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We evaluate the tree level four fermion string amplitudes in the TeV string mass scale models
with intersecting D6-branes. The coefficient functions of contact interactions subsuming the con-
tributions of string Regge resonance and winding mode excitations are obtained by subtracting out
the contributions from the string massless and massive momentum modes. Numerical applications
are developed for the Standard Model like solution of Cremades, Ibanez, and Marchesano for a
toroidal orientifold with four intersecting D6-brane stacks. The chirality conserving contact inter-
actions of the quarks and leptons are considered in applications to high energy collider and flavor
changing neutral current phenomenology. The two main free parameters consist of the string and
compactification mass scales, ms and Mc. Useful constraints on these parameters are derived from
predictions for the Bhabha scattering differential cross section and for the observables associated
to the mass shifts of the neutral meson systems K − K̄, B − B̄, D − D̄ and the lepton number
violating three-body leptonic decays of the charged leptons µ and τ .

PACS numbers: 12.10.Dm,11.25.Mj

I. INTRODUCTION

The consideration of Dirichlet branes has led in recent years to remarkable advances in the particle physics model
building. This has made possible the construction of wide classes of Standard Model realizations for type II superstring
theories using branes which extend along the flat spatial dimensions of M4 and wrap around cycles of the internal
space manifold. The existing two approaches employing configurations of multiple type IIb branes located near
orbifold singularities [1–3] and type IIa branes intersecting at angles [4], which we designate henceforth for lack of
better names as setups of branes within branes and intersecting branes, respectively, are well-documented by now,
thanks to the reviews in [5] and [6–8]. The two most characteristic features of these string constructions reside in the
wider freedom in choosing the string theory mass scale and in the occurrence of localized chiral fermions in the string
spectrum.
Because they are amenable to experimental tests based on data from high-energy colliders and limits for rare

processes, the TeV string mass scale models [9, 10] are clearly those with the greatest impact on phenomenology. In
developing the string theory machinery for the physics from extra dimensions, one is especially encouraged by the
applications using orbifold field theories in higher dimensional spacetimes with matter fermions which move in the
bulk or are localized inside thin [11, 12] or thick [13–16] domain wall branes. The theoretical and experimental aspects
of collider studies of physics from extra dimensions are reviewed in [17–20] and [21]. The string theory framework
embodies a higher degree of consistency in comparison to the field theory framework, and is also more economical
thanks to a small parameter space restricted to the fundamental tension and coupling constant string parameters,
m2

s = 1/α′ and gs, along with adjustable parameters associated with the compactification and infrared cutoff mass
scales. Several examples that qualify as TeV scale string models have been constructed within the branes within
branes [22] and intersecting branes [23] approaches.
One important motivation for the interest in TeV scale string models is to gain insight on the hierarchy between the

contributions from the various string excitations. In particular, one wishes to understand how the exchange of string
Regge and winding modes compares with that of the gravitational Kaluza-Klein (KK) modes. This has a practical
importance since, unlike the contributions the latter ones can be well described, in principle, within the familiar field
theory framework.
The early string inspired studies were focused on models using single brane configurations [24, 25]. These have the

characteristic property that the open string Regge resonance modes contribute at the tree (disk surface) level while the
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closed string modes contribute at the one-loop (cylinder surface) level of the string perturbation theory on the world
sheet. (That the exchange of closed string modes can be viewed as a loop effect follows from the world sheet duality
linking the ultraviolet and infrared regimes.) The strong constraints from the N = 4 supersymmetry preserved by the
extremal branes of type II supergravity which saturate the BPS (Bogomolny-Prasad-Sommerfeld) bound, restrict the
low-energy tree level contributions in single brane models to local operators of dimension D ≥ 8. Using the orbifolding
mechanism, say, by placing the D-brane at an orbifold fixed point in order to reduce the number of preserved 4-d
supercharges and produce a chiral open string spectrum, is indeed helpful towards obtaining semirealistic models but
does not significantly modify the structure of string amplitudes. This is often referred as the inheritance property of
orbifolds. Another characteristic of the single D-brane models is the insensitivity of predictions with respect to the
structure of the internal space manifold. Here again the orbifold constraints on the Chan-Paton (CP) gauge factors
greatly improve the description by ensuring that massless poles in channels with exotic quantum numbers cancel out.
Useful applications to neutrino-nucleon elastic scattering at ultra-high energies [26, 27] and to the two-body reactions
at high-energy colliders [28–30] have been developed along these lines in terms of single D-brane models where ms

and the CP factors are treated as free parameters. Also, building up on the initial studies of the single photon+jet
signal in the high energy hadronic collider reaction, p + p → γ + j, recent works discuss the dijet signal [31] in the
reaction, p+ p→ j+ j, along with signals from the various processes at the LHC model [32] which could usefully test
the single D-brane models of TeV string scale..
The multiple brane setups bring a crucial novel feature in this discussion through the presence of localized massless

fermions whose contact interactions are not restricted to dimensions D ≥ 8. This point was first recognized by
Antoniadis et al., [33] in the context of TeV scale string models withDp/D(p+4)-branes. Finite tree level contributions
were indeed found for the dimension D = 6 local operators coupling four fermions of which at least a single pair belongs
to the non-diagonal open string sectors (p, p+4)+(p+4, p). That the open string fermions localized at the intersection
ofD-branes behave in much the same way as the twisted modes of closed strings [34, 35] was realized by several authors
in the context of multiple brane [36–38] and intersecting brane [39–44] models. The operator algebra approach for
the superconformal field theory on the world sheet can be used to calculate the tree level string amplitudes. We also
note as a side remark that the tools developed in recent years for the calculation of scattering amplitudes in gauge
theories [45] and string theories [46] should encourage pursuing applications for general n-point amplitudes at higher
loop orders.
So far, the collider studies of TeV string scale models have been mostly focused on setups with single branes [24, 25]

and branes within branes [33, 47, 48], as already said above. No comparable applications exist for the intersecting
branes models. Regarding the flavor physics, however, several studies have been devoted to both the branes within
branes [22] and the intersecting branes [49, 50] models. In parallel, a wide interest was aroused by the field theory
models in flat extra dimensions with thin branes [51, 52] and thick branes [53–57] or in warped spacetimes [58, 59].
The reader should be warned that the quoted references represent a tiny fraction of the literature on this subject.
In the present work we wish to pursue the discussion of the tree level contact interactions for four localized fermions

in intersecting brane models with the view to confront the predictions against experimental data for colliders and
flavor changing neutral current processes. Although the assumption of a low string mass scale is naturally paired
with that of large extra space dimensions, the requirement that the string theory remains weakly coupled turns out
to restrict the ratio of string to compactification scales, msr = ms/Mc, to a relatively narrow interval of O(1). This
circumstance has motivated us in taking the contributions from world sheet instantons into account. We evaluate
the tree level string amplitudes by integrating the vacuum world sheet correlators over the moduli space of the disk
surface with two pairs of massless fermion vertex operators inserted on the boundary. Since the tools for calculating
open string amplitudes in intersecting brane models [36–39, 41, 43] are well documented by now, we shall present
very briefly the main formulas before proceeding to our main goal. The discussion will rely heavily on our previous
work [44].
We develop concrete calculations for the Standard Model solution obtained by Cremades et al., [60, 61] for a toroidal

orientifold with four D6-branes, using specifically the related family of solutions presented by Kokorelis [62]. This is
conceived as a local model (or premodel) described by a classical configuration of intersecting D6-branes decoupled
from the gravitational interactions and the geometric moduli fields. It is encouraging that other searches of solutions
for orientifolds with intersecting branes also select families of small size, as illustrated by the study focused on the
Z2 ×Z2 orbifold models [63] realizing the supersymmetric Pati-Salam model with a hidden sector, and the statistical
studies of the open string landscape of vacua for the Z2 × Z2 [64, 65] and Z6−II [66] orbifolds realizing the minimal
supersymmetric standard model and the Pati-Salam model with hidden sectors.
The proper identification of physics from extra dimensions presupposes that one can combine the new physics

contributions with those from the Standard Model interactions in a consistent way. This condition is especially
critical for the string theory applications where a satisfactory implementation of the electroweak symmetry breaking
is not yet available. Rather than pursuing a full-fledged calculation, we shall adopt here a phenomenologically minded
approach, similar to that used in [33]. This consists in separating out by hand in the low-energy expansion of string
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amplitudes the contributions from the string massless and momentum modes so as to access the contact interactions
which subsume the contributions from the string Regge and winding excitations.
The exchange of massive modes from extra dimensions can also induce flavor changing interactions among fermions

of different flavors which sit at points finite distances apart along the extra dimentions. These effects come on top of
the flavor mixing effects generated during the electroweak gauge symmetry breaking by the trilinear Yukawa couplings
of fermions to Higgs bosons. We focus here on a restricted set of hadronic and leptonic flavor observables believed to
be among the most sensitive ones. To simplify calculations, we introduce certain assumptions on the flavor structure
of the four fermion amplitudes which lead to an approximate factorization of the direct and indirect flavor changing
effects.
The outline of the present work is as follows. Building up on our previous work [44], we present in Section II

the tree level four fermion string amplitudes for the high energy processes of fermion-antifermion annihilation into
fermion-antifermion pairs and fermion pair scattering, f + f̄ → f ′ + f̄ ′ and f + f ′ → f + f ′. We next consider
an approximate construction of the contact interactions between pairs of quarks and/or leptons produced by the
decoupling of string excitations. Finally, specializing to the Standard Model solution of Cremades et al., [60, 61],
we present numerical results for the chirality conserving contact interactions as a function of the string and com-
pactification mass scales and the parameters describing the separation of intersection points. The corrections to the
Standard Model contributions are studied over the admissible parameter space for the string and compactification
mass scales. For comprehensiveness, we provide in Appendix A a brief review of the intersecting D6-brane models
putting a special emphasis on the topics relating to the parameterization of the branes intersection points and the
Chan-Paton gauge factors which have been lightly addressed so far. The discussion of tree level string amplitudes is
complemented in Appendix B by a review encompassing both the intersecting D6-brane and D3/D7-brane models
aimed at the two-body processes of fermion-antifermion annihilation into pairs of gauge bosons and of gauge boson
scattering, f + f̄ → γ + γ and γ + γ → γ + γ.
In Section III, we discuss the implications from the indirect high energy collider tests with a special focus on the

Bhabha scattering differential cross section. In Section IV, we examine the contributions from the flavor dependent four
fermion contact interactions to the hadronic and leptonic flavor changing observables associated to the mass splitting
of quark-antiquark neutral mesons and the lepton number violating three-body leptonic decays of the charged leptons.
For all the above applications, we compare our predictions with experimental data in order to infer lower bounds on
the string mass scale at a fixed ratio of the string to compactification mass scales.

II. TREE LEVEL STRING AMPLITUDES IN INTERSECTING BRANE MODELS

We calculate the tree level open string amplitudes for four massless fermion modes localized at the intersection of
D6-branes in toroidal orientifold models. After quoting in Subsec. II A the general formula for the string amplitudes
and discussing its low-energy representation as infinite sums of pole terms and the subtraction prescription proposed
to construct the contact interactions, we specialize in Subsec. II B to the Standard Model vacuum solution of Cremades
et al., [60, 61] and present in Subsec. II C numerical predictions for the contact interactions. Several notations are
specified in Appendix A which provides a brief review of intersectingD6-branes models. All calculations are performed
with the space-time metric signature, (−+++), using units where, α′ = 1/m2

s = 1, except on certain occasions where
α′ will be reinstated.

