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Supplementary materials

Proofs

Proposition 1. A perfect lossy autoencoder of a random variable X with density
p s a diffeomorphism r of R™ minimizing the following expected loss:

LA(r) = Exnp [[le = r(2)|I3 + Xog | 77] (1)

for some A > 0, where Zr being the Jacobian matriz (_Fr);; = g%]
Proof. As a perfect lossy autoencoder minimizes the loss Lo over the set of
lossy models, by introducing a Langrangian multiplier A > 0 it is equivalent to
minimize over the whole universe of R"-diffeomorphisms with a penalization
AMI(X,r(X)) of the loss. Since r is a function, then the joint distributiuon
density p(z,r(z)) is the same as the density p(z) and subsequently the mutual
information can be rewritten as Ex~., [—log p(r(z))].

Since r is a diffeomorphism, by change of variable: p(r(z)) = p(z)|_# ~'r|.
Therefore, the loss to be minimized writes:

LA(r) = Ex~p [[lo = r(2)|13 — Mogp(z)| 7 '] (2)

Since p(z) is constant with respect to r, the minimizers of are the same as
the minimizers of:

LA(r) =Ex~p [[lo = r(2)]]3 + Mog| #7]] 3)

We now aim at describing the analytical solution of equation [I} We formulate
the problem in an Euler-Langrange setting by defining the following multivariate
function:

H(a,rr') = p(x). [|lz — r|[5 + Mog |'|] (4)
Where z,r € R™, ' € R™ x R™ and |r’| denote the determinant of r’.
Using this formulation, finding a minimizer of [I} is equivalent to finding a
minimizer r of [p, H(z,r(x), Fr)de.
Following [?], Volume 1, Chapter IV, eq. 18 and 25, it should satisfy in
particular:

Vi=1,..n (5)
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We have the following derivatives:

TR~ 2p(a). (o) — )
g:z = Ap(z).(r" )i

0 O _, op

J i — /=1y
dxj Ory; 'axj'“ﬁ )ii

— Ap(z). [r’_l.(aijr’)rl_l)

Assuming that Vo € R™ and p(x) # 0, replacing the derivatives in |5 and
dividing it by 2.p(z) we get the following identity:

0 logp
’I“Z‘ _LEl |:Z al’j . T)ji
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The local minima of the loss £ (r) are described by their first order expension
following:

Ji

(7)

Proposition 2. The first order term in the expansion with respect to A of

a manimizer of the loss defined in equatzon is 705‘?"’, and a perfect lossy

autoencoder satisfies:

r(e) = o + 3252 1 o))
as A — 0.

Proof. Let us denote by g(x) the first-order term of the expansion of r with

respect to A:
r(x) =z + A.g(z) + o(N\) (8)

Inducing the following expansions:
FIr=1+ X _Fg+o()) 9)
I lr=1-X_Fg+o(\)

Substituting in equation [7] the expansions [§ and [, we get:

) +o() =3 3 | ZEL [T £a+ o]

~[1=r g5+ o050 (10)
1= 79+o0)] |
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The only 0-order A term comes from the first member of the summation, and
we finally get:

(a:)—l dlogp ~ 10dlogp
Ji n 2 ; a.’L'j e 2 8xZ

(11)

Heuristic

Algorithm 1 Langevin with few restarts: heuristics to avoid oversampling high-
density regions

Input:

— AEs (trained auto-encoders)

C (Trained classifier)

— R =10 (Random walk steps)

— N, =10,000 ( Number of random walks)
— A= 0.1 (Regularization coefficient)

Output:

— X =[] (Synthetic samples)
— Y = [ ](Synthetic labels)

for n =0 to Ns do
Tnap ~N(0,I)
for i =0 to R do
if 7 > 1 then
Draw e, ~ N(0, )
Titlap — AE(‘riAE) + ()‘ * 6")
X=X Ui,z
Y =Y U [C.predict(zi, )]
end if
end for
end for
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Principal Component Analysis
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Fig. 1. Visualization of the training data of the MNIST dataset embedded in the vector
subspace spanned by the first two principal components. After projecting 1000 random
points (z,, ~ N(0,I)) into the subspace, we observe a relatively clear separation between
them (black dots) and the training set (colored dots).
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Fig. 2. Visualization of the training data of the CIFAR-10 dataset embedded in the
vector subspace spanned by the first two principal components. After projecting 1000
random points (z, ~ N (0, I)) into the subspace, there is an overlapping between them
(black dots) and the training set (colored dots).
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Fig. 3. Visualization of the training data of the CIFAR-100 dataset embedded in the
vector subspace spanned by the first two principal components. After projecting 1000
random points (z, ~ A (0,I)) into the subspace, there is an overlapping between them
(black dots) and the training set (colored dots).
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