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a b s t r a c t

The translation terminator Sup35p assembles into self-replicating fibrillar aggregates that are respon-
sible for the [PSIþ] prion state. The Q/N-rich N-terminal domain together with the highly charged
middle-domain (NM domain) drive the assembly of Sup35p into amyloid fibrils in vitro. NM domains are
highly divergent among yeasts. The ability to convert to a prion form is however conserved among Sup35
orthologs. In particular, the Yarrowia lipolytica Sup35p stands out with an exceptionally high prion
conversion rate. In the present work, we show that different Yarrowia lipolytica strains contain one of two
Sup35p orthologs that differ by the number of repeats within their NM domain. The Y. lipolytica Sup35
proteins are able to assemble into amyloid fibrils. Contrary to S. cerevisiae Sup35p, fibrils made of full-
length or NM domains of Y. lipolytica Sup35 proteins did not bind Thioflavin-T, a well-known marker
of amyloid aggregates.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

In yeast, the eukaryotic release factor Sup35p, required for
translation termination [1e3], has prion properties responsible for
the [PSIþ] trait [4e6]. In [PSIþ] cells, soluble Sup35p is dramatically
depleted by its aggregation into self-replicating fibrillar protein
assemblies. As a consequence, defective translation termination
leads to increased nonsense suppression events [4e10].

The domains responsible for the translation termination and
prion propagation functions within Sup35p are well defined [11,12].
The N-terminal domain (spanning amino acid residues 1e123) is
critical for prion propagation, driving the switch from the mono-
meric, functional [psi�] state to the aggregated [PSIþ] prion state.
This domain is unusually rich in glutamine and asparagine residues,
and contains several imperfect repeats of the aggregation-prone
sequence PQGGYQQ-YN [13]. The overexpression of the N-termi-
nal domain in cells expressing full-length Sup35p triggers prion
conversion [14], whereas replacing Sup35p by a variant containing
only the C-terminal domain causes the irreversible loss of [PSIþ]
[15e17]. Various mutations within the N-terminal Q/N-rich region
or the oligopeptide repeats in the prion domain have been
.

previously shown to affect the propagation, strength and stability
of [PSIþ] [18,19]. The highly chargedmiddle domain (M, amino acids
124e253) is dispensable for prion propagation, yet it increases the
stability of the protein, ensures steady [PSIþ] propagation during
cell division and is an interaction site for molecular chaperones
[20]. The translation termination function of Sup35p requires the
highly conserved and compactly folded C-terminal GTPase domain
(amino acids 254e685) [11,21]. We previously showed that point
mutations within the C-terminal domain of Sup35p affect [PSIþ]
propagation [22].

Full-length Sup35p and its N and NM domains spontaneously
assemble into protein fibrils in vitro [9,23e25]. Fibrils formed by
Sup35 N or Sup35NM exhibit the characteristics of amyloids in that
they are unbranched, have increased resistance to proteolysis, bind
Congo red and Thioflavin T, exhibit a 4.7 Å reflection in X-ray fiber
diffraction images and exhibit Fourier Transform Infrared (FT-IR)
spectra dominated by a peak at 1620 cm�1 [9,23,26,27]. We previ-
ously showed that Sup35NM and full-length Sup35p assemblies are
different [25].

Sup35p NM domains primary structure are highly divergent
among yeasts. Nonetheless, the ability of Sup35p to convert to a
prion form appears conserved among distantly related yeasts
[28e31]. In particular, when expressed in S. cerevisiae, the Yarrowia
lipolytica Sup35p stood out with an exceptionally high spontaneous
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prion conversion rate of 10�1 compared to 10�5-10�7 for other yeast
orthologs [31]. Thus, it is of interest to understand how the
behavior of Y. lipolytica Sup35p observed in a heterologous cellular
context translates in vitro in terms of fibrillar assembly properties.

