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Supplementary materials

Proofs

Proposition 1. A perfect lossy autoencoder of a random variable X with density
p is a diffeomorphism r of Rn minimizing the following expected loss:

Lλ(r) = EX∼p
[
||x− r(x)||22 + λ log |J r|

]
(1)

for some λ > 0, where J r being the Jacobian matrix (J r)ij = ∂ri
∂xj

.

Proof. As a perfect lossy autoencoder minimizes the loss L2 over the set of
lossy models, by introducing a Langrangian multiplier λ > 0 it is equivalent to
minimize over the whole universe of Rn-diffeomorphisms with a penalization
λ.MI(X, r(X)) of the loss. Since r is a function, then the joint distributiuon
density p(x, r(x)) is the same as the density p(x) and subsequently the mutual
information can be rewritten as EX∼p [− log p(r(x))].

Since r is a diffeomorphism, by change of variable: p(r(x)) = p(x)|J −1r|.
Therefore, the loss to be minimized writes:

Lλ(r) = EX∼p
[
||x− r(x)||22 − λ log p(x)|J −1r|

]
(2)

Since p(x) is constant with respect to r, the minimizers of 3 are the same as
the minimizers of:

Lλ(r) = EX∼p
[
||x− r(x)||22 + λ log |J r|

]
(3)

We now aim at describing the analytical solution of equation 1. We formulate
the problem in an Euler-Langrange setting by defining the following multivariate
function:

H(x, r, r′) = p(x).
[
||x− r||22 + λ log |r′|

]
(4)

Where x, r ∈ Rn, r′ ∈ Rn × Rn and |r′| denote the determinant of r′.
Using this formulation, finding a minimizer of 1 is equivalent to finding a

minimizer r of
∫
Rn H(x, r(x),J r)dx.

Following [?], Volume 1, Chapter IV, eq. 18 and 25, it should satisfy in
particular:

∂H
∂ri

=
∑
j

∂

∂xj

∂H
∂r′ij

∀i = 1, ...n (5)
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We have the following derivatives:

∂H
∂ri

= 2.p(x).(ri(x)− xi)

∂H
∂r′ij

= λ.p(x).(r′−1)ji

∂

∂xj

∂H
∂r′ij

= λ.
∂p

∂xj
.(r′−1)ji

− λ.p(x).
[
r′−1.(

∂

∂xj
r′)r′−1)

]
ji

(6)

Assuming that ∀x ∈ Rn and p(x) 6= 0, replacing the derivatives in 5 and
dividing it by 2.p(x) we get the following identity:

ri(x) =xi +
λ

2

[∑
j

∂ log p

∂xj
.(J −1r)ji

−
∑
j

[
J −1r.(

∂

∂xj
J r)J −1r)

]
ji

] (7)

The local minima of the loss Lλ(r) are described by their first order expension
following:

Proposition 2. The first order term in the expansion with respect to λ of
a minimizer of the loss defined in equation 1 is 1

2
∂ log p
∂xi

, and a perfect lossy
autoencoder satisfies:

r(x) = x+ λ
2
∂ log p
∂xi

+ o(λ)

as λ→ 0.

Proof. Let us denote by g(x) the first-order term of the expansion of r with
respect to λ:

r(x) = x+ λ.g(x) + o(λ) (8)

Inducing the following expansions:

J r = I + λ.J g + o(λ)

J −1r = I − λ.J g + o(λ)

(9)

Substituting in equation 7 the expansions 8 and 9, we get:

gi(x) + o(1) =
1

2

∑
j

[
∂ log p

∂xj

[
I − λ.J g + o(λ)

]
ji
.

−
[
(I − λ.J g + o(λ))(λ

∂

∂xj
J g)

(I − λ.J g + o(λ))
]
ji

] (10)
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The only 0-order λ term comes from the first member of the summation, and
we finally get:

gi(x) =
1

2

∑
j

∂ log p

∂xj
Iji =

1

2

∂ log p

∂xi
(11)

Heuristic

Algorithm 1 Langevin with few restarts: heuristics to avoid oversampling high-
density regions

Input:

– AEs (trained auto-encoders)
– C (Trained classifier)
– R = 10 (Random walk steps)
– Ns = 10, 000 ( Number of random walks)
– λ = 0.1 (Regularization coefficient)

Output:

– X = [ ] (Synthetic samples)
– Y = [ ](Synthetic labels)

for n = 0 to Ns do
xnAE ∼ N (0, I)
for i = 0 to R do

if i > 1 then
Draw εn ∼ N (0, I)
xi+1AE = AE(xiAE ) + (λ ∗ εn)
X = X ∪ [xiAE ]
Y = Y ∪ [C.predict(xiAE )]

end if
end for

end for
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Principal Component Analysis

Fig. 1. Visualization of the training data of the MNIST dataset embedded in the vector
subspace spanned by the first two principal components. After projecting 1000 random
points (xn ∼ N (0, I)) into the subspace, we observe a relatively clear separation between
them (black dots) and the training set (colored dots).
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Fig. 2. Visualization of the training data of the CIFAR-10 dataset embedded in the
vector subspace spanned by the first two principal components. After projecting 1000
random points (xn ∼ N (0, I)) into the subspace, there is an overlapping between them
(black dots) and the training set (colored dots).
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Fig. 3. Visualization of the training data of the CIFAR-100 dataset embedded in the
vector subspace spanned by the first two principal components. After projecting 1000
random points (xn ∼ N (0, I)) into the subspace, there is an overlapping between them
(black dots) and the training set (colored dots).
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