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Abstract—Generative autoencoders are designed to model a
target distribution with the aim of generating samples and it has
also been shown that specific non-generative autoencoders (i.e.
contractive and denoising autoencoders) can be turned into gen-
erative models using reinjections (i.e. iterative sampling). In this
work, we provide mathematical evidence that any autoencoder
reproducing the input data with a loss of information can sample
from the training distribution using reinjections. More precisely,
we prove that the property of modeling a given distribution and
sampling from it not only applies to contractive and denoising
autoencoders but also to all lossy autoencoders. In accordance
with previous results, we emphasize that the reinjection sampling
procedure in autoencoders improves the quality of the sampling.
We experimentally illustrate the above property by generating
synthetic data with non-generative autoencoders trained on
standard datasets. We show that the learning curve of a classifier
trained with synthetic data is similar to that of a classifier trained
with original data.

Index Terms—autoencoder, iterative sampling, unsupervised
learning, neural networks

I. INTRODUCTION

In machine learning, real-world data may not be accessi-
ble for various reasons (e.g. privacy, lack of data, memory
footprint issues, etc.). In these situations, generative models
can then be trained to model a given training distribution and
be used to synthesize artificial data. To address this problem,
Deep Boltzmann Machines [1], Generative Adversarial Nets
[2] and Variational Autoencoders [3] are among the most
popular deep generative models available in the literature
and actively used. It has also been shown that specific non-
generative autoencoders can be turned into generative models
by simulating a Markov chain [4]. Autoencoders are conve-
nient because they are conceptually simple and straightforward
to train. Indeed, they simply minimize the loss over the input
data and its replication. Furthermore, autoencoders make few
assumptions about the learned distribution (i.e. they do not
force a prior on the latent space) and can sample directly from
the input space [4].

In this context, autoencoders might be divided into two
main classes depending on their final objective. Within the
first class, there is a growing family of autoencoders for
which the final training objective is to generate synthetic
data. State-of-the-art generative autoencoders include Varia-
tional Autoencoders (VAEs) [3] and Adversarial Autoencoders
(AAEs) [5]. The second class comprises all the autoencoders
whose purpose is not necessarily to generate data. This class
includes, among others, contractive and sparse autoencoders
that are trained to learn the manifold on which the data
lies to improve the performance on classification tasks [6] or
to detect anomalies [7]. Other popular models in this class

are Denoising Autoencoders (DAEs) that restore the original
distorted input [8].

There are two popular ways for autoencoders to sample
from the learned distribution: latent variable sampling and iter-
ative sampling. Latent variable sampling (also called ancestral
sampling) [3], [5] produces samples from a probabilistic model
by sampling a prior distribution and involves a single pass over
the model parameters. On the other hand, iterative sampling
consists in injecting an input vector over the entire state space
(i.e. latent or input space) of an autoencoder and in reinjecting
its output multiple times. It has been shown that this sampling
procedure can iteratively improve the quality of the samples
[4], [9]–[11]. Analogous to this iterative sampling, the term
reinjection has originally been used (in 1997) to refer to the
sampling of trained neural networks [12].

In this paper, we present a general theoretical framework for
autoencoders that generalizes past theoretical results limited
to contractive and denoising autoencoders to the whole family
of lossy autoencoders (i.e autoencoders reproducing the input
data with a certain loss of information). Consistent with the
fact that reinjections in autoencoders can be used to generate
synthetic data, we highlight that lossy autoencoders can model
the learned distribution. We use the term reinjection to refer
to the iterative sampling process in autoencoders.

Finally, to assess the sampling quality of reinjections in
lossy autoencoders, we carry out the following experiment.
In a first step, we train an autoencoder and a classifier (named
ground truth classifier) on a labeled dataset. Using a reinjection
procedure, we generate samples that are labeled using the
ground truth classifier. In a second step, we train, with only
synthetic data and synthetic labels, a new classifier with the
same architecture as that of the ground truth classifier. Then,
we compare the accuracy of the synthetically-trained classifier
to that of the ground truth classifier.