Here, we show that different Y.lipolytica strains contain one of
two Sup35p orthologs that differ by the number of repeats within
their NM domain. The Y. lipolytica Sup35 proteins are able to
assemble into protein fibrils that we show to be of amyloid nature
by FT-IR spectroscopy. Interestingly, contrary to S. cerevisiae
Sup35p, fibrils made of full-length or NM domains of Y. lipolytica
Sup35 proteins did not bind Thioflavin-T, a well-known marker of
amyloid aggregates.

2. Materials and methods

2.1. Nomenclature note

To avoid confusion between orthologs, the Saccharomyces cer-
evisiae Sup35p and Sup35NM proteins are hereafter named
Sc.Sup35p and Sc.Sup35NM throughout the manuscript. The cor-
responding Yarrowia lipolytica orthologs are hereafter named
Yl.Sup35p and Yl.Sup35NM.

2.2. Strains and plasmids

Plasmids pET15b-SUP35 and pET15b-SUP35NM allowing the
overexpression of hexahistidine-tagged Sc.Sup35p and
Sc.Sup35NM in Escherichia coli were previously described [24,25].
The Yl.SUP35-A and Yl.SUP35NM-A coding sequences were obtained
by PCR using genomic DNA from the Yarrowia lipolytica strains
136,463 and PO1d [32,33]. The Yl.SUP35eB and Yl.SUP35NM-B
coding sequences were obtained by PCR using genomic DNA from
the Yarrowia lipolytica strain IAM-4948 (a generous gift from Dr.
Yoshikazu Nakamura, University of Tokyo) [31]. PCR fragments
were cloned at the NdeI-BamHI sites in pET15b, generating the
pET15b-Yl.SUP35-A, pET15b-Yl.SUP35eB, pET15b-Yl.SUP35NM-A
and pET15b-Yl.SUP35NM-B plasmids, allowing the overexpression
of corresponding hexahistidine-tagged proteins. All constructs
were verified by DNA sequencing.

2.3. Assembly of Sup35p into protein fibrils

The Sup35 proteins were overexpressed in Escherichia coli strain
BL21-CodonPlus, purified by affinity chromatography as previously
described [24,25], and stored at �80 �C. At least two independent
preparations of each protein were used throughout the study.
Sup35 proteins were dialyzed for 2 h at 4 �C against the assembly
buffer (50mM Tris.Cl, pH 8.0, 200mM NaCl, 5% glycerol, 5mM b-
mercaptoethanol, 10mM MgCl2, 2mM EGTA) and centrifuged for
5min at 15,000 g and at 4 �C. The supernatant was recovered, the
protein concentration was adjusted to the desired concentration
(typically 10 mM) in assembly buffer and the samples incubated at
6 �C under very gentle agitation (<100 rpm). At regular time in-
tervals, aliquots were removed from the assembly reaction and
mixed with Thioflavin T (10 mM). Fluorescence was recorded with a
Quantamaster QM 2000-4 spectrofluorometer (Photon Technology
International, NJ) using excitation and emission wavelengths set at
440 and 480 nm.

2.4. Electron microscopy

Fibril preparations were imaged in a Jeol 1400 transmission
electron microscope on carbon-coated grids (200 mesh) following
negative staining with 1% uranyl acetate. Images were recorded
with a Gatan Orius CCD camera (Gatan Inc, Pleasanton, CA, USA)
and processed with the ImageJ software (NIH).

2.5. Fourier transform InfraRed spectroscopy (FTIR)

FTIR spectra recording and analysis was performed as described
previously [22]. Fibrils were centrifuged for 20min at 16,000 g and
at 4 �C then extensively washed with D2O. The spectra were
recorded on a JASCO 660 Plus FTIR spectrometer equipped with a
nitrogen-cooled MTC detector. The background consisted of D2O
andwater vapor. A total of 512 interferogramswere collectedwith a
resolution of 2 cm�1. The sample chamber was continuously purged
with CO2-free dry air. All the spectra were baseline-corrected,
smoothed and normalized prior to further data processing. The
amide I (1600-1700 cm�1) band of the spectra was fitted using a
Gaussian species model centered at 1624, 1640, 1652, 1664, and
1678 cm�1 (during the fitting procedure, the peak positions were
free to vary inside an interval width that was limited to 25 cm�1

while peak height was free).