A. Four fermion string amplitudes and contact interactions

The open string amplitudes for four fermions localized at points of the internal manifold can be calculated most
conveniently by means of the superconformal field theory on the world sheet. The basic tools were initially developed
for the closed string orbifolds [34, 35] and refined in several subsequent works (see [68], for instance). The application
to the ‘twisted’ or non-diagonal modes of open string sectors was discussed later for the case of branes within
branes [33, 36–38] and of intersecting branes [39, 41, 44, 49].

1. String amplitudes of localized fermions

The general configuration of quantum numbers for the four fermion processes consist of two incoming conjugate
fermion pairs, fi(k1) + f̄j(k2) + f ′

k(k3) + f̄ ′
l (k4), localized at the four intersection points, Xi, Xj, Xk, Xl ∈ T 6, of

the four D6-brane pairs, (D,A), (A,B) and (B,C), (C,D), intersecting at the angles, ∓θI and ∓θ′I . The tree level
open string amplitudes are obtained from the correlators of vertex operators inserted at points x1, x2, x3, x4 on the
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disk surface boundary by integrating over the disk moduli space of the punctured disk. Using the invariance under
the Möbius group to set, x1 = 0, x2 = x, x3 = 1, x4 = X → ∞, one can write the resulting formula as [44]

A′
f4 ≡ A(V−θ,(D,A),i,k1

(x1)Vθ,(A,B),j,k2
(x2)V−θ′,(B,C),k,k3

(x3)Vθ′,(C,D),l,k4
(x4))/[i(2π)

4δ4(
∑

i

ki)]

= C

(

S1234T1234V1234(s, t) + S1324T1324V1324(u, t) + S1243T1243V1243(s, u)

)

, (II.1)

where we use the notations:

V1234(s, t) =

∫ 1

0

dxx−α′s−1(1 − x)−α′t−1
∏

I

(
2 sinπθI

II(x)
)

1
2

∑

cl

ZI
cl(x),

T1234 = T1234 + T4321, T1234 = Tr(λ1λ2λ3λ4), S1234 = −S1432 = (uT1 γ
0γµu2)(u

T
3 γ

0γµu4),

C = 2πgsα
′ =

g2µ|Lµ|
2m2

sKµ
, |Lµ| =

∏

I

LI
µ, L

I
µ = [(nI

µr
I
1)

2 + (m̃I
µr

I
2)

2]
1
2 ,

s = −(k1 + k2)
2, t = −(k2 + k3)

2, u = −(k1 + k3)
2. (II.2)

The string amplitude A′
f4 in Eq. (II.1) is built from three reduced (partial) amplitudes associated to the cyclically

inequivalent permutations of the insertion points. The second and third terms are obtained from the first term
associated with the reference configuration 1234 by substituting the mode labels 2 ↔ 3 and 3 ↔ 4, and modifying
the interval of the x-integral from x ∈ [0, 1] to x ∈ [1,∞] and x ∈ [−∞, 0]. Each partial amplitude decomposes into
a pair of amplitudes associated to the direct and reverse orientation permutations of the labels, corresponding to the
substitutions, 2 ↔ 4 and x↔ (1−x). The requirement that the world sheet boundary is embedded in the T 2

I on closed
four-polygons with sides along the branes ABCD, can be satisfied, in general, only by a single partial amplitude, the
conflict with the target space embedding forcing the other two to vanish. In our present notational conventions, only
the reference term, T1234V1234, survives, while the other two terms, T1324V1324, T1243V1243, cancel out.
The factorization of the residues of the massless pole terms from exchange of gauge bosons between fermion pairs

into products of three point current vertices determines the normalization factor as, C = 2πgsα
′. Using the familiar

results [69] for the D-branes of type II string theories yields the formula in Eq. (II.1) expressing C in terms of the
gauge coupling constant gµ of the 4-d gauge theory on the D6µ-brane and the volume of the three-cycle |Lµ| that it
wraps. The same formula applies to each factor of the complete gauge group. The orientifold symmetry is taken into
account by the factor Kµ which is assigned the value Kµ = 1 or Kµ = 2 when the brane µ is distinct or coincides
with its mirror image, corresponding to the cases with U(N) and extended SO(2N) or USp(2N) gauge symmetries,
respectively. It is important to realize that the relation between the string theory gauge coupling constants, gµ, and
their field theory counterparts which we denote momentarily by gftµ , also depends on the way in which the analogous
field theory model is constructed. An illustrative discussion of the model dependence is presented in [43]. For the
moment we express this relationship by the proportionality relation, ηgftµ = gµ, involving the real parameter η.

The factors II(x) and ZI
cl =

∑

cl e
SI
cl for each T I

2 in Eq. (II.1) designate the quantum (oscillator) and zero mode
world sheet instanton contributions to the correlator of coordinate twist fields in the complex plane of T 2

I . With
the choice of independent pair of cycles, CA = (x1, x2), CB = (x2, x3), surrounding the insertion points along the
world sheet boundary, x1, · · · , x4, which map to the intersection points labeled i, j, k, l in T 2

I , the summations in
the classical partition function ZI

cl run over the large lattice generated by the one-cycles LI
A and LI

B wrapped by
the D6A/D6B-branes in T I

2 . Going through a full circle around the cycles CA, CB, induces the coordinate fields
monodromies

√
2∆CAX = 2π(1− e2πiθ)vA,

√
2∆CBX = 2π(1− e2πiθ)vB , (II.3)

where

vA = pALA + δAij = (pA + ǫAij)LA + dAij , vB = pBLB + δBjk = (pB + ǫBjk)LB + dBjk, (II.4)

with pA, pB ∈ Z denoting the winding numbers. The 2-d large lattices generated by the brane pairs in the complex
planes of T 2

I are displaced from the origin by the shifts separating the branes intersection points, δA = ǫALA+d
A, δB =

ǫBLB+dB, [ℜ(L⋆
A,Bd

A,B) = 0] where the real parameters ǫA, ǫB and dA, dB stand for the longitudinal and transverse

components of the shift vectors relative to branes A, B. Detailed formulas for the functions I(x) and ZI
cl can be

found in our previous publication [44].

In the special case involving equal interbrane angles, θI = θ
′I , which corresponds to the parallelogram DABC with

D = B and A = C, the string amplitude simplifies to

A′
f4 = CS1234

[

T1234

∫ 1

0

dxx−s−1(1− x)−t−1
∑

cl

ZclI
12,34(x)
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+T4321

∫ 1

0

dxx−t−1(1− x)−s−1
∑

cl

ZclI
43,21(x)

]

(
sinπθI

F (x)F (1 − x)
)

1
2 , (II.5)

where

ZclI
12,34(x) = ϑ[

ǫA12
0
](τA)ϑ[

ǫB23
0
](τB) =

∑

pA, pB∈Z

e−π sinπθI [|(pA+ǫA12)L
I
A+dA

12|2
F (1−x)

F (x)
+|(pB+ǫB23)L

I
B+dB

23|2
F (x)

F (1−x)
],

τA(x) = i sin(πθI)|LI
A|2

F (1 − x)

F (x)
, τB(x) = i sin(πθI)|LI

B|2
F (x)

F (1− x)
, F (x) = F (θ, 1− θ; 1;x), (II.6)

with F (a, b; c;x) denoting the Hypergeometric function and ϑ[ θφ ](τ) the Jacobi Theta function. We have separated

out the direct and reverse permutation terms in the quartic order trace factor, T1234. Verifying the equality of the
factors multiplying T1234 and T4321 provides a useful check on calculations.
The string amplitudes for four fermions localized at the intersections of Dp/D(p+ 4)-branes are derived [33] by a

similar method to that used for intersecting branes. The resulting formulas are detailed in Appendix B along with
the similar results for the two-body processes, f + f̄ → γ + γ and γ + γ → γ + γ.

2. Low-energy representations

The low-energy limit of compactified string theories is described by means of series expansions in powers of
√
s/ms

and (msr)
−1 = Mc

ms
, where

√
s stands for the energy variable and r = 1/Mc for the characteristic compactification

radius parameter. In the flat space limit, r → ∞, both the partition function and fermion localization factors in the

x-integral of Eq. (II.1) can be set to unity,
∑

cl Z
I
cl =

∑

cl e
−SI

cl(x) → 1, II(x) → 1. Ignoring momentarily the gauge
factor, one can express the string amplitude in this limit by the formula

B(−s,−t) ≡ u

st
S(s, t) =

∫ 1

0

dxx−s−1(1− x)−t−1,

[S(s, t) = Γ(1− s)Γ(1 − t)

Γ(1− s− t)
, B(−s,−t) ≡ Γ(−s)Γ(−t)

Γ(−s− t)
=

∞
∑

n=0

(−1)n
(−t− 1) · · · (−t− n)

n!(−s+ n)
] (II.7)

where we have exhibited in the second line the representation of Euler Beta function in terms of an infinite series of
poles from s-channel exchange of the string Regge resonance of masses, M2

n = nm2
s, [n ∈ Z]. At finite r, applying

the familiar method of analytic continuation past poles to the x-integral [69] with the factors Zcl and I(x) included,
produces infinite series of s-channel and t-channel pole terms at the squared masses of the open string momentum and
winding modes. Since for the equal angle case associated with the brane configuration DABC with C = A, B = D,
the argument variable τA(x) → 0 at small x, one must carry beforehand the modular transformation on the Theta
function with modular argument τA(x). At small 1−x, the same applies to the Theta function with modular argument
τB(x).
selecting the regions near x = 0 in the representation of Eq. (II.6) yields the low-energy expansion of the string

amplitude in the open string compactification modes

A′
f4,0 ≃ CS1234

(

T1234
|LB|

∑

pA,pB

∏

I δ
−MI2

A12,B23

AB e2iπpBǫBI
23

−s+∑I M
I2
A12,B23

+
T4321
|LC |

∑

pC ,pD

∏

I δ
−MI2

B32,C43

BC e2iπpDǫBI
32

−t+∑I M
I2
B32,C43

)

, (II.8)

where

M I2
Aij ,Bjk

= sin2(πθI)(pA + ǫAI
ij )2|LI

A|2 +
p2B

|LI
B|2

, ln δAB = 2ψ(1)− ψ(θI)− ψ(1− θI), (II.9)

and ψ(z) is the PolyGamma function. The squared masses, M2
A,B, consist of string momentum modes of the sector

(B,B) along the compact directions wrapped by the brane B, and string winding modes of the sector (A,A) for
strings stretched transversally to the cycle LB. Expressing the normalization factor C = 2πgs in the s- and t-
channel pole terms in terms of the corresponding parameters of branes B and C, respectively, then comparison

with the amplitude of the analogous field theory leads to the identifications,
g2
B

2KB
T1234 = (gftB )2

∑

a(T
a)12(T

a)34 and
g2
C

2KC
= (gftC )2

∑

a(T
a)23(T

a)14, where a labels the Lie algebra generators of the gauge groups on branes B, C. The
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extra factor 2 in the denominator accounts for the field theory normalization convention used for the field theory
gauge coupling constant, corresponding to the gauge current vertex, < Ja

λ(0) >= gAT
aγλ, [Trace(TaTb) =

1
2δab].