Our key contributions can be summarized as follows:
• We provide mathematical evidence that any autoencoder

reproducing the input data with a certain loss of infor-
mation can model the training distribution.

• We provide mathematical evidence that lossy autoen-
coders can generate samples using a reinjection proce-
dure.

• We assess the reinjection procedure using different
datasets: MNIST, CIFAR-10 and CIFAR-100 and show
that classifiers, when learning from synthetic data ob-
tained by the use of the reinjection procedure, show a
similar performance to that of classifiers learning from
original data.



This work is structured as follows. Related works are
presented in Section II. The theoretical framework of autoen-
coders is exposed in Section III. Next, the evaluation and
validation of our experiments are presented in Section IV. We
discuss our results in Section V. Finally, the conclusion and
perspective are drawn in Section VI.

II. RELATED WORK

The reinjection procedure was proposed several years ago in
a pseudo-rehearsal setting for incremental learning problems
[12]–[15]. Instead of storing already seen real data in physical
memory, reinjections were used to generate previously learned
information in neural networks. When sequentially learning a
new class, a model is trained using both new information (real
samples and labels) and synthetic data (synthetic samples and
labels) that are generated by the neural network memory. The
synthetic samples are labeled by a classifier whose input is the
latent representation of the neural network memory. In this
way, the predictive function of the classifier trained on the
learned classes is transferred to the current learning model.
It has then been shown that the application of a reinjection
procedure, in such a context, improves not only the data
generation but also the knowledge transfer performance [12].

Along the last decade, many works have been carried out
about specific classes of non-generative autoencoders that can
automatically model the training distribution and generate syn-
thetic data. These autoencoders are; Contractive Autoencoders
(CAEs) [6], [16]–[18] and Denoising Autoencoders (DAEs)
[4], [9], [19]. These works formalized a sampling procedure
that simulates a Markov chain to sample from the training
distribution. It has been also demonstrated for DAEs that, after
each reinjection, the reconstruction function corresponds, at
first order, to a small displacement towards higher densities in
the training distribution. For DAEs, this reinjection procedure,
is equivalent to a Langevin sampling of the training set [4].

Several recent works [9], [20]–[22] have shown that the
quality of synthetic samples can be improved through reinjec-
tions in generative autoencoders.

We seek to generalize the property of modeling a given
distribution and generate samples from it using reinjections
to a larger family of autoencoders: autoencoders with a loss
of information. We show that lossy autoencoders can sample
from the learned distribution using reinjections and that the
generated examples are more useful than random samples.

III. GENERAL FRAMEWORK FOR AUTOENCODERS

Informally, it is considered that the purpose of autoencoders
is to reproduce as close as possible a random variable of Rn,
which motivates the following definition:

Definition III.1 (Autoencoder). An autoencoder is a function
r ∈M whereM is a subset of the functions Rn → Rn called
the universe of models.

Definition III.2 (Perfect autoencoder). We say that an autoen-
coder r is perfect with respect to a set of modelsM, a proba-
bility density p on Rn and a loss function L : Rn×Rn → R+

if r minimizes overM the expected loss EX∼p [L(X, r(X))].

Example III.1 (Perfect autoencoder in Rn-diffeomorphisms
universe). Let us consider that the universe of models is the
set of Rn-diffeomorphisms and that we define the loss of
reproduction r(x) of x as: L2(x, r(x)) = ||x− r(x)||22.

From the previous definitions, a perfect autoencoder of a
random variable X having a density p is a function of r ∈M
minimizing the expected loss:

L2(r) = EX∼p
[
||X − r(X)||22

]
(1)

Trivially, the identity function is a perfect autoencoder for
M.