3. Results

3.1. The Yarrowia lipolytica Sup35p A and B orthologs display
different NM domains

We found that different Y. lipolytica strains encode one of two
different SUP35 orthologs. The SUP35 ortholog we cloned from the
136,463 and PO1d strains, which are related to theW29 strain used
for the Y. lipolytica genome sequencing [34], was named Yl.SUP35 A
and encodes a 728 amino acids long Yl.Sup35p A protein (Fig. 1A).
The SUP35 ortholog we cloned from the IAM-4948 strain previously
used by Nakamura and colleagues [31] was named Yl.SUP35 B and
encodes a 742 amino acids long Yl.Sup35p B protein (Fig. 1A). The
differences between the Y. lipolytica and S. cerevisiae Sup35 proteins
were previously described [31] and lie essentially in their NM do-
mains which contain very different repeated motifs (Fig. 1B and
Table 1). Yl.Sup35p A and Yl.Sup35p B differ by the number of each
of the four repeats found in their NM domains (Fig. 1B and Table 1).
Conversely, as expected from the essential nature of the function it
fulfills, the C-terminal eRF3 domains of S. cerevisiae and Y. lipolytica
Sup35p orthologs are highly conserved (Fig. 1B).

3.2. Yarrowia lipolytica Sup35 proteins assemble into thioflavin T-
negative amyloid fibrils

S. cerevisae and Y. lipolytica Sup35 proteins were overexpressed
in E. coli and purified as previously described [24,25]. Next, we
assessed the ability of these purified proteins to spontaneously
assemble into fibrils under physiological pH and salt concentration
conditions [22,24,25]. The assembly kinetics were followed by
Thioflavin-T binding, as described [22,24,25,35]. As expected from
our previous work, Sc.Sup35p formed Thioflavin T-positive fibrils
after 2e3 days of incubation (Fig. 2A and Fig. 2B). No Thioflavin T
fluorescence was detected upon incubation of Yl.Sup35p A and
Yl.Sup35p B proteins under the same conditions for over 30 days,
suggesting these proteins did not assemble into fibrils (Fig. 2A).
Indeed, negative-stained electron microscopy of Y. lipolytica Sup35
proteins revealed only amorphous aggregates, oligomers and pre-
fibrillar species during the first 7 days of incubation (Fig. 2C).
However, longer incubations of 30 days allowed the Yl.Sup35p A
and Yl.Sup35p B proteins to assemble into fibrils (Fig. 2C).
Sc.Sup35p, Yl.Sup5p A and Yl.Sup35p B fibrils displayed very similar
morphologies (Fig. 2B and C). Modifications in the experimental
conditions of the assembly reactions (e.g. temperature, agitation
speed) did not allow a faster assembly of Yl.Sup35p proteins nor did
it result in the formation of Thioflavin T-positive fibrils (data not



Fig. 1. Alignment of Sc.Sup35, Yl.Sup35p A and Yl.Sup35p B proteins. The S. cerevisiae Sc.Sup35p coding sequence (Uniprot P05453) was obtained from the 74-D694 strain. The
Yl.Sup35p A coding sequence was obtained from Y. lipolytica strains 136,463 and PO1d (Uniprot Q6CFC9). The Yl.Sup35p B coding sequence was obtained from Y. lipolytica strain
SS397A (accession number AB039752). (A) Primary structure and domain organization of Sc.Sup35p, Yl.Sup35p A and Yl.Sup35p B proteins (see text for details). (B) Sequence
alignment of Sc.Sup35p, Yl.Sup35p A and Yl.Sup35p B proteins (the alignment was made using T-COFFEE and BOXSHADE).
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Table 1
Consensus sequences and positions of the repeat motifs (R) in S. cerevisiae and Y. lipolytica Sup35 proteins.