The residues δ
−M2

A,B

AB of the poles at s = M2
A,B (and the similar residues of the poles at t = M2

B,C) represent the

squares of the form factors for the three point couplings of fermion pairs localized at the D6A/D6B brane intersections
with the open string states of mass MA,B from the sectors (A,A) and (B,B). As the interbrane angle runs over the
defining interval, θI ∈ [0, 1] in the T 2

I tori, ln δIAB asymptotes to cot(πθI) → +∞ at the interval end points while
reaching the minimum value, ln δIAB ≃ 2.77, at the mid-point θI = 1

2 . The divergence of ln δIAB at θI = 0 and 1
implies then the absence of contributions from the exchange of string compactification modes for parallel branes, as

expected by virtue of the momentum conservation. The form factor, FAB(pB) = δ
−M2

A,B/2

AB , representing the cost for
a fermion particle to absorb the gauge boson momentum pB, arises as a consequence of the D-brane fuzziness caused
by the finite spatial extension of string modes. Its configuration space representation, FAB(y), can be evaluated by
writing the three point coupling of fermion pairs to the momentum modes of the D6B-brane gauge connection field,
AB

µ (x, y), as a Fourier integral over the cycle of radius LB

∫ π|LB|

0

dyAB
µ (x, y)FAB(y − yBi ) ≡

√

2

π|LB|
∑

pB

NpB [A
B(pB)
µ (x)

∫ π|LB|

0

dy cos(
ypB
|LB|

)FAB(y − yBi ) + · · ·]

=

√

2

π|LB|
∑

pB

NpB [A
B(pB)
µ (x)δ

−p2
B/(2|LB |2)

AB e
ipByB

i
|LB| + · · ·], (II.10)

with the resulting formula

FAB(y) ≃
√

2

π ln δAB
e
− y2

2|LB |2 ln δAB , [yBi = 2πǫBi |LB|] (II.11)

where y parameterizes the points on the LB cycle which has been described here by the orbifold S1/Z2 of length

π|LB|; yBi denotes the position of the fermion mode; NpB = 1 for pB 6= 0 and NpB = 1/
√
2 for pB = 0; and the

central dots stand for the sine stationary modes. The above approximate formula for FAB(y) becomes exact in the
large radius limit, |LB| → ∞. The exchange of massive KK gauge bosons contributes to the four fermion amplitude

a sum of pole terms with residue factors, e2πipBǫBjkδ
−p2

B/|LB |2
AB , where ǫBjk denotes the relative distance along the brane

B, as expected by comparison with Eq. (II.9). A similar analysis holds for the momentum modes associated with
the brane C. By contrast, there is no field theory interpretation for the form factors accompanying the coupling of
localized fermions to the open string winding modes.
To illustrate further how the form factor originates within the field theory framework, we consider the toy-like 5-d

U(1) gauge theory with the fifth dimension compactified along the orbifold segment, y ∈ [0, π|LB|], assuming that the
chiral fermions are trapped near the boundaries by some soliton kink solution involving a scalar field coupled to the
fermions. Making use of the Gaussian ansatz for the normalizable zero mode wave function of a fermion localized at
yBi ,

ψ
(0)
i (y) = Ne−(y−yB

i )2/(2σ2π2), [

∫ π|LB|

0

dyψ
(0)⋆
i (y)ψ

(0)
i (y) = 1, N ≃ (

2

π
3
2σ

)
1
2 ] (II.12)

where the normalization integral determining N has been evaluated in the limit LB → ∞, we infer the gauge vertex
coupling

∑

pB

NpBA
B(pB)
µ (x)

∫ π|LB|

0

dyψ
(0)⋆
i (y)ψ

(0)
i (y) cos(

ypB
|LB|

) ≃
∑

pB

NpBe
−

π2σ2p2
B

4|LB |2 cos(
yBi pB
|LB|

). (II.13)

Comparison with the form factor FAB(pB) in Eq. (II.11) allows us to identify the half-width parameter as, σ ≃√
2 ln δAB/π. The above result for the form factor of fermion modes localized at intersecting branes agrees with that

derived [33] for the fermion modes of the non-diagonal sectors of D3/D7-branes, where θI = 1
2 . (The half-width

parameter in [33], which we distinguish here by the suffix label ABL, is related to ours as, σABL = σπ/
√
2. For

later reference, we note that our half-width parameter σ identifies with the parameter denoted σ in [56].) It is of
interest to note that a similar form factor also arises in the string amplitude for emission of a massive graviton mode
G(Mcl) in the two-body reaction, f + f̄ → γ + G(Mcl), with the characteristic dependence on the mass Mcl of the

closed string mode [25], FG(Mcl) = e− ln(2)M2
cl/m

2
s . Both the present string form factor and the one derived above,
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Fop(Mop) = e−M2
op ln(δ)/(2m2

s), should be distinguished from the form factor arising from the quantum fluctuations
of branes [70–72]. Using a quantum field theory treatment of the Nambu-Goto action for domain walls with the
transverse coordinate y promoted to the would-be light Nambu-Goldstone scalar field associated to the spontaneous
breaking of translational invariance, Bando et al., [70] found that the coupling to momentum modes in the effective
4-d action is accompanied by the recoil form factor

Frec(M) ≃ e−∆2M2

, [∆2 =
M2

F

(4π)2τp
=
M2

F g
2
Dp

4m4
s

, M2 =
p2

|LB|2
] (II.14)

where MF denotes the ultraviolet mass cut-off for the field theory on the domain wall whose tension parameter has
been identified above to that of the Dp-brane, τDp = [m2

s/(2πgDp)]
2, with gauge coupling constant gDp. The specific

case of a soliton domain wall is discussed in [71]. From the comparison of the ratio of half-width parameters for the

form factors associated to the brane fuzziness and recoil, ∆2 : σ2 =
M2

F g2
Dp

4m4
s

: ln δ
2m2

s
≃ g2

Dp

2 ln δ : 1, where we have assumed

in the second stage, MF ≃ ms, we conclude that the suppression effect from brane recoil is parametrically weaker
than that from the string finite size. This property was previously discussed in [25].

3. Contact interactions and flavor structure

The four fermion string amplitude receives infrared divergent contributions from the x-integral boundaries which
correspond to the massless s, t channel pole terms from gauge bosons exchange. One way to regularize these harmless
poles is to subtract out the small regions in the x-integral near the end points x = 0, x = 1, while adding up the

corresponding pole terms by hand, as described by the subtraction, A → A− (−Apole
s +A|x=0)− (−Apole

t +A|x=1).
To account for the electroweak symmetry breaking, one can use the same prescription where the added pole terms
correspond to the contributions from exchange of the physical gauge bosons with the observed finite values of the
masses. For the four fermion coupling (f̄HγµfH)(f̄ ′

H′γµf ′
H′) in the electrically charge neutral channel for the γ, Z

gauge bosons, this is illustrated by the substitution, 1
s → 1

s + aH (f)aH′(f ′)
s−m2

Z

, where aH(f) denote the Z boson vertex

couplings. A similar replacement holds for the t−channel poles.
The contact interactions, subsuming the contributions from the massive string Regge and winding excitations, can

be constructed in a similar way by subtracting also the pole terms associated to the string momentum excitations, as
illustrated by the schematic formula

A′
contact = A′ −A′

s,KK −A′
t,KK . (II.15)

The same subtraction procedure was previously used to define [33] the contact interactions in models with Dp/D(p+
4)-branes. For consistency, we remove the s−channel terms only for the configurations of intersection points with
i = j or ǫAij = 0, and the t−channel terms only for those with k = l or ǫBjk = 0. No subtraction of momentum

modes is needed in the cases, i 6= j 6= k or ǫAij 6= 0, ǫBjk 6= 0, where the thresholds for the momentum modes are

separated by a finite gap corresponding to the mass terms, ǫ2A|LA|2. One motivation for excluding the KK towers
from the contact interactions is simply that it is always possible to include separately their contributions through the
familiar field theory treatment, suitably generalized by the inclusion of form factors. In the flat space limit, LB → ∞,

with the brane form factors set to unity, δ−M2
A,B → 1, the contact interactions from KK modes are described by the

approximate formula

LEFF =
g2B
2m2

s

S1234T1234
∑

p∈Z

δ−p2/|LB|2

(p2/|LB|2 − s)
≃ g2B

2m2
s

Sn(ms|LB|)n
(n− 2)

S1234T1234, (II.16)

where Sn = 2πn/2

Γ(n/2) with n = D − 4 denoting the number of real dimensions of the wrapped cycle.

In the kinematic regime where mass parameters and energies are negligible in comparison to ms, the four fermion
local couplings are dominated by the chirality conserving couplings of dimension D = 6. The corresponding terms in
the Standard Model effective Lagrangian are represented in the left and right chirality basis of fermion field operators
by the general structure

LEFF =
∑

f,f ′

[GLL
ff ′(f̄LγµfL)(f̄

′
Lγ

µf ′
L) +GLR

ff ′(f̄LγµfL)(f̄
′
Rγ

µf ′
R)

+GRL
ff ′(f̄RγµfR)(f̄

′
Lγ

µf ′
L) +GRR

ff ′(f̄RγµfR)(f̄
′
Rγ

µf ′
R)], (II.17)
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where GHH′

ff ′ = ηHH′
4π

2Λff′2

HH′

, with H, H ′ = (L,R). We follow the notational conventions for the coefficients GHH′

ff ′

commonly adopted in the context of composite models [73], with ηHH′ denoting relative ± signs and Λff ′2
HH′ the

characteristic squared mass scale parameters. For later reference, we also quote the effective Lagrangian of use in
leptonic collider applications

LEFF =
∑

f,H,H′

4πηHH′

Λef2
HH′ (1 + δef )

GHH′

ef (ēHγµeH)(f̄H′γµfH′), (II.18)

where δef = 1 if e = f and δ = 0 if e 6= f . The left chirality basis for the fermion fields is related to the mixed left-right
chirality basis by, L ∼ Rc†, thus implying the identity, (L̄1γ

µL2) = (R̄c
2γ

µRc
1), and the Fierz-Michel identities for the

quartic order matrix elements,

(L̄1γ
µL2)(R̄3γµR4) = 2(L̄1R4)(R̄3L2), (L̄1γ

µL2)(L̄3γµL4) = −(L̄1γ
µL4)(L̄3γµL2), (II.19)

where L, R denote c-number (commuting) Dirac spinors. The comparison with Eq. (II.1) yields the explicit formula

for the dimensionless coefficient functions gHH′

ff ′ (Lµ) defined by

gHH′

ff ′ ≡ m2
sKµ

2πg2µ
GHH′

ff ′ = ηHH′

m2
sKµ

Λff ′2
HH′g2µ

=
|Lµ|
4π

∫ 1

0

dxx−s−1(1− x)−t−1
∏

I

(
2 sinπθI

II(x)
)

1
2

∑

cl

ZI
cl, (II.20)

such that the string four fermion amplitude reads as, Af4 =
2πg2

µ

m2
sKµ

gHH′

ff ′ < S1234 >HH′< T1234 >ff ′ . For convenience,

we shall employ in the sequel a similar notational convention for the string amplitudes for fermions of fixed chiralities.
To make contact with the amplitudes of physical processes involving the mass eigenstate fields, we need to perform

the familiar bi-unitary linear transformations linking the above gauge basis to the mass eigenvector basis, f →
V f†
L f, f c → V fT

R f c, [f = q, l] which read in the left-right chirality basis as, fH → V f†
H fH , [H = L,R]. The flavor

mixing matrices, V f
L , V

f
R , are determined through the diagonalization of the fermion mass matrices in generation

space, V f
RMfV

f†
L = (Mf )diag, but in a partial way since the Standard Model contributions from the quarks and

leptons only depend on the products, VCKM = V u
L V

d†
L and V ′ = V ν

LV
e†
L , where the suffix label CKM refers to the

quarks Cabibbo-Kobayashi-Maskawa matrix. The effective Lagrangian of dimension D = 6 in the vector spaces of the
fermions generation and mass basis fields can now be expressed as

LEFF =
∑

f,f ′

∑

H,H′

GHH′

ij,kl [(f̄iHγ
µfjH)(f̄ ′

kH′γµf
′
lH′)]flav +H.c.