Our ultimate goal would be to describe analytically the
perfect autoencoder for general neural networks as the universe
of models. As it seems an unreachable goal, in general
(although this work has been achieved for simple models, e.g.
see [23] with multi-layer perceptron), we will consider a larger
universe of models consisting of the diffeomorphisms of Rn
showing limited mutual information with the input data:

Definition III.3 (Lossy autoencoders). We define the universe
Mτ of models of autoencoders of a random variable X ∼ p
(with ∀x ∈ Rn, p(x) 6= 0) as the set of diffeomorphisms r of
Rn with limited mutual information, i.e. such that:

MI(X, r(X)) < τ (2)

where MI is the mutual information defined by:

MI(X, r(X)) =

∫
Rn

p(x, r(x)). log
p(x, r(x))

p(x).p(r(x))
dx (3)

Although this definition seems to focus on a specific type
of autoencoder, its aim is rather to provide a general universe
for real-world autoencoders that are basically machine learning
models learned on finite data and are likely to lose information
between the input and the output. The limitation of the mutual
information to a value of τ is intended to model the inability
of an empirically trained autoencoder to reproduce perfectly
the input data. Note that τ must be lower than the entropy
H(X) of the random variable X in order the limitation to be
effective (for higher values, the inequality is trivial since r is
a function and MI(X, r(X)) = H(r(X)) ≤ H(X)).

Proposition III.1. A perfect lossy autoencoder of a random
variable X with density p(x) 6= 0 is a diffeomorphism r of
Rn minimizing the following expected loss:

Lλ(r) = EX∼p
[
||x− r(x)||22 + λ log |J r|

]
(4)

for some λ > 0, where |J r| being the determinant of the
Jacobian matrix (J r)ij =

∂ri
∂xj

.

The regularization parameter λ corresponds to a Langrange
multiplier (see suppl. mat.) of the condition MI(X, r(X)) <
τ , so that τ and λ are anti-correlated.

It is worth noticing that when the autoencoder has a
weak constraint on its mutual information (τ → H(X)) the
minimized loss is weakly regularized (λ→ 0).



In the sequel of this section, we provide insights on the
behavior of perfect lossy autoencoders, essentially following
the derivations of [19] for contractive autoencoders.

We conjecture that the behavior of neural network autoen-
coders trained over a dataset sampled from a distribution does
not differ significantly from the behavior of perfect lossy
autoencoders, for some λ that depends on both the data and
the structure of the neural networks.

The local minima of the loss Lλ(r) are described by their
first order expansion:

Proposition III.2. The first order term in the expansion with
respect to λ of a minimizer of the loss defined in equation 4
is 1

2
∂ log p
∂xi

, and a perfect lossy autoencoder satisfies:

ri(x) = xi +
λ

2

∂ log p

∂xi
+ o(λ) as λ→ 0 (5)

Intuitively, this means that when the autoencoder model
is expressive enough, e.g. the mutual information between
the input and the output is high enough, the regularization
coefficient λ is low and the perfect lossy autoencoder tends to
reproduce the input with a small shift towards higher density
of the input data.

A. Sampling Procedure

We consider the Euler-Murayama discretization [24] sim-
ulating the Langevin dynamics through the definition of the
following Markov chain:

xn+1 = xn +
λ

2
∇ log p+

√
λ.εn

where εn ∼ N (0, I)
(6)

If r is a perfect lossy autoencoder with sufficient expres-
siveness (e.g. having a low regularization coefficient, at the
limit λ → 0), by proposition (III.2), the above equation can
be approximated (first order in λ) by:

xn+1 ≈ r(xn) +
√
λ.εn (7)

Equation (7) defines a Markov chain that samples from the
original distribution of density p (see suppl. mat. of [11]).
Moreover, when the original data can be approximated by a
mixture of Gaussians, the fast mixing can be guaranteed (see
[25] for details, in particular Theroem 3.1).

Finally, we obtain the following algorithm that at first order
samples from the original distribution without requiring access
to the original probability distribution. The Figure 1 illustrates
the reinjection procedure of the Algorithm 1 that exploits the
information contained in a perfect lossy autoencoder fitted on
the original data.