protein consensus motif motif residues

Sc.Sup35p PQGGYQQ-YN R1 [41e49] R2 [56e64] R3 [65e74] R4 [75e83] R5 [84e93]
Yl.Sup35p A FVPGQS R1 [34e39] R2 [40e44] R3 [46e51]

QGGYQGGYQGGY R1 [65e76]] R2 [77e94] R3 [99e110] R4 [118e130]
GGALKIGGDKP R1 [169e179] R2 [183e193] R3 [197e207] R4 [213e222]
KESTP R1 [236e240] R2 [245e249] R3 [254e258] R4 [263e267]

Yl.Sup35p B FVPGQS R1 [40e45] R2 [46e51] R3 [52e57]
QGGYQGGYQGGY R1 [70e81] R2 [82e93] R3 [98e109] R4 [116e127] R5 [134e145]
GGALKIGGDKP R1 [180_190] R2 [193e203] R3 [207e217] R4 [221e231] R5 [234e243]
KESTP R1 [260e264] R2 [265e269] R3 [274e278]

Fig. 2. Assembly of full-length Y. lipolytica and S. cerevisiae Sup35p proteins. (A) Full-length Y. lipolytica and S. cerevisiae Sup35 proteins were allowed to assemble at a final
concentration of 10 mM and at 6 �C under very low agitation (<100 rpm). Aliquots were removed at regular time intervals and assayed using the Thioflavin T binding assay described
in the Materials and Methods section. (B, C) Assembly reactions were imaged at the indicated time points using negative-stained electron microscopy (scale bars, 1 mm).
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shown).
Next, we assessed the secondary structure content of fibrillar

Sc.Sup35p, Yl.Sup35p A and Yl.Sup35p B by Fourier transform
infrared (FTIR) spectroscopy (Fig. 3A). The FT-IR spectra showed
very similar amide I bands for all fibrils, with a shoulder at
1624 cm�1 indicative of a cross-b-sheet amyloid structure (Fig. 3A).
Fourier deconvolution and curve fitting of the spectra showed no
significant differences in the secondary structure content of the
three kinds of fibrils, with ~62% of b-sheet structures (Fig. 3B), in
agreement with previous results [22].

The NM domains of Yarrowia lipolytica Sup35p A and B assemble
into thioflavin T-negative fibrils.

We previously showed that the C-terminal domain of Sc.Sup35p
affects its assembly properties into fibrils, and that fibrillar



Fig. 3. FT-IR spectra of fibrillar Y. lipolytica and S. cerevisiae Sup35 proteins. (A) The recorded FT-IR spectra (black lines) and curve fit data (grey lines) are shown for fibrillar
Y. lipolytica and S. cerevisiae Sup35 proteins. The spectra were fitted using a Gaussian species model centered at 1624, 1640, 1652, 1664 and 1678 cm-1. (B) Secondary structure
content of S. cerevisiae and Y. lipolytica Sup35p fibrils derived from the deconvolution of the FTIR data presented in (A).

Fig. 4. Assembly of Y. lipolytica and S. cerevisiae Sup35NM proteins. (A) The indi-
cated purified proteins were allowed to assemble at a final concentration of 10 mMat
6 �C under very low agitation (<100 rpm). Aliquots were removed at regular time in-
tervals and assayed using the Thioflavin T binding assay described in the Materials and
Methods section. (B) Sc.Sup35NM (7 days), Yl.Sup35NM A and Yl.Sup35NM B (30 days)
fibril preparations were imaged using negative-stained electron microscopy (scale
bars, 1 mm).
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Sc.Sup35p and Sc.Sup35NM show significant structural differences
[22,25,36]. We then asked whether the Yl.Sup35NM and B domains
would behave differently than their full-length counterparts. The
NM domains of S. cerevisiae and Y. lipolytica Sup35 proteins were
overexpressed in E. coli, purified, and their ability to assemble into
fibrils assessed by Thioflavin T binding and negative-stain electron
microscopy (Fig. 4). While the Sc.Sup35NM domain readily
assembled into thioflavin T-positive fibrils [25], Yl.Sup35NM A and
Yl.Sup35NM B, like their full-length counterparts, were only able to
assemble into fibrils that remained Thioflavin T-negative after 30
days of incubation (Fig. 4).
4. Discussion