=
∑

f,f ′

∑

H,H′

G̃HH′

ij,kl [(f̄iHγ
µfjH)(f̄ ′

kH′γµf
′
lH′)]mass +H.c., (II.21)

where

G̃HH′

ij,kl ≡ 2πg2A
m2

sKA
g̃HH′

ij,kl = GHH′

i′j′,k′l′(V
f
Hii′V

f⋆
Hjj′ )(V

f ′

H′kk′V
f ′⋆
H′ll′), G

HH′

ij,kl ≡ 2πg2A
m2

sKA
gHH′

ij,kl (II.22)

by using the familiar tensorial notation for the flavor and mass bases coefficients in Eqs. (II.20) which are labeled

by the same indices i, j, k, l ∈ [1, 2, 3]. The 4-point couplings GHH′

ij,kl of localized modes are subject to geometrical

selection rules which are expressed in terms of the shift vectors, wI
BA, associated to the embedding polygon with sides

D,A,B,C in each T 2
I , by the conditions [67]

wI
DA + wI

AB + wI
BC + wI

CA = 0 mod ΛI , [wI
BA ∈ ΛI

BA/Λ
I ], (II.23)

where we use notations defined just below Eq. (A.9).

B. Standard Model realization with four branes

We here specialize to the solution of Cremades et al., [60, 61] with the brane setup consisting of four D6-brane
(baryon, left, right and lepton) stacks of size Na = 3, Nb = 1, Nc = 1, Nd = 1, supporting the extended Standard
Model gauge symmetry group, U(3)a×SU(2)b×U(1)c×U(1)d. The weak gauge group, USp(2)b ∼ SU(2)b, identifies
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with the enhanced gauge symmetry associated with the overlapping pair of mirror D6b/D6b′-branes, and the hyper-

charge with the linear combination of Abelian charges, Y = Qa

6 − Qc

2 − Qd

2 . As noted by Kokorelis [62], the present
brane setup belongs to the family of solutions described by the winding numbers and intersection angles listed in the
following table whose members are labeled by the discrete parameters, ρ = (1, 1/3), ǫ = ±1, ǫ̃ = ±1, [ǫǫ̃ = 1] with

βi = 1− b̂i = [1, 12 ], [i = 1, 2] in correspondence with the cases of orthogonal and flipped tori T 2
2,3.

Brane (Nµ) (n1
µ,m

1
µ) (n2

µ,m
2
µ) (n3

µ,m
3
µ) θI=1,2,3

µ Susy Charges

Baryon (Na = 3) (1, 0) ( 1ρ , 3ρǫβ1) ( 1ρ ,−3ρǫ̃β2) (0,±θa,∓θa) r(1), r(4)

Left (Nb = 1) (0, ǫǫ̃) ( 1
β1
, 0) (0,−ǫ̃) (θb, 0,∓θb)

(

r(1),r(3)
r(2),r(4)

)

Right (Nc = 1) (0, ǫ) (0,−ǫ) ( ǫ̃
β2
, 0) (±θc,∓θc, 0) r(3), r(4)

Lepton (Nd = 1) (1, 0) ( 1ρ , 3ρǫβ1) ( 1ρ ,−3ρǫ̃β2) (0,±θd,∓θd) r(1), r(4)

The massless spectrum of left chirality multiplets localized at the intersection points includes three generations of
quarks and leptons. For the specific choice of brane angles characterized by a single vanishing angle and a pair
of angles equal up to a sign, the various brane pairs preserve N = 2 supersymmetry each, provided the complex
structure parameters of T 2

2,3 satisfy the relation, β1χ2 = β2χ3. We have indicated in the last two columns of the
above table the brane-orientifold angles and the spinor weights of the conserved supercharges, with the upper and
lower signs corresponding to ǫ = ǫ̃ = ±1. The finite intersection angles can then be expressed as, θb = θc =

1
2 , θa =

θd = 1
π tan−1(3ρ2ǫβ1χ2). Only when ǫ = ǫ̃ = −1 do all the four branes share the common spinor supercharge,

r(4) = (−−−−), implying the existence of an unbroken N = 1 supersymmetry in this case. The assignment of open
string sectors and gauge group representations for the quarks and leptons and for the two Higgs bosons is displayed
in the following table in correspondence with the gauge group SU(3)a × SU(2)b × U(1)a × U(1)c × U(1)d.

Mode q uc dc l ec νc Hd Hu

Brane (a, b) + (a, b′) (c, a) (c′, a) (d, b) + (d, b′) (c′, d) (d, c) (c, b) + (c, b′) (c, b)† + (c, b′)†

Irrep 3(3, 2)1,0,0 3(3̄, 1)−1,1,0 3(3̄, 1)−1,−1,0 3(1, 2)0,0,1 3(1, 1)0,−1,−1 3(1, 1)0,−1,1 (1, 2)0,1,0 (1, 2)0,−1,0

The massless scalar modes for the pair of up and down Higg bosons arise as the hypermultiplet of the sector (c, b) =
(c, b′) with N = 2 supersymmetry, due to the coincidence of the branes c and b along the first complex plane T 2

1 .
The effective gauge field theory for this family of models is free from anomalies, despite the fact that the brane setup
fails to satisfy the RR tadpole cancellation conditions. These can be satisfied, however, by including a hidden sector
of distant brane stacks which do not intersect with the observable brane stacks. The quark generations [60, 61] are
located in the three complex planes of T 2

I at the intersection points

P
(k)
ab (q) =

(

ǫ
(1)
q −k

3 ǫ
(3)
q

ǫ̃
(1)
q 0 1− 3ǫ

(3)
q

)

,

(

P
(k)
ca (uc)

P
(k)
c′a (d

c)

)

=

(

ǫ
(1)
q + rbc ǫ

(2)
q

k
3 ∓ ǫ̃(3)q

3

ǫ̃
(1)
q 3ǫ

(2)
q ±ǫ̃(3)q

)

, (II.24)

where the three entries in the upper and lower arrays stand for the coordinates in the orthogonal reference
frames, ℜ(XI)/(2πrI1) and ℑ(XI)/(2πrI2), [I = 1, 2, 3]. The intersection points for the lepton generations,

P
(k)
db (l), P

(k)
c′d (e

c), P
(k)
dc (νc), are described by similar formulas to those for the quark generations with ǫ

(I)
q → ǫ

(I)
l , ǫ̃

(I)
q →

ǫ̃
(I)
l . The intersection points along the branes are labeled by the integer index k ∈ [0, 1, 2] ≃ [0, 1,−1], with the branes

transverse distance described by the real parameters, ǫ
(1)
q,l , ǫ̃

(1)
q,l , ǫ

(2)
q,l , ǫ

(3)
q,l , ǫ̃

(3)
q,l , rbc. (We deviate only in the defi-

nition of the parameters in the third complex plane with the notations of [60, 61] which use the choice of unit of
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length, ℑ(XI=3)/(6πrI=3
2 ). The relationship between us and them reads, (ǫ̃

(3)
q )us = 3(ǫ̃

(3)
q )them.) Numerical studies

for subsets of these parameters have been reported [49, 50] in attemps to fit the quarks and leptons Yukawa coupling
constant matrices. Directions to improve certain shortcomings of the predictions for the fermions mass matrices are
reviewed in [74]. Two important features of the present family of models are that the intersection points are separated
along the branes by distances of order, ǫ ∼ 1/3, and that all three intersection points for the electroweak doublet and
singlet fermion modes are placed at points which lie at finite distances apart only in the single complex planes, T 2

3

and T 2
2 , respectively.

The gauge matrices are constructed along the lines traced out in Appendix A. To the electroweak singlet leptons,
ec = (c′, d), νc = (d, c), with multiplicities, Ic′d = −3, Icd = 3 and U(1)c × U(1)d charges, (Qc, Qd) = (−1,−1) and

(+1,−1), we ascribe in the subspace of gauge quantum numbers (c, d) the matrices λ
(cd)
ec , λ

(cd)
νc with non-vanishing

entries γ and α, respectively, using the notations of Eq. (A.10). Explicitly, γ = 1 for ec ∼ (c′, d)−1,−1 and α = 1 for
νc ∼ (d, c)−1,1, with other entries set to zero. For the modes charged under the color group SU(3)a, choosing the
subspace (a, c), we ascribe to the electroweak singlet quarks, uc† ∼ (a, c), dc† ∼ (a, c′), of charges (Qa, Qc) = (+1,∓1),

the bifundamental representation matrices λ
(ac)

uc† , λ
(ac)

dc† with the non-vanishing entries for the column and array vectors,
αα, γα, in the notations of Eq. (A.10), transforming under the SU(3) group fundamental representations. For the
electroweak gauge group, USp(2) ∼ SU(2), supported by the D6b-brane with the USp projection, the two components
of the electroweak doublet lepton mode, l = (ν e)T ∼ (d, b), with charges, (Qd, T

b
3 ) = (1,±1), are ascribed the matrices,

λ
(bd)
l , with the non-vanishing entries, γ and α, using the notations of Eq. (A.10). A similar construction holds for the

two components of the electroweak doublet quark mode, q = (u, d), which are ascribed the matrices λ
(ab)
q , with the

non-vanishing entries, βα and αα. The CP matrices of the quarks and leptons modes are then given by the explicit
formulas

λ
(cd)
ec =

1√
2







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






, λ

(cd)
νc =

1√
2







0 0 1 0
0 0 0 0
0 0 0 0
0 −1 0 0






,

λ(db)e =
1√
2







0 0 1 0
0 0 0 0
0 0 0 0
0 −1 0 0






, λ(db)ν =

1√
2







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0






,

λ
(ac)
uc
α

=
1√
2







0 0 0 0
0 0 0 −δ⋆α
δ†α 0 0 0
0 0 0 0






, λ

(ac)
dc
α

=
1√
2







0 0 0 0
0 0 γ⋆α 0
0 0 0 0

−γ†α 0 0 0






,

λ(ab)uα
=

1√
2







0 0 0 βα
0 0 0 0
0 βT

α 0 0
0 0 0 0






, λ

(ab)
dα

=
1√
2







0 0 αα 0
0 0 0 0
0 0 0 0
0 −αα 0 0






, (II.25)

where the normalization condition is of form, Tr(λfαλ
†
fβ
) = δαβ , and, for convenience, we have kept a record of the

pair of branes vector subspaces associated to each mode. The quartic traces of CP matrices are easily calculated from
the above explicit representations. The sums of traces for the direct and reverse orientation terms, indicated below
by the suffix label (d+ r), are given by the formulas

Tr(d+r)(λ
†
(e)λ(e)λ

†
(e)λ(e)) = Tr(d+r)(λ

†
(ec)λ(ec)λ

†
(ec)λ(ec)) = 1, T r(d+r)(λ

†
(ec)λ(ec)λ(e)λ

†
(e)) =

1

2
,

T r(d+r)(λ
†
(qα)λ(qβ)λ

†
(e)λ(e)) = Tr(d+r)(λ(dc

α)λ
†
(dc

β
)λ(ec)λ

†
(ec)) = Tr(d+r)(λ(uc

α)λ
†
(uc

β
)λ

†
(ec)λ(ec)) =

1

2
δαβ,

T r(d+r)(λ(qcα)λ
†
(qc

β
)λ(qcγ )λ

†
(qc

δ
)) = Tr(d+r)(λ(qα)λ

†
(qβ)

λ(qγ )λ
†
(qδ)

) = Tαβγδ,

T r(d+r)(λ(qα)λ
†
(qβ)

λ†(qcγ )
λ(qc

δ
)) =

1

2
Tαβγδ, [Tαβγδ =

1

2
(δαβδγδ + δαδδγβ), q = u, d]. (II.26)

Making use of the U(Nc) group identity, 2
∑N2

c−1
a=1 (T a)αβ(T

a)γδ = (δαδδβγ − 1
Nc
δαβδγδ), with the first and second

terms inside parentheses being associated to the non-Abelian and Abelian group factors SU(Nc) and U(1) of U(Nc),
one can cast the tensorial structure of the trace factor for quarks in the fundamental representation of SU(Nc) into
the operator form

T1234 = Tαβγδ ≡
1

2
(δαβδγδ + δαδδβγ) =

N2
c−1
∑

a=1

(T a)αβ(T
a)γδ +

Nc + 1

2Nc
δαβδγδ, (II.27)
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where the traceless Lie algebra generators of SU(Nc) are normalized as, Trace(TaTb) =
1
2δab. (The right hand side

is symmetric under the substitutions, β ↔ δ or α ↔ γ.) The corresponding quartic trace for leptons is T1234 = 1.
Identifying the leading pole term in Eq. (II.9) to the pole term in the analogous field theory, and using the low-energy
limit with due account for the gauge factors in Eq. (II.26), one finds that the ratio of the string to field theory gauge

coupling constants of the non-Abelian gauge factors should be set as, η =
√
2.