Fig. 1. Autoencoder sampling procedure

Algorithm 1 Approximate Langevin sampling with perfect
lossy autoencoders

INPUT:
• AE (Perfect lossy autoencoder)
• Ns (Number of samples to be generated)
• λ (Regularization coefficient)

OUTPUT:
• X: (x1,x2,x3...)

xn ∼ N (0, I)
for n = 0 to Ns do

Draw εn ∼ N (0, I)
xn+1 = AE(xn) +

√
λ.εn

end for

In real world applications, we train a neural network autoen-
coder on the original data where the regularization coefficient
is unknown. Its value depends on the input data and on the
structure of the neural network. One can infer a value of λ by
optimizing it to minimize a measure of divergence between
the original samples and the synthetic ones generated by
the autoencoder. Let us notice that, if the inferred λ̃ differs
from the real λ, Algorithm 2 will generate samples from the
distribution with a density proportional to:

psampled(x) ∝ p(x)λ/λ̃ (8)

IV. METHODOLOGY

Let us assume now that the original data is a balanced
finite mixture of random variables whose densities meet the
requirement of the Theorem 3.1 [25]. By Proposition (III.2),
the Algorithm 1 samples asymptotically the data distribution
as λ → 0 and Ns → ∞ (see suppl. mat. of [11]). Then,
provided with a perfect lossy autoencoder and a universal
classifier indicating the class {0, 1, 2, ..., Nc} of the input, we
define the sampling procedure in the Algorithm 1 that equally
samples from the different modes (i.e. classes).



Algorithm 2 Approximate Langevin sampling of multiclass
labeled data with perfect lossy autoencoders

Input:
• AE (Perfect lossy autoencoder)
• C (Trained classifier)
• Ns (Number of samples)
• λ (Regularization coefficient)

Output:
• X = [ ] (Synthetic samples)
• Y = [ ](Synthetic labels)

xn ∼ N (0, I)
for n = 0 to Ns do

Draw εn ∼ N (0, I)
xn+1 = AE(xn) +

√
λ.εn

X = X ∪ [xn]
Y = Y ∪ [C.predict(xn)]

end for

A. Heuristic

In theory, the Sampling Procedure III-A generates sam-
ples from the data-generating distribution p, mixing between
modes. In practice, the Markov Chain behind the Sampling
Procedure III-A can get “trapped” in a small region of the
input space (e.g. a high-probability region) before transitioning
to another region leading to highly correlated samples of
some modes. The overrepresentation of some modes can be
due to spurious attractors with sharp density peaks [18] or
when several regions are connected only by low-probability
transition [9]. This behavior is referred to as slow mixing [26]
and it has already been observed in previous works [4], [18].
We have also noticed that depending on how the autoencoders
are trained, they will capture some modes better than others.
To cope with this issue, we have implemented an heuristic
(see Algorithm 1 in supplementary materials) to facilitate
the mixing between modes of the training distribution. By
stopping the random walk to select a new starting point, we
can enhance the mixing between high density peaks (e.g. in
non-smooth data distribution cases) and we can prevent the
sampling procedure from oversampling the same region. In-
spired by previous research [12], [25] and by our experimental
results, this heuristic allows us to alleviate the oversampling
of some modes.

In our experiments, fixed values for λ and R were used (see
supplementary materials). Potentially, a careful optimization of
these parameters could lead to improved results, a study that is
out of the scope of this present paper. It is worth noticing that
we start gathering synthetic data after the second jump (see the
condition i > 1 of Algorithm 1 in supplementary materials) in
order to minimize the importance of the original starting point.
Discarding iterations at the beginning of a Markov chain is
known as “burn-in” in the sampling community.

This heuristic can be used in the experimental workflow
which generates synthetic labeled data from trained autoen-
coders and a trained classifier. The workflow described in

Fig. 2. Experimental workflow

Figure 2 allows us to make use of this sampling procedure
to train neural network classifiers.

