theorem and re-binned the spec-
trum by a factor of n = 50. The total amount of power in the
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Table 3.

Confusion matrix of the Kepler data test sample when F,; (i € [0.7,7,20,50] uHz) and T4 are used as input parameters for each star.

Predicted
True S-1 RR/Cep

y-Dor 6/roAp/sdBV SPB/s

Solar-like
RRLyrae/Cepheid
y-Dor
0-Scuti/RoAp/sdBV
SPB/B-Cephei

1

Notes. Values represent the number of stars, and italic numbers in parentheses represent the percentage accuracy for the class. The
colour code is normalised for each row by the total number of stars in each true class. Numbers that do not belong to the diagonal

represent classification errors by FliPercjygs.

Table 4. Confusion matrix of the Kepler data test sample when F,; (i € [0.7,7,20, 50] uHz) alone is used as input parameter for each star.
True Predicted S-1 RR/Cep y-Dor §/roAp/sdBV SPB/8
Solar-like
RRLyrae/Cepheid 1
y-Dor
0-Scuti/RoAp/sdBV 1 1
SPB/B-Cephei ! 1 1 0()

Notes. Values represent the number of stars, and italic numbers in parentheses represent the percentage accuracy for the class. The
colour code is normalised for each row by the total number of stars in each true class. Numbers that do not belong to the diagonal

represent classification errors.

spectrum is
Py = Z P n,js
J

where P, ; follows a quasi-normal distribution with 2n degrees
of freedom. It assumes that the signal does not change dramati-
cally over this range of 50 bins, which is a strong assumption for
classical pulsators. This leads to a global uncertainty on FliPer
values of

Pso,

\/Zj (2 X 20

Nbin @

The effective temperature values for the Kepler set are taken
directly from the Mathur et al. (2017) catalogue. As long as no
spectroscopic follow-up surveys are available, only the effec-
tive temperature coming from the TIC will be available for most
TESS data. Large uncertainties are expected because on average,
6T ~ 170K, according to the first sector data. To be represen-
tative of future TESS data, we decided to use 67T.¢ = 170K
instead of the uncertainties from the Mathur et al. (2017) cata-
logue for the whole Kepler test sample.

We then included the effect of these errors on the differ-
ent parameters during the testing of the algorithm. We per-
formed a Monte Carlo simulation by generating for each star
in our test sample 100 artificial parameter sets from their corre-
sponding normal distributions. We computed for each X param-
eter (Fp,,, Fp,o Fpy» Fpys and Teg) 100 new values Xoci<ioo
following

Xo<i<100 = X + 6X X Go<i<100

3

X \/ﬁ)z.

6F, =

®
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with Go<i<100 being 100 random values following the standard
distribution. Each new group of X; parameters describes a new
star to test the algorithm.

We continued to train the algorithm using the original Kepler
training set. The new test set now contained a hundred times
more stars than the original test set in order to include the effect
of uncertainties on the input parameters. We are able to clas-
sify these new stars with a 99% accuracy. We thus conclude that
there is no effect of uncertainties of the chosen input parameters
for the classification of stars because the classes are well sepa-
rated in the log(T.q) versus log(Fp0.7) (see Fig. 2). In particular,
large uncertainties on T.g that are representative of future TIC
effective temperatures do not perturb the pulsator classification.

6. Conclusion

The study on Kepler data confirms the results obtained by using
TESS-simulated data. As expected, FliPercy,ss is a great method
to recognise solar-like stars based on the shape of their PSD.
Using Fp; (i € [0.7,7,20,50] uHz) along with Tg as input
parameters in a random forest algorithm, we classified more
than 98% of TESS-simulated and almost all the Kepler solar-
like pulsators within the test set amongst other pulsators. We
plan to improve the F,; calculation (especially for stars observed
by TESS with a low signal-to-noise ratio) by empirically cali-
brating the photon noise as a function of the TESS magnitude
of the star (similar to the study by Jenkins et al. 2010, for the
Kepler data) instead of measuring the power at high frequencies,
which can be biased by astrophysical signal. By comparing the
results on noisy data with previous results obtained using clean
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simulated data (Bugnet et al. 2018b), we note that the perfor-
mance of FliPercyg is only slightly diminished by photometric
noise. This is also auspicious for the applicability of the method
to real TESS data. This study will help the massive seismic anal-
ysis of TESS solar-like stars with global seismic pipelines by
providing a list of stars that are predicted to be solar-like stars.

FliPercj,ss gives a high weight to seismology through the use
of the F},; parameters. We chose not to incorporate any Gaia
parameters in the FliPerc,ss to remain as general as possible.
For example, for faint stars such as the Kepler RGs at the deep
end of the Milky Way (Mathur et al. 2016b) or for polluted sys-
tems, Gaia luminosities could have large uncertainties or might
even be biased. Hence, seismic parameters coupled to effective
temperature could be a better choice, as shown by Huber et al.
(2017). Therefore, the FliPerc, as defined here could be com-
plemented by any additional precise astrometric, photometric,
or spectroscopic parameters, which could then be applied to any
observations from Kepler, K2, or TESS missions.

FliPer parameters are integrated as features in the
TASOC/T’DA random forest classifier that will be used to
automatically classify all TESS targets. This enlarged random
forestis itself part of a larger classifier that includes convolutional
neural networks (Hon et al. 2018), clustering, etc. The pipeline
(Tkatchenko et al., in prep.) is currently being built to be efficient
in classifying all types of pulsators, and should demonstrate
a high level of performance even for stars with complicated
pulsation patterns.
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Appendix A: Random forest classifier
A.1. Supervised machine-learning

Random forests are supervised machine-learning (ML) algo-
rithms, which learn how to predict an output variable (Y predicted)
from some training data (X) for which the corresponding result
(Yxnown) 1s already known. They learn a mapping function f from
the input(s) to the output:

Ypredicted = f(X)

The algorithm iteratively makes predictions (Y predictea) ON the
training data (X). They are corrected to achieve a maximum level
of performance by comparing with the Yynown classes. The out-
of-bag (OOB) error evaluates at each step the performance of
the algorithm. We use a surpervised ML algorithm for our study
because we have input variables X (which are Fy,, Fy,, Fpy,
Fp,» and Ter) and an output class Yynown (representing the type
of pulsator).

(A.1)

A.2. Classification trees

The clasification-tree method is part of the Classification and
Regression Trees (CART) introduced by Breiman (2001). A
decision-tree algorithm constructs a binary tree during the train-
ing, with each node representing a split point on an input variable
(X) (numerical value for regression algorithms, or class name for
classification algorithms). The leaf nodes of the tree contain the
possible output classes (Y predicted)-
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The tree is built such that a cost function is minimized at each
node. Equation (A.2) is the cost function used for the classifier,
with Njasses the number of classes and py the number of training
instances with class k at the node of interest,

Nelasses
G= ),
k=1

i X (1 = po). (A.2)

When the tree is built on the training sample, it is used to evaluate
Ypredicted fOr new X, data.

A.3. Ensemble method Random Forest classifier

An ensemble method combines the prediction from multiple ML
algorithms. It aims at making even more accurate predictions
than any individual model. The Random Forest classifier is an
ensemble method that combines classification trees. It consists
of the following steps:

— Creating many subsamples of the training sample.

— Training a classification tree on each subsample, keeping a
low number of features that can be looked at for each split
point. It aims at decreasing the correlation between the differ-
ent trees. For classification algorithms, the maximum num-
ber of features searched for at each split point is usually
m = +/p, where p is the number of input (X) variables.

— Calculating the dominant class from each model for the new
test sample: this predicted class is used as the output variable

(Ypredicted)-
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