C. Numerical results for contact interactions

We start off by stating the main simplifications made in our numerical study. We choose to set all the radii
parameters, rI1 , equal to a common radius parameter, denoted by r = 1/Mc. The relation between the string theory
parameters, the wrapped three-cycles volume and gauge coupling constant parameters, gs, ms, LA, gA, [A = a, b, c, d]
simplifies then to

msr = (
4πKAgs
g2A|LA|

)
1
3 , [LA =

∏

I

|LI
A|
r

=
∏

I

(nI2
a + m̃I2

a χ
I2)

1
2 , χI =

rI2
r
] (II.28)

where Ka,c,d = 1, Kb = 2. From the explicit formulas for the three-cycles volumes, we infer the relations between the
branes gauge coupling constants

La = Ld = [(ρ−2 + (3ρβ1χ2)
2)(ρ−2 + (3ρβ2χ3)

2)]
1
2 , Lb =

χ1χ3

β1
, Lc =

χ1χ2

β2

=⇒ ga = gd,
g2b/2

g2c
=

Lc

Lb
=
β1χ2

β2χ3
. (II.29)

In the case with N = 1 supersymmetry, β2χ3 = β1χ2, one has, Lc = Lb and 2g−2
b = g−2

c . Specializing momentarily
to this supersymmetric case and using the proportionality relation between the string and field theory gauge coupling
constants discussed after Eq. (II.1), we can express the Standard Model gauge coupling constants g3, g2, g1 along
with the electric charge and weak angle parameters, e and sin θW , by the formulas valid at the string mass scale

ηg3 = ga, ηg2 = gb, (ηg1)
−2 =

1

6
g−2
a +

1

2
g−2
c +

1

2
g−2
d =

2

3
g−2
a + g−2

b ,

=⇒ (ηe)−2 = (ηg1)
−2 + (ηg2)

−2 =
2

3
g−2
a + 2g−2

b , sin2 θW ≡ g−2
2

e−2
=

3g−2
b

2g−2
a + 6g−2

b

=
1

2(1 + g2b/(3g
2
a))

.(II.30)

Although the family of models under consideration has a parameter space of restricted size, to study the model
dependence of predictions we found it convenient to introduce a reference set of natural values for the geometric
parameters and consider small excursions in which the parameters are varied one by one. We define our reference set
of parameters as, ρ = 1, ǫ = 1, ǫ̃ = 1, β1 = 1, β2 = 1.
The interbrane angle parameters in the three complex planes, θIµν = θIν−θIµ, [πθIµ = arctan(mI

µχ
I/nI

µ)] are grouped
into two distinct sets with the entries in each set being equal up to permutations of the planes. For the reference
set of parameters with χI = 1, we find θI(q) = θI(e) = (0.50, 0.60, 0.89), and θI(uc) = θI(νc) ≃ θI(dc) = θI(ec) =
(0.50, 0.89, 0.60). Let us also quote, in reference to the discussion near Eq.(II.11), the numerical values assumed by
the form factor parameter, ln δI = (2.77, 2.97, 10.1), for the above quoted values of the interbrane angles for θI(q).
Varying the tori complex structure parameters inside the range, χI ∈ [ 12 , 2], or changing from orthogonal to tilted

tori, causes insignificant changes in the angles. For instance, the choice β1 = β2 = 1
2 yields θI(q) = (0.5, 0.687, 0.812).

With the free parameters consisting of ms and msr = ms/Mc, the string coupling constant is fixed in terms of

the gauge coupling constants by, gs =
m3

s|LA|g2
A

4πKA
. For the string theory not to be driven to strong coupling in the

decompactification limit at fixed ms, the condition gs ∝ (msr)
3 < 1 restricts the radius parameter to msr = O(1).

More precisely, setting tentatively in msr = (4πKAgs
g2
A
|LA| )

1
3 , [A = a, b] the Standard Model gauge coupling constants to

their observed values at the Z boson mass scale, g21(mZ) = 0.127, g22(mZ) = 0.425, g23(mZ) = 1.44, we can express
the conditions that the string theory is weakly coupled by the numerical results evaluated for the reference set of

parameters, msr ≃ [0.95, 3.9]g
1/3
s /η2/3.

The weak angle depends sensitively on the geometric parameters. While setting ga = gb reproduces the favored
value, sin2 θW = 3

8 , using the reference set of parameters with χI = 1, would yield instead, g2a/(g
2
b/2) = Lb/La ≃

1/10 =⇒ sin2 θW ≃ 3/46. However, as verified from the explicit formula, sin2 θW = 1/[2(1+2β1(1+9β2
1χ

2
2)/(3χ1χ3))],

one can always fit the weak angle by adjusting the geometric parameters, for instance, by setting, β1 = 1/2 with all
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χI equal. The renormalization group analysis of the gauge coupling constants for the present model is known to be
consistent with grand unification with the parameters adjusted at [75] ms ≃MX ≃ 1016 GeV for ms/Mc ≃ (2 − 5).
On the other hand, the qualitative study of the coupling constant unification for the class of minimal supersymmetric
standard models selected by sampling over vacuum solutions of intersecting branes on orientifolds [76] indicates that
the maximal allowed string scale may vary over a wide interval, provided one regards the branes gauge coupling
constants as free parameters. In order to justify the TeV string scale scenario of interest to us, one must invoke string
threshold corrections which produce an accelerated power law running between the compactification and string mass
scales [77]. Although the small extent of the admissible interval for the momentum scale, Q ∈ [Mc,ms], could render
this option problematic, some freedom is still left in choosing the geometric parameters. To verify this statement we
have pursued a qualitative study of the relation between the one-loop order running gauge coupling constants holding
for the present model,

(4π)2
[

2

3g23(mZ)
+

2 sin2 θW (mZ)− 1

e2(mZ)

]

− 44

3
log

m2
Z

m2
s

≃ −πb̂(ms

Mc
)2, (II.31)

using similar inputs as those discussed in our previous work [44]. The power law running term on the right hand side

is controlled by a linear combination of slope parameters denoted by b̂. We have checked that with the assigned string

mass scale, ms ≃ 1 TeV, we can satisfy the above relation by using the indicative values, b̂ ∼ 20, ms

Mc
∼ 5.

We now turn to the predictions for the chirality conserving contact interactions of four quarks and/or leptons.
In view of the uncertainties on the renormalization group scale evolution of the gauge coupling constants and the
coefficient functions, we have chosen to express gs by selecting the electroweak gauge coupling constant, gb = ηg2, in

the defining formula gs =
|Lb|η2g2

2(mZ)
8π , with the proportionality factor set at η = 1.

The information on the branes configurations and on the structure of the associated coefficient functions is displayed
in Table I for Cremades et al., [60, 61] model. The volume of cycles may vary substantially from one brane stack to
the other, so it is important to keep track of the data assigned to the brane configurations DABC which affect the
normalization factor of the local operators. Since we could not find any analytic approximation that yields reliable
estimates for the coefficients gHH′

ij,kl in the appropriate range of msr values, we have numerically evaluated Eq. (II.20)

by following the same procedure described in our previous work [44]. The contributions from the localization and
classical partition function factors in the x-integral are evaluated by numerical quadrature after removing the massless
and momentum mode contributions by subtracting the leading terms near the end points x→ 0 and x→ 1, according
to the prescription described schematically by Eq. (II.15). The series summations over the world sheet instantons
must be carried out to large enough orders, max(pA) ≃ 6 − 10 and the x-integral must be evaluated with care. (We
have made use of the Mathematica package.)

The numerical values of the flavor diagonal (∆F = 0) coefficients, gHH′

ii,ii , obtained with the reference set of param-
eters at the three values of the effective radius parameter, msr = 1, 2, 3, are displayed in the last three columns of
Table I. These results all refer to the ∆F = 0 configurations with coincident intersection points, ǫA = ǫB = (0, 0, 0).
The presence of strong cancellations from competing terms appears clearly from the fact that the coefficients change
sign with variable msr. The results for the various flavor and chirality configurations are seen to cluster around two
group of values associated with the pure and mixed chirality configurations, f4

L,R and f2
Lf

2
R, which also correspond

to the cases with equal and unequal angles. The coefficients in the unequal angles group, e2Le
2
R, q

2
Ld

2
R, u

2
Re

2
R, are

roughly equal and separated by a gap of about a factor 5 − 10 from the coefficients in the equal angles group,
q4L, e

4
L, u

4
R, d

4
R, e

4
R, q

2
Le

2
L, d

2
Re

2
R. Since the exchange of massive vector and axial vector bosons contribute pure and

mixed chirality amplitudes of same and opposite signs, respectively, we infer from the comparison of the coefficients
with same and opposite chiralities that the string excitations are akin to linear combinations of vector and axial vector
modes. The flavor diagonal coefficients all feature the power law growth with the radius parameter, |gHH′

ii,ii | ∝ (msr)
5/2.

It is worth noting that the approximate representation in Eq. (II.9), subsuming the contributions near the boundaries
of the x-integral, would not reproduce the observed power law dependence of the coefficients on msr.
The observed regularities in the coefficients are partly accounted for by the symmetric character of the brane setup

in the model at hand. Since the branes a and d are always parallel in all three planes, equal interactions are found for
q4L and e4L and for d4R and e4R. Numerically close values are also found for, uc4L , d

c4
L and ec4L , due to the fact that the

brane angles in the various configurations are equal up to permutations of the complex planes. The mixed chirality
coefficients are larger because they involve brane configurations with two sets of unequal angles.
For a clearer assessment of the dependence on msr, we display in Figures 1, 2 and 3 plots of the coefficients gHH′

ij,kl .
We study here the sensitivity on the geometric parameters by varying these one by one with respect to the reference
set. Note that the longitudinal distances ǫA, ǫB are associated with flavor change while the transverse distances are
associated with gauge symmetry breaking. We group the configurations into three classes corresponding to the flavor
change: ∆F = 0 : ǫA = ǫB = 0; ∆F = 1 : ǫA = 0, ǫB 6= 0; and ∆F = 2 : ǫA 6= 0, ǫB 6= 0. Figures 1 and 2 refer to
the unmixed chirality configurations with equal brane angles and Figure 3 to the mixed chirality configurations with
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TABLE I: Chirality conserving contact interactions of two quark and/or lepton pairs of fixed chiralities. In Column 1, we specify
the four fermions configuration; in Column 2, the target space polygon DABC which realizes the world sheet embedding; in
Column 3, the interbrane angles θ, θ′ associated to the two pairs of conjugate fermions f, f ′; in Column 4, the quartic traces
over the gauge matrices including the direct and reverse permutations, T1234 = T1234 + T4321, multiplied by the Dirac spinor
matrix element, S1234, using the conventional ordering for the flavor and color indices i, j, · · · and α, β, · · · of the incoming
fermions, f1,i,α(−θ)f2,j,β(θ)f3,k,γ(−θ′)f4,l,δ(θ

′), with the dependence on color indices defined by, Tαβγδ = 1

2
(δαβδγδ + δαδδγβ);

and in Column 5, the numerical predictions in Cremades et al., [60, 61] model for the flavor diagonal coefficients gHH′

ii,ii ≡
(m2

sKA/Λ
ff ′

2

HH′g
2
A) in Eq. (II.20) at the three values of the compactification scale parameter, msr = 1, 2, 3.