B. Experimental Workflow

Initially, we need to provide a trained autoencoder, the
regularization coefficient (λ), a trained classifier (i.e. the
ground truth classifier) and the amount of required labeled
samples Ns. Then, we initialize 1 the random seed (e.g.,
isotropic Gaussian noise N (0, I)) for the reinjections of the
heuristic. The trained autoencoder, using the random samples,
performs multiple reinjections to generate synthetic unlabeled
data 2 . These data are labeled using the ground truth classifier
3 . Finally, the resulting labeled synthetic data 4 is used as a

training set for training a new classifier 5 (the classifier under
training). It should be noticed that the choice of the starting
point is arbitrary. In this work, the starting points are sampled
from an isotropic Gaussian distribution N (0, I) because it is
a good prior when no information is available from the real
distribution.

C. Evaluation and Validation

In general, the parameter Ns in Algorithm 2 is equivalent
to the amount of labeled synthetic data required to meet the
accuracy of the trained classifier. To illustrate the quality of
samples generated by the autoencoders through the reinjection
procedure, we show the number of samples that a new classi-
fier requires to meet the accuracy of the ground truth classifier.
The lower the number of required labeled samples to yield a
satisfying accuracy, the better autoencoders generate samples
from the learned distribution.

In order to evaluate and illustrate the general property pre-
sented in the previous section, we have decided to implement
shallow and deep non-generative autoencoders that are trained
on three datasets as case studies: two DAEs and two classic
autoencoders (AEs). We have based our selection on three



criteria. First, we decided to implement the DAEs because of
their property for generating samples from the learned distri-
bution, which has already been exploited in previous research
[4], [11], [19], [27]. Second, we have decided to implement
two classic autoencoders to illustrate their general property
for capturing the learned data distribution, which goes beyond
denoising implementations. Third, we have implemented AEs
and DAEs because they can be sampled from the input space.

In this section, we present four autoencoders under test and
the three datasets on which they are trained. Also, we analyze
the amount of synthetic data as well as the learning speed
when learning from the sampling procedure.

D. Autoencoders under test

The best suited model scenario for resource frugal applica-
tions would be shallow models that allow good sampling; how-
ever, deeper models (with higher-level representations) could
help to mix the high-density peaks of the datasets [18]. Since
shallow models may be less expressive than deeper models,
we expect to see a slow mixing between modes or even a
lower performance when sampling from shallow models. We
can understand this behavior by using our general framework
for autoencoders: the more expressive a model becomes, the
higher the mutual information and, in consequence, the smaller
the regularization coefficient lambda.

As deeper models (deeper representations) can mix faster
between modes than shallow models [18], we study both
in order to illustrate their performance. The autoencoders
under test consist of two shallow autoencoders and two deep
autoencoders for each dataset, as detailed in Table I. All
shallow autoencoders have tanh hidden units whereas deep
autoencoders have relu activation hidden units. We use the tanh
activation function because it improves the expressiveness of
shallow autoencoders as it was shown in [4], [9]. However,
we use the relu activation function in deep models because it
works well in practice and converges faster to valid solutions.
Depending on the datasets, the number of neurons per hidden
layer varies between 32 and 1000 as it is specified in Table I.

Denoising autoencoders have pre-activation Gaussian noise
and salt-and-pepper noise of mean and standard deviation as
defined in Table I. The pre-activation Gaussian noise is applied
to the first layer. Also, the true dataset is corrupted with salt-
and-pepper noise depending on the datasets (e.g. for MNIST,
the pixels are corrupted and replaced with some value between
0 and 1 with probability 0.5). We performed a grid search
over the pre-activation Gaussian noise and the salt-and-pepper
noise because DAEs are not capable of learning if the standard
deviation of the added noise is too large. The result of the
grid search is visualized in Table I. When training the DAEs
on the datasets, we have observed that MNIST allows for a
more significant amount of noise than CIFAR. It turns out that
CIFAR features are more sensitive to random variations.