In the present paper, we show that two phylogenetically
divergent Y. lipolytica Sup35p orthologs assemble into amyloid fi-
brils devoid of thioflavin T binding capacity. Y. lipolytica IAM-4948
strain expresses the Yl.Sup35p B ortholog [31], while the W29
reference strain (and its derivatives) expresses the Yl.Sup35p A
ortholog [34] (Fig. 1 and Table 1). Despite the slight differences
observed between these two orthologs, mostly within their NM
domains (Table 1), purified Yl.Sup35p A and Yl.Sup35p B behaved
similarly in our test tube assays (Figs. 2e4).

In a S. cerevisiae reporter system, Y. lipolytica Sup35p showed an
unusually high propensity to convert to the prion form [31]. From
these data, we expected the assembly properties of Yl.Sup35p
in vitro to mirror its behavior in vivo, meaning fast assembly ki-
netics. Contrary to this initial assumption, the assembly of
Yl.Sup35p and Yl.Sup35NM, realized under the same experimental
conditions as those used for Sc.Sup35p and Sc.Sup35NM [22,24],
was very slow and it took up to 30 days to obtain homogenous
fibrillar preparations (Fig. 2A, C and 4). Oligomers and amorphous
or prefibrillar aggregates, which could correspond to intermediates
en route to assembly, were observed before Yl.Sup35p fibrils formed
(Fig. 2C).

Thioflavin T, as well as other fluorescent dyes (e.g. Congo red,
primuline), are often used as markers of amyloids. Yl.Sup35p and
Yl.Sup35NM fibrils did not bind Thioflavin T in our experimental
conditions (Figs. 2A and 4A) despite their amyloid nature, as
demonstrated by FT-IR spectroscopy (Fig. 3). We recently reported
that amyloid fibrils made of dipeptide-repeat proteins do not bind
Thioflavin T albeit their amyloid nature [37]. Similarly, human and
fish islet amyloid polypeptide (IAPP), which differ by 11 non con-
servative substitutions, form thioflavin T-positive and thioflavin T-
negative amyloid fibrils, respectively [38]. We also showed in the
past not only that non-amyloid and amyloid Ure2p yeast prion fi-
brils bind Thioflavin T [39] but also that non fibrillar Ure2p as-
semblies obtained in the presence of Hsp104p bind Thioflavin T to a
higher extent than fibrillar assemblies [40]. Finally, we demon-
strated that Congo red binding to fibrillar assemblies and the
associated yellow-green birefringence in polarized light are not
indicative of an amyloid nature [41]. Thus, cautions need be taken
when using fluorescent dyes to assess the assembly and structural
characteristics of prions and prion-like proteins.

Several hypotheses can be made to account for the marked
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differences we report for the behavior of Yl.Sup35p in vitro
compared to what was previously known from in vivo assays [31].
These could lie in fundamental differences between our experi-
mental assembly conditions and the unique environment of the
cytosol. The unusually high prion conversion rate of Yl.Sup35p
could also result from its specific or stochastic interactions with
partner proteins within the S. cerevisiae reporter cells [31], such as
components of the translation machinery, molecular chaperones or
the cytoskeleton, that are likely to affect its assembly properties.
The importance of the cellular context will need to be determined
by assessing whether Yl.Sup35p can form prions, and at which
frequency, in Yarrowia lipolytica.
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