Fermions f2f
′
2 (DABC) θ, θ′

2πg2µ
Kµ

T1234 S1234 gHH′

ff ′ (Lµ)

(eL)
2(eL)

2 (bdbd) θdb, θdb
2πg2

d
Kd

(ē1Lγ
µe2L)(ē3Lγµe4L) +0.049 − 0.270 − 0.952

(ecL)
2(ecL)

2 (dc′dc′) θc′d, θc′d
2πg2c
Kc

(ē2Rγ
µe1R)(ē4Rγµe3R) +0.049 − 0.270 − 0.974

(eL)
2(ecL)

2 (dc′db) θc′d, θbd
2πg2c
Kc

1

2
(ē2Rγ

µe1R)(ē4Lγµe3L) −0.405− 1.92 − 5.74

(qL)
2(qL)

2 (baba) θab, θab
2πg2a
Ka

Tαβγδ(q̄1Lγ
µq2L)(q̄3Lγµq4L) +0.049 − 0.270 − 0.952

(uc
L)

2(uc
L)

2 (acac) θca, θca
2πg2c
Kc

Tαβγδ(ū2Rγ
µu1R)(ū4Rγµu3R) 0.0422 − 0.286 − 1.015

(dcL)
2(dcL)

2 (ac′ac′) θc′a, θc′a
2πg2c
Kc

Tαβγδ(d̄2Rγ
µd1R)(d̄4Rγµd3R) +0.049 − 0.270 − 0.974

(qL)
2(uc

L)
2 (abac) θba, θca

2πg2
b

Kb

1

2
Tαβγδ(q̄2Lγ

µq1L)(ū4Rγµu3R) −0.388− 1.85 − 5.54

(qL)
2(dcL)

2 (abac′) θab, θc′a
2πg2

b
Kb

1

2
δαβγδ(q̄2Lγ

µq1L)(d̄4Rγµd3R) −0.405− 1.92 − 5.74

(qL)
2(eL)

2 (babd) θab, θdb
2πg2a
Ka

1

2
δαβ(q̄1Lγ

µq2L)(ē3Lγµe4L) 0.049 − 0.270 − 0.974

(uc
L)

2ecL)
2 (cacd′) θac, θd′c

2πg2a
Ka

1

2
δαβ(ū1Rγ

µu2R)(ē4Rγµe3R) −0.165− 1.43 − 4.15

(dcL)
2(ecL)

2 (c′ac′d) θac′ , θdc′
2πg2a
Ka

1

2
Tαβ(d̄1Rγ

µd2R)(ē3Rγµe4R) −0.0157 − 0.835 − 2.22

unequal brane angles. The presence of cusp discontinuities in certain curves is due to our use of logarithmic plots for
the absolute values of the coefficients aimed at representing quantitatively the size of the suppression.
We see on panel (a) of Fig. 1 that the predictions are spread by an approximate factor 2 − 3 for reasonably

restricted variations of the shape parameters. Using tilted 2-d tori, or increasing the complex structure parameter
χI , results in enhanced coefficients, while decreasing χI results in reduced coefficients. The ∆F = 1 coefficients with
finite ǫB in panel (b) are suppressed by order 10−1 while the ∆F = 2 coefficients with finite ǫA and ǫB in panel (c)
are suppressed by factors of order 10−2 − 10−4. The specific dependence on msr is a result of the tension between
the power growth from the overall normalization factor gs ∝ (msr)

3 and the exponential suppression from Zcl. That
the suppression effect is controlled by the classical factor is clear from the fact that the coefficients have comparable
values near msr = 1.
The plots in Fig. 2 again confirm that χI < 1 and χI > 1 lead to reduced and enhanced coefficients. The nearly

one order of magnitude suppression of the ∆F = 1 coefficients is independent of χI . That the suppression is weaker
than expected is explained by the specific feature in the present model that only a single component of the vectors
ǫIB are finite. The comparable predictions found for ǫB = (0, 1/3, 0) and (0, 2/3, 0) are explained by the torus lattice
periodicity. The cancellation effects from the oscillating factors e2iπǫL explain both the change of sign from positive
to negative coefficients and the smooth variation with msr.
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The plots in Fig. 3 show that the coefficients in the unequal angle cases are systematically larger than those found
for equal angles. The dependence of the wrapped cycle volumes on the torus shape parameters spreads the coefficients
by a factor of 2 − 3.
Two general features of the predictions are the rapid power law increase with msr of the flavor conserving ∆F = 0

coefficients and the hierarchies of order 10−1 and 10−4 separating these from the flavor changing ∆F = 1 and ∆F = 2
coefficients which vary more slowly over the allowed interval for msr. While the variation of the coefficients with
msr is not apparent on the result in Eq. (II.9), obtained by restricting the x-integral to the end point contributions,
it appears possible to use this approximate formula in order to explain the dependence on the distance parameters,
ǫA, ǫB. Examination of the combined contributions from the string momentum and winding modes to the coefficients

gHH′

ff ′ ≃ |LA|
4π|LB|

∑

pB 6=0

∑

pA∈Z

∏

I δ
−| sin(πθI)(pA+ǫIA)LI

A|2+|pB/LI
B|2

I e2πipBǫIB
∑

I | sin(πθI)(pA + ǫIA)L
I
A|2 + |pB/LI

B|2
, (II.32)

shows that for small finite ǫA the leading contribution to the ratio of ∆F = 1 to ∆F = 0 amplitudes is of form

e−pAǫA|LA|(msr)
2

, while the ∆F = 2 amplitudes include the additional suppression from the oscillating factors, e2πiǫB .
It is interesting to compare our predictions for the contact interactions of four fermions with those obtained in the

Dp/D(p+ 4)-brane models [33]. (The formalism is briefly reviewed in Appendix B.) For the coupling of four modes,

|(3, 7I)|2|(3, 7J)|2, the comparison at fixed 4-d gauge coupling constant of our estimate, 2πgHH′

ff ′ S1234T1234 ≈ 2π(0.05 −
0.5)(msr)

2S1234T1234, with the result found by Antoniadis et al., [33] in the large radius limit, T1234[0.12 P1234 +
0.33 S1234], reveals an order of magnitude concordance.
Finally, we compare our predictions with the contributions from the momentum modes evaluated by means of

Eq. (II.16) for n = 3. The resulting rough estimate, (gHH′

ff ′ )KK ≃ 1
4π(n−2)Sn(msr)

n|LB| ≃ (msr)
3LB, indicates that

the contributions from the string momentum modes are significantly larger than those from winding modes. We
should remember, however, that the present estimate must be regarded as an upper bound since it relies on the large
r limit and ignores the form factor suppression.

III. INDIRECT HIGH ENERGY COLLIDER TESTS

We discuss in the present section the collider physics applications based on the formalism presented in Subsection IIA
and in Appendix B for the orientifold model of Cremades et al., [60, 61]. Since the distinction between the mass and
gauge bases is not essential for these observables, all the results in this section are obtained by setting the flavor

mixing matrices to unity, V f
H = 1.

A. Bounds on contact interactions mass scales

It is important to distinguish the mass scale Λ associated to the D = 6 operators from the mass scaleMH associated
to the D = 8 operators in the 4-d effective Lagrange density quadratic in the energy-momentum tensor [78], LEFF =
i 4λ
M4

H

TµνT
µν . The analyses of available high energy collider experimental data using field theories in extra space

dimensions are sensitive to values of these mass scales,MH = 1.5 TeV [78], Λ = 2 − 6 TeV [79] and Λ = 1 − 8 TeV [80].
In the single Dp-brane models, the quantum gravity mass scale MH was found to be parametrically larger than the

string scale [25], MH

ms
≃ 23/4

π
√
gs
, thus making the detection of new physics effects harder. To pursue the comparison

with the intersecting brane models, it is convenient to consider in place of MH the closely related gravitational mass

scale MG defined in the case with n flat extra dimensions by [11], Mn+2
G rn =

M2
P

4π = (4πGN )−1. The mass scale MG

is related to the fundamental string parameters of single D3A-brane models as [25], (MG/ms)
8 = 16π/g4A. Repeating

the same calculations for intersecting D6A-branes gives us the modified formula in the large radius limit

(
MG

ms
)8 =

16π

g4A(msr)6|mI
A − nI

AU
I |/U I

2

. (III.1)

The strong dependence on the geometric parameters indicates the interesting possibility that MG may assume lower
values in multiple brane models.
We now discuss the constraints on the string mass parameter, ms, inferred by comparing our predictions for the

chirality conserving contact interactions of D = 6 with a subset of the available experimental limits [81]. For the lepton
and lepton-quark configurations, e4L, e

2
Lq

2
L and the quark configuration, q4L, respectively, we evaluate the bounds on
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the string scale parameter, m2
s = gLL

ii,iiΛ
ef2
LL (1 + δef )g

2
A/KA, at fixed msr, by setting the gauge coupling constants,

g2A/KA at g22/2 ≃ 0.213 and g23 ≃ 1.44, respectively. Using the numerical values of the coefficients in Table I, we
obtain the following bounds on ms for the choice of three representative experimental limits on the mass scales:

Λ±
LL(eeee) > [4.7, 6.1] =⇒ ms > [0.69, 2.1, 3.9]

Λ±
LL(eeqq) > [23.3, 12.5] =⇒ ms > [2.4, 3.0, 5.6]

Λ±
LL(qqqq) > [2.7] =⇒ ms > [0.72, 1.7, 3.2], (III.2)

where all masses are expressed in TeV units and the three entries refer to the values msr = [1, 2, 3].
We next consider the constraint from the enhanced supernova cooling through the reaction producing right handed

neutrino-antineutrino pairs by quark-antiquark pairs, q + q̄ → νc + ν̄c, which is allowed as long as the contributions
to the neutrino Dirac mass are bounded by the supernova temperature, mν ≤ TSN ≃ 50 MeV. The lower bound on
the mass scale in the effective Lagrangian, LEFF = 4π

ΛqνR2 (q̄γµγ5q)(ν̄Rγ
µνR), is found for the SN1987A to cover the

range [82], ΛqνR > (90 − 250) TeV. For concreteness, we set our choice on the lower bound, ΛqνR > 200 TeV. Using
the numerical predictions in Table I and assuming the approximate equalities between the chirality basis amplitudes,
q2Lν

2
R ≃ q2Lu

2
R and d2Rν

2
R ≃ d4R, we obtain the numerical estimate for the coefficient, (gLR

qLνR+gRR
qRνR) ≃ [0.66, 1.26, 2.14]

for msr = [1, 2, 3]. The resulting bounds on the string mass scale read, ms > [43, 82, 139] TeV. For reference,
we note that the comparison with the contribution from the string momentum modes yields [50] the weaker bound,
ms ≥ (5 − 10) TeV.