Training is performed over 200 epochs at most depending
on the models and the datasets as detailed in Table I. In
general, good results are obtained after around 50 epochs for
shallow AEs and 150 epochs for deep AEs. The learning rate

of 0.001 and the Adam optimizer (beta 1=0.9, beta 2=0.999)
are selected to minimize the negative reconstruction log-
likelihood. Finally, the batch size to train the ground truth
classifier, which delivers the labels for synthetic samples, is
set to 512, whereas the number of epochs is 50 for all the
datasets as detailed in Table I.

It should be noticed that both the mean squared error and the
binary cross-entropy loss can be used to train the autoencoders.
In Section III, proposition 4 focuses on the MSE loss because
it allows us to simplify mathematical treatment. However, we
use the binary cross-entropy for our experiments in order to
be consistent with previous results [4], [19], [27].

E. Dataset for Validation

We benchmark the sampling procedure on three standard
datasets that differ in the number of classes and features. First,
we study the raw images from MNIST [28]. Then, we extract
the features from CIFAR-10 [29] and CIFAR-100 [29] using
the resnet50 [30] preprocess input Keras implementation [31].
It is worth noticing that the maximum prediction accuracy
rate after feature extraction of CIFAR-10 and CIFAR-100
datasets is around 92% and 75% respectively. Also, we scale
the extracted features between 0 and 1 using the min-max
normalization.

By using these three different datasets that vary in the num-
ber of features and classes, we expect to evaluate the impact
of the reinjection sampling procedure on the experimental
workflow of Figure 2.

F. Metrics

All of our experiments follow the experimental workflow
in Figure 2. As input for the workflow, we first provide the
label assigner, which is the ground truth classifier, and the
four trained auto-encoders under test, trained using the hyper-
parameters of Table I.

Our primary metric is the accuracy of the ground truth clas-
sifier on the test set from now on, referred to as max accuracy.
To analyze our results, we have plotted the in-training accuracy
of four classifiers that measure the sampling performance of
the autoencoders under test, from now on, we call them AE
classifiers and the accuracy of two classifiers as performance
bound references (the six classifiers have the same architecture
as the ground truth classifier). The upper bound reference
is the accuracy of a classifier under training when learning
from the original data, which should be similar to the max
accuracy of the ground truth classifier when learning from the
original data. Hopefully, a classifier trained with synthetic data
generated using a sufficiently expressive autoencoder will yield
similar performance as to this upper bound reference. When no
information on the training distribution is available, a learning
procedure can be to label random examples coming from a
fixed distribution. Referring to the workflow in Figure 2, this
corresponds to bypassing the autoencoder. Thus, the lower
bound reference is the accuracy of a classifier when learn-
ing from random samples, here obtained using an isotropic



TABLE I
MODEL PARAMETERS AND RESULTS

Models #units per hidden layer activation function epochs noise acc acc: classifiers
MNIST

Random generator (lower bound) - - - - - 0.925
Deep AE [600,400,100,400,600] [relu] 200 - - 0.978
Shallow AE [32] [tanh] 50 0.975
Deep DAE [600,400,100,400,600] [relu] 200 N(0,0.5) 0.978
Shallow DAE [32] [tanh] 100 N(0,0.5) 0.965
Ground truth classifier [500,500] [relu] 20 - 0.98 -

CIFAR-10
Random generator (lower bound) - - - - - 0.892
Deep AE [1000,800,400,800,1000] [relu] 200 - - 0.915
Shallow AE [400] [tanh] 100 0.906
Deep DAE [1000,800,400,800,1000] [relu] 200 N(0,0.05) 0.915
Shallow DAE [400] [tanh] 100 N(0,0.05) 0.911
Ground truth classifier [500,500] [relu] 50 - 0.92 -

CIFAR-100
Random generator (lower bound) - - - - - 0.643
Deep AE [1000,800,400,800,1000] [relu] 200 - - 0.749
Shallow AE [400] [tanh] 200 0.731
Deep DAE [1000,800,400,800,1000] [relu] 200 N(0,0.05) 0.749
Shallow DAE [400] [tanh] 200 N(0,0.05) 0.730
Ground truth
classifier [1000] [relu] 50 - 0.75 -
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Fig. 3. Classifiers accuracy on MNIST : Average performance through epochs.

Gaussian distribution N (0, I) and their labels (e.g., (X,Y) =
([random sample, C.predict(random sample)])).

Since synthetic samples that come from autoencoders or
from random sampling may not belong sharply to a particular
class, we use a logit/distillation method. Logit/distillation is
a common practice to assign a probability of all the classes
instead of a discrete class. The relative probabilities indicate
how a model tends to generalize and helps to transfer the
generalization ability of a trained model to a new model.
The idea was developed for sequential learning problems in
[12], [32] and adopted by the model compression community
[33]–[35]. In this way, we can generate pseudo-labels which
improve class representations. It should be noticed that using
logit/distillation implies training the classifiers to output the
logits. For a matter of simplicity, we output the logits of the
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Fig. 4. Classifiers accuracy on CIFAR-10 : Average performance through
epochs.

classes by using the binary-cross entropy loss to train the
classifiers.

G. Result Analysis

We measure the accuracy over the learning steps, which is
calculated on the real test dataset, to illustrate the sampling
performance. The results of the experiments, using the model
architectures described in Table I, are summarized in three
plots. Figures 3, 4 and 5 show the in-training classifiers accu-
racy curve on the three datasets respectively: MNIST, CIFAR-
10 and CIFAR-100. The learning curve of the classifiers gives
a rapid overview of the performance of the data generators.
The axis Y indicates the accuracy in the Logit scale. The axis
X indicates the training epoch; each one has 40,000 samples.
This value results from the multiplication between the number
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Fig. 5. Classifiers accuracy on CIFAR-100 : Average performance through
epochs.

of reinjections (8), the synthetic data mini-batch (50) and the
learning steps carried out (100). In other words, every 100
learning steps, we measure the accuracy of AE classifiers
(40,000 = 8*50*100). Overall, the accuracy of the classifier
under training serves as a quality measure of the reinjection
procedure. In the following, we analyze the results for the
three datasets.

a) MNIST: In Figure 3, the learning curve of the clas-
sifiers, when learning from deep models, has a similar slope
to the one obtained when learning from the real dataset. As
expected, deeper autoencoders sample better from the real
distribution than shallow autoencoders. Also, the accuracy
of the AE classifiers is between the upper-lower bounds
during the entire training process. Furthermore, the results
show that the autoencoder reinjection procedure is sampling
from the learned distribution while showing a substantial
performance gain compared to the zero reinjection scenario
(random samples and their pseudo labels). No matter which
deep autoencoder the AE classifiers learn from, they show an
accuracy that is above 97% relative to max accuracy after 50
epochs. They roughly require the same amount of samples
which means a similar learning speed.

b) CIFAR-10: In Figure 4, all classifiers have a similar
learning curve. At the end of the training stage, the accuracy
of the AE classifiers outperforms the zero reinjection scenario
(lower bound reference). Since the features of the CIFAR 10
dataset can be modeled by a Gaussian distribution, the gain
of sampling from the autoencoders may appear minor. As a
consequence, a classifier, when learning from random samples,
learns faster than when learning from the autoencoders. That
is, the amount of random samples used is enough to sample
most of the dataset modes. We provide additional analysis
of this behavior in Section V. The AE classifiers require
more learning stages and synthetic data than the upper-bound
classifiers. Also in Figure 4, it is possible to see a poorly
trained shallow autoencoder.

c) CIFAR-100: In Figure 5, the accuracy of the AE
classifiers is between the upper and lower bound reference.

Moreover, the reinjection procedure is sampling from its learn-
ing distribution while it is also delivering a remarkable gain
of performance compared to a zero reinjection scenario. In a
similar fashion to the previous plot, classifiers, when learning
from random samples, learn faster than when learning from
the autoencoders. However, this behavior reaches a maximum
of 69% of accuracy and then it decreases slowly. Meanwhile,
the AE classifiers’ accuracy steadily increases until the AE
classifiers reach the max accuracy. The AE classifiers, which
learn from deep autoencoders, meet the max accuracy 75% at
the end of the training stage. The classifiers, which learn from
shallow autoencoders, reach an accuracy of 73% at the end of
the training stage.

V. DISCUSSION

a) Performance analysis: As previously shown in Table
I, classifiers, when learning from autoencoders, may deliver
a lower accuracy than when learning from the real dataset.
We have systematically observed a loss of accuracy between
0.15% and 2% that depends on the autoencoder under-
sampling and the datasets. These observations are consequent
to the extra training time required to meet the max accuracy.
We explain these results based on two observations. First,
autoencoders may show a slow mixing between modes, which
means that consecutive samples tend to be correlated, resulting
in a reduced representative set of the training distribution. In
these cases, we incur a significant burden because we need to
do further iterations to obtain a balanced set of samples. We
note that mixing between modes can be a critical problem
when sampling autoencoders. Second, trained autoencoders
do not always sample from the real distribution when they
have spurious attractors or are not expressive enough. Spurious
attractors are mostly found in autoencoders due to inadequate
training [18]. There is a probability spread over a broader
region of the input space, as a consequence, the sampling
procedure visits the region that does not belong to the trained
distribution. The noise used to train denoising autoencoders
makes DAEs more resilient to local spurious attractors [19].

b) Optimization: In general, the autoencoder design (e.g.
activation function, the number of hidden units per hidden
layers, optimizer, etc.) determines how the model shapes the
training distribution. In our view, the value of λ and R could
be considered as hyper-parameters to tune the sampling proce-
dure. Furthermore, the differences observed in the reinjection
procedure can be intuitively interpreted in terms of the strength
of the regularization coefficient. In final implementations,
the sampling performance of an autoencoder will be strictly
related to this coefficient.

c) Datasets: The differences observed between the AE
classifiers and the lower bound reference during training can
be explained by observing the training distributions. In CIFAR
datasets, particularly, the resulting extracted features can be
well modeled by a normal distribution. In consequence, during
the first training steps, the use of autoencoders delivers a gain
that is equivalent to the gain obtained when using random
samples generated from an appropriate distribution (e.g. a



normal distribution). However, the gain obtained when using
random samples is limited and it is always outperformed when
using samples from autoencoders. The MNIST dataset follows
a more particular feature structure that cannot be modeled by
a normal distribution (see PCA in suppl. mat.). In this case,
the gain when using the autoencoders is evident.

VI. CONCLUSION

Previous work described a reinjection procedure for specific
autoencoders (namely, contractive and denoising autoencoders
[4], [16], [19]) allowing to sample the data-generating distri-
bution. We provide a generalization of these results to any
autoencoder trained on empirical data (reproducing the input
data with a certain loss of information) and we experimentally
illustrate that the sampling obtained is indeed good enough to
enable its usage in real applications. In particular, we show
that the performance of a neural network classifier trained with
synthetic data generated by classical autoencoders is similar
to that of a classifier trained with original data.

The theoretical framework presented is very general; how-
ever, it has the disadvantage of including a theoretical param-
eter (the regularization coefficient λ) influencing the quality
of the sampling that cannot be straightforwardly estimated.
In future works, we would like to provide guidelines and
ideally a measure that predicts the sampling quality of an
autoencoder given its architecture and its loss. We would also
like to investigate a more diverse set of autoencoders such as
convolutional autoencoders and other possible applications of
this sampling procedure in the context of incremental learning
settings as a solution to overcome catastrophic forgetting.
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[33] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”

Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 535–541, 2006.

[34] J. Ba and R. Caruana, “Do deep nets really need to be deep?” Advances
in neural information processing systems, pp. 2654–2662, 2014.

[35] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

https://keras.io

	Introduction
	Related work
	General framework for autoencoders
	Sampling Procedure

	Methodology
	Heuristic
	Experimental Workflow
	Evaluation and Validation
	Autoencoders under test
	Dataset for Validation
	Metrics
	Result Analysis

	Discussion
	Conclusion
	References