B. Bhabha scattering cross section

Useful constraints on the new physics are set by the experimental data at the high-energy colliders involving the
two-body processes [84] of Bhabha, Möller and photon pair scattering and fermion-antifermion pair production. The
absence of significant deviations from the Standard Model predictions has led the statistical analyses of data to set
exclusion limits on the free parameters. The global fits to the combined high-energy collider data based on the single
D-brane model, with the gauge factors treated as free parameters, yields [83] ms > (0.69 − 1.96) TeV.
We focus here on the Bhabha scattering differential cross section for which high precision measurements along with

higher order calculations of the pertubation theory corrections are due in the future. Experimental data has been
collected by the LEP collaborations [85–87]. The studies based on single Dp-brane models, describing the ratio of the
string to Standard Model differential cross sections by the approximate formula [25]

R(cos θ) ≡ (dσ/dΩ)

(dσ/dΩ)SM
= |S(s, t)|2,

[S(s, t) ≡ Γ(1− s)Γ(1− t)

Γ(1− s− t)
≃ 1− π2st

6m4
s

+ · · ·] (III.3)

yield by comparison with the experimental data at the center of mass energy
√
s = 183 GeV the 95% confidence

level exclusion limit on the string mass scale, ms > 410 GeV. Similar bounds are found in the analysis [88] including
the experimental data at

√
s = 188.7 GeV. At the higher energy,

√
s = 1 TeV, the 95% confidence exclusion limit

obtained under similar conditions should extend the sensitivity reach to [25], ms > 3.1 TeV.
We now present our predictions for the Bhabha scattering differential cross section evaluated with Cremades et

al., [60, 61] model by adding the contributions from the contact interactions in Eq. (II.15) to the Standard Model
amplitudes, using the formalism detailed in Appendix B 2. In Fig. 4 and Fig. 5, we show plots of the ratio R(cos θ) as
a function of the scattering angle variable, cos θ, for the center of mass energies,

√
s = 183 GeV and

√
s = 500 GeV,

respectively. The selected set of values for ms are different for these two cases, as dictated by the fact that the string
corrections scale as s/m2

s.
For a qualitative comparison with experimental data, we note that the LEP data points for the ratio at

√
s = 0.183

TeV are spread over the interval of cos θ ∈ [−1, +1] inside the band limited by the horizontal lines at, R(cos θ) =
(1.0± 0.4). As for the single D-brane model prediction [25] in Eq.(III.3), this is represented by a nearly straight line
which slopes from 1.06 to 1.0 as cos θ increases from −1 to 1. The exchange of string Regge and winding modes are
seen to give a small reduction of R(cos θ) near the forward scattering angles, cos θ ∼ 1, gradually turning into a large
enhancement near the backward angles, cos θ ∼ −1. This implies a change from a relative negative sign to a positive
sign at some intermediate angle in the interval cos θ ∈ [−1, +1]. The contributions grow rapidly with increasing
msr. Requiring the predicted ratios in Figs. 4 and 5 to remain bounded inside the interval R(cos θ) ∈ [0.8, 1.2]
for cos θ ∈ [−1, +1] imposes lower bounds on the string scale which cover the ranges, ms ≥ (0.5 − 3.) TeV and
ms ≥ (2. − 5.) TeV, respectively, for the interval of values msr ∈ [1, 3].
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We have also performed a more realistic calculation of the Bhabha scattering differential cross section in which the
total regularized string amplitudes are obtained by subtracting by hand the pole terms from exchange of massless and
massive momentum modes for the γ + Z gauge bosons, while adding up the contributions from the physical γ + Z
pole terms, using the prescription in Eq. (II.15). To ease the numerical calculations we have only evaluated the pure
chirality amplitudes LL, RR, while assuming the mixed chirality amplitudes LR, RL to be proportional to these.
The model dependence on the ratio of pure to mixed chirality amplitudes thus resides in the adjustable proportionality
constant, x = Gec

L
eL/GeLeL = GRL/GLL = GLR/GLL, which we have taken to vary inside the interval, x = [ 12 , 5].

The ratio R(cos θ) of the predicted differential cross section to that of the Standard Model is plotted in Fig. 6 at
the center of mass energies,

√
s = 183 and 500 GeV (left and right hand panels) for the two values of the string scale,

ms = 1, 2 TeV and ms = 2, 4 TeV, respectively. The comparison of the curves I, II, and similarly of the curves
III, IV , measures the sensitivity of R(cos θ) with respect to the string scale ms. On the other hand, the comparison
of the curves I, III, and similarly of the curves II, IV , measures the sensitivity with respect to the mixed chirality
amplitudes. The large spread of predictions with variable x and ms shows that Bhabha scattering can usefully test
the model dependence. The results from the present complete calculation agree qualitatively with those in Figs. 4
and 5, although the change of slope and subsequent rise of the ratio with decreasing cos θ are generally less steep. We
conclude that the representation of string amplitudes by contact interactions is reliable for the considered incident
energies.

IV. FLAVOR CHANGING NEUTRAL CURRENT PROCESSES

A. Direct and indirect flavor changing effects

The flavor changing neutral current observables are determined by the non-diagonal elements of the mass basis
coefficients of contact interactions, G̃ij,kl. These receive direct flavor changing contributions from the four point
string amplitudes and indirect contributions from the linear transformations linking the gauge and mass bases of
the fermions. Without further input information on the flavor structure, it appears impossible to infer quantitative
constraints from a comparison with the flavor changing observables.
A natural description of the fermions flavor quantum numbers is provided by the basis labeled by the branes

intersection points. The geometric constraints on string amplitudes, as stated by Eq. (II.23), directly translate as
selection rules on the flavor amplitudes in this basis. For Cremades et al., [60, 61] model, however, these rules turn out
to be trivial ones, owing to the fact that the intersection points for the fixed chirality modes lie at finite distances apart
only in single complex planes. Since the conditions involve at least one shift vector defined modulo 1, no zero entries

are enforced either on the trilinear Yukawa interactions, λfijfif
c
jH , or on the four fermions interactions, Gij,klf̄ifj f̄kfl.

This property is also responsible for the separable structure of the Yukawa coupling constants, λfij = aibj , implying
that the mass matrices of quarks and leptons all have unit rank. Although the flavor non-diagonal coefficients are
generally finite, the ∆F = 1, 2 operators associated with the configurations, i = j 6= k = l and i 6= j 6= k, are strongly
suppressed with increasing msr by the classical partition function factor for longitudinal distance parameters, ǫA, ǫB
of O(1). However, the fact that the tree level string amplitudes depend on the relative distances between intersection
points, ǫAij and ǫBjk, introduces certain restrictions on the flavor structure of the coefficients Gij,kl.
We here focus on the two flavor changing neutral current observables associated to the mass splitting of CP

conjugate pairs of neutral mesons made of quark-antiquark pairs, P = qiq̄j , P̄ = q̄iqj , and the three-body decays
of leptons, lj → li + lk + l̄l. For simplicity, we assume that the Standard Model contributions to these observables
are negligible relative to those from the contact interactions, so that we can directly use the experimental limit to
derive bounds on the string scale. Convenient formulas for the contributions to these observables from the chirality
conserving local operators have been obtained in [89] for models with extra U(1) gauge symmetries. We follow closely
the formalism developed in the latter work, while accounting for the fact that the dependence on the color quantum
numbers is different in our case. The observables for the real and imaginary parts of the P 0 − P̄ 0 mass splitting,
∆mP ≡ −ℜ(< P0|LDS=2

EFF |P̄ 0 >) and ǫP ≡ −ℑ(< P0|LDS=2
EFF |P̄ 0 >)/(2

√
2mP ), are given in our notations by the

explicit formulas

∆mP = −2mPF
2
P [

1

3
ℜ(G̃LL

ij,ij + G̃RR
ij,ij)− α′

ijℜ(G̃LR
ij,ij)],

ǫP =
mPF

2
P√

2∆mP

[
1

3
ℑ(G̃LL

ij,ij + G̃RR
ij,ij)− α′

ijℑ(G̃LR
ij,ij)], (IV.1)

where α′
ij =

1
3 +

2
3 (

mP

mqi
+mqj

)2. Note that the definition for the indirect CP violation observable applies specifically

to the K− K̄ system, ǫP = ǫK . The quarks flavor indices i, j are set in accordance with the conventional assignments
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for the neutral mesons, K0(s̄d), B0(b̄d), B0
s (b̄s), D

0(ūc), with FP denoting the mesons two-body leptonic decay
coupling constants. We have evaluated the hadronic matrix elements of the four fermion local operators for the
pseudoscalar mesons to vacuum transition by making use of the vacuum insertion approximation. The bilinear axial
current hadronic matrix elements are determined through the PCAC hypothesis in terms of the measured parameters
FP . Using the conventional definitions for the matrix elements of quark bilinear current operators

< 0|s̄αLγµdβL|K0(p) >= − < K̄0(p)|s̄αLγµdβL|0 >= i
FK

6
√
2mK

pµδaβ ,

< 0|s̄αγ5dβ |K0(p) >=< K̄0(p)|s̄αγ5dβ |0 >= −i FKm
2
K

3
√
2mK(ms +md)

δaβ , (IV.2)

one can write the matrix elements of the relevant quadratic operators as

QLL
αβγδ ≡< K̄0|(s̄αLγµdβL)(s̄γLγµdδL)|K0 >=

F 2
KmK

36
(δαβδγδ + δαδδγβ),

QLR
αβγδ ≡< K̄0|(s̄αLγµdβL)(s̄γRγµdδR)|K0 >= −F

2
KmK

36
[δαβδγδ + 2(

mK

mqi +mqj

)2δαδδγβ],

=⇒ QLL
αβγδTαβγδ =

F 2
KmK

3
, QLR

αβγδTαβγδ = −F
2
KmK

3
[1 + 2(

mK

ms +md
)2], (IV.3)

where the saturation of color indices displayed in the last entry above uses the tensor, Tαβγδ = 1
2 (δαβδγδ + δαδδγβ).

The factor α′
ij accompanying the coefficient G̃LR

ij,ij , differs from that quoted in [89], αij = 1
2 + 1

3 (
mP

mqi
+mqj

)2, which

refers to the dependence on color indices involving the diagonal tensor, δαβδγδ. Similar formulas hold for the B and
D mesons.
The contributions from contact interactions to the lepton number violating three-body decay rates of charged

leptons are given by [89]

Γ(ej → ei + ek + ēl) =
m5

ej

384π3
[(|G̃LL

ji,kl |2 + |G̃LL
ji,kl |2 + |G̃LR

ji,kl|2 + |G̃LR
ji,kl |2) + (L↔ R)]. (IV.4)

The partial rates for the pair of decay reactions, µ− → e− + e+ + e− and τ− → e− + e+ + e−, with j = 2, 3 and
i = k = l = 1, are described by the simplified formula

Γ(ej → ei + ei + ēi) =
m5

ej

384π3
(
2πg2A
m2

sKA
)2[2|g̃LL

ji,ii|2 + 2|g̃RR
ji,ii|2 + |g̃LR

ji,ii|2 + |g̃RL
ji,ii|2], (IV.5)

where we have included an extra symmetry factor 1
2 in order to account for the pair of identical charged leptons in

the final states.
The bounds on the string scale implied by the mesons mass shifts and the charged leptons decay rates are expressed

by the explicit formulas

ms ≥
[

− 2πg2A
KA

2mPF
2
P

∆mP
[
1

3
ℜ(g̃LL

ij,ij + g̃RR
ij,ij)− α′

ijℜ(g̃LR
ij,ij)]

]
1
2

,

ms ≥ (
2πg2A
KA

)
1
2

[

m5
j

384π3Γ(ej → ei + ei + ēi)
(2|g̃LL

ji,ii|2 + 2|g̃RR
ji,ii|2 + 2|g̃LR

ji,ii|2 + 2|g̃RL
ji,ii|2)

]1/4

. (IV.6)

In view of the partial information that we dispose on the matrices V f
H and the complicated summations over the

flavor basis amplitudes, we choose to perform an approximate calculation motivated by the specific flavor structure
of contact interactions for the model at hand. We only retain the coefficients gHH′

ij,kl with i = j, k = l, denoted by

gHH′

ik ≡ gHH′

ii,kk , and neglect the distinction between intersection points, by assuming the diagonal terms gii to be
independent of i and the non-diagonal terms to be symmetric, gij = gji. Applying now the unitarity conditions on the
quarks transformation matrices, V q

H , allows us to express the mass basis coefficients for the neutral meson observables
in the form

g̃HH′

ij,ij ≃ (2hijh
′

ij + h̃ijh
′
ij + hij h̃

′

ij)(g
HH′

ii − gHH′

ik ) + 2h̃ij h̃
′

ij(g
HH′

ii − gHH′

jk ) + (h̃ijh
′
ij + hij h̃

′

ij)(g
HH′

ij − gHH′

jk ),

[hij = V q
HijV

q⋆
Hii, h̃ij = V q⋆

HijV
q
Hjj , i 6= j 6= k] (IV.7)
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where h′ij , h̃
′
ij are given by same formulas as hij , h̃ij with H → H ′. Assuming further that the non-diagonal elements

are independent of the specific pair, i, j, so that g12 = g13 = g23, leads to the factorized form

g̃HH′

ij,ij ≈ VP
ij (g

HH′

ii − gHH′

ij ),

[VP
ij = 2hijh

′

ij + 2h̃ij h̃
′

ij + h̃ijh
′
ij + hij h̃

′

ij ]. (IV.8)

We have considered the alternative approximation defined by assuming that the diagonal coefficients gii = gd are
independent of i and the non-diagonal ones satisfy gik = gki ≃ gnd, but without imposing the unitarity conditions.
The resulting form of the ∆F = 2 coefficients reads

g̃HH′

ij,ij ≃ V HH′

ij gd + (WHH′

ij +WH′H⋆
ji +XHH′

ij )gnd,

[V HH′

ij =
∑

k

V q
H,ikV

q⋆
H,jkV

q
H′,ikV

q⋆
H′,jk, W

HH′

ij =
∑

k 6=l

V q
H,ikV

q⋆
H,jlV

q
H′,ikV

q⋆
H′,jk, X

HH′

ij =
∑

k 6=l

V q
H,ikV

q⋆
H′,jkV

q
H′,ilV

q⋆
H,jk].(IV.9)

For the coefficients g̃HH′

ij,ii entering the charged leptons decay widths, we use the same assumptions as in the calcu-
lation done just above to obtain the simplified formula for the mass basis coefficients

g̃ji,ii = Vjigii + V ′
jigji,

[Vji =
∑

k

V l
HjkV

l⋆
HikV

l
H′ikV

l⋆
H′ik, V ′

ji =
∑

k 6=l

V l
HjkV

l⋆
HikV

l
H′ilV

l⋆
H′il]. (IV.10)

B. Results and discussion

We have numerically calculated the mesons mass shifts and the three-body leptonic decay rates for Cremades et
al., [60, 61] model with the reference set of parameters described previously and the longitudinal distances set at,
ǫA = (0, 0, 0), ǫB = (0, 1/3, 0). Somewhat arbitrarily, we choose to set the various flavor mixing matrices equal to the

CKM matrix, V q,l
H = VCKM , [H = L,R]. The following input data, expressed in GeV units, are needed to calculate

the mass shifts:

mu = 3× 10−3, md = 7× 10−3, ms = 0.095, mc = 1.25, mb = 4.20;
FK = 0.1598, mK = 0.497, ∆mK = 3.483 × 10−15, VK = 0.0979;
FB = 0.176, mB = 5.2794, ∆mB = 3.337 × 10−13, VBd = 0.000125;
FBs = 0.176, mBs = 5.367, ∆mBs = 1.145 × 10−11, VBs = 0.00347;
FD = 0.2226, mD = 1.8645, ∆mD = 4.607 × 10−14, VD = 0.0979. (IV.11)

The following input data, expressed in GeV units, are needed to calculate the charged leptons three-body decays:

me = 0.511× 10−3, mµ = 0.1056, Γ(µ → e+ e+ ē) < 3.29 × 10−31, ℜV21 = −0.198633, ℜV ′
21 = 0.198722;

mτ = 1.777, Γ(τ → e+ e+ ē) < 4.529 × 10−19, ℜ(V31) = 0.00641, ℜ(V ′
31) = −0.00660. (IV.12)

The results obtained with the flavor mixing described by the approximate formulas in Eqs. (IV.8) and (IV.10) are
plotted in Fig. 7. The use of Eq. (IV.9) gives similar results. We see that the bounds on ms, at fixed msr, increase
with increasing msr according to the approximate power law, (msr)

5/4. Wide disparities appear between different
cases mainly because of the flavor mixing factor. The most constraining observable, corresponding to the K − K̄
mass shift, yields the bound, ms > O(103) TeV. Relaxing our assumption that the Standard Model contributions are
negligible can only strengthen the bounds on ms. However, one may expect significantly weaker bounds if the flavor
and mass bases were not too strongly misaligned so that the flavor change is dominated by the direct contributions.
For instance, using the order of magnitude predictions for the off-diagonal coefficient gHH′

ij,kl in panel (c) of Fig. 1, with

V f
H = 1, would reduce the bound on ms from the K − K̄ mass shift by a factor of order 10−1 − 10−2. A careful

treatment of the flavor structure of the model would be needed in order to make a more definite statement.
For comparison, we note that the bound from the K − K̄ mass shift obtained in [49, 50] by using the approximate

representation of Eq. (II.9) for the string momentum modes reads, ms ≥ 100 TeV. A similar gap exists for the other
flavor changing observables. However, these results were obtained by setting, msr ≃ 20, which lies well above the
allowed interval.
We comment briefly on the CP violating observable, ǫK , which is set by the experimental data for the K0

L → π+ π

decays to the value, |ǫK |exp ≃ |η00| = (2.285 ± 0.019) 10−3. Since the coefficients gHH′

ij,kl are real, the prediction for
ǫK depends in a crucial way on the flavor mixing matrices. In our treatment of the indirect flavor mixing leading to
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Eq. (IV.8), the predictions for ǫK and the mass shift scale as, |ǫK/∆mK | = |ℑ(VK)/ℜ(VK)|. Since the CP violation
effects enter the CKM matrix through the second and third fermion generations, VK

12 is real and hence ǫK = 0. The

alternative prescription for the flavor mixing described by Eq. (IV.9), with the matrices V f
H still identified with the

CKM matrix, yields an uninteresting small bound on ms.
It is also instructive to compare with the split fermion models. The bound from the K − K̄ mass shift [56],

Mc > β[VKF (ρα)]
1
2 ≃ (100 − 600) TeV with β = 1125 TeV and F (ρα) ≃ (2. −8.), is of same magnitude as ours, while

sampling over the parameters which control the indirect flavor mixing effects give the ability to suppress the bound by
factors of 10 − 100. The description of exchange contributions in these models differs from that in intersecting brane
models where the flavor hierarchies originate in the instanton contributions, rather than the wave function overlaps,
and the parameter space is more restricted. In addition to the extra dimension size parameter, Mc = 1/r, the split
fermion models [56] introduce the scaled localization width and fermion separation parameters, ρ = σ/r and α = ∆y/σ,
which qualitatively identify with the string theory parameters, ρ ∼ Mc/ms and α ∼ ǫms/Mc = ǫmsr, assuming
σ ∼ 1/ms. We conclude from this indirect comparison that the wide hierarchies, α ∈ [0, 15] and ρ ∈ [10−1, 10−4],
which are needed in split fermion models to weaken the bounds on Mc, are not favored by the analogous intersecting
brane models.
Finally, we present the result of an indicative study of the tau-lepton hadronic and semi-hadronic decays, τ → π+µ

and τ → π + π + µ, based on the analysis [90] of the effective interaction for the associated subprocesses, ∆LEFF =
4π

Λτq2 (µ̄γ
µτ)(q̄γµq) + H.c., which yields the bound, Λτq > 12 TeV. Using the predictions in panel (c) of Fig. 1, we

deduce the bound ms = Λτqga(g
LL
lq )

1
2 > 0.5 TeV at msr = 1. At larger msr, neglecting the flavor mixing effects leads

to useless small bounds due to the strong suppression of the flavor non-diagonal string amplitude.

V. SUMMARY AND CONCLUSIONS

We have discussed in this work collider and flavor physics tests of the four fermion tree level string amplitudes in
intersecting brane models. Although the study was specialized to the isolated orientifold premodel of Cremades et
al., [60, 61] realizing the Standard Model, this is a good representative of the families of string models selected in
current explorations of the landscape of open string vacua. Based on a qualitative examination of the predictions for
the gauge coupling constants, we also verified that it is compatible with a TeV string mass scale.
The string theory predictions depend on two free mass parameters, ms and Mc = 1/r, along with the geometric

shape parameters of the internal T 6 torus and known inputs for the electroweak gauge bosons masses and gauge
coupling constants. The necessary condition for weakly coupled open strings imposes the restricted variation interval,
msr = ms/Mc ∈ [1, 4]. We have studied the four fermion contact interactions from exchange of string Regge and
winding modes in various configurations of the quarks and leptons, paying special attention to the gauge group
structure and the contributions from world sheet instantons. The general features of predictions for the contact
interactions may be briefly summarized as follows. The size of coefficients present regularities which reflect in part
the symmetric configuration of the brane setup. The sensitivity of predictions to the tori shape parameters leads to a
moderate sensitivity of the flavor diagonal coefficients ∆F = 0 on geometric parameters which spreads predictions by
a factor 2 − 3. The widest disparities occur between the mixed and unmixed chirality amplitudes. Two characteristic
features reside in the strong growth of the flavor diagonal coefficients, (msr)

5/2, and the strong suppression of the
flavor non-diagonal ∆F = 1, 2 relative to ∆F = 0 by factors of order 10−1 and 10−4, due to the classical partition
function factor when the distances between intersection points relative to the wrapped cycles radius are of ǫ = O(1/3).
The Bhabha scattering differential cross section is an important high precision observable for which the theoretical

and experimental uncertainties are expected to reach O(10−3) in the future. We have considered a qualitative
comparison with the LEP data which leads to bounds on the string mass scale of TeV order. These are expectedly
stronger than the bounds obtained in the single brane model [25] where the local operators have dimension 8. It
should be useful to pursue a systematic study for the set of 2− 2 body processes including the Drell-Yan lepton pair
production and the parton subprocesses with initial states, for e+ q, q + q̄′ and q + q′.
We have also considered the direct contributions to the four fermion contact interactions from string Regge and

winding modes to a subset of flavor changing neutral current observables using an approximate description of the
indirect flavor mixing effects where the direct and indirect flavor changing effects factorize. The K− K̄ mass splitting
yield the strongest constraint, ms > 103 TeV. This bound, as well as other ones deduced from flavor changing
observables, are an order of magnitude stronger than those obtained from the contributions to contact interactions
due to the string momentum modes [49, 50]. It is fair to say, however, that this conclusion is at best qualitative
since the two calculations rely on different inputs and approximations. To obtain more realistic estimates, the highest
priority should be set on obtaining realistic inputs for the flavor mixing matrices which match the predictions for
the fermions mass matrices to observations while improving on the restrictive rank 1 property of the fermions mass
matrices in the model at hand.
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APPENDIX A: BRIEF REVIEW OF OPEN STRING SECTORS IN TOROIDAL ORIENTIFOLDS

We consider type II string theory compactified on factorisable toroidal orientifolds, T 6/ΩR, [T 6 =
∏3

I=1 T
2
I ] where

the involution symmetry, R =
∏3

I=1 RI , acts on the orthogonal basis of complex coordinates, XI = (XI
1 + iXI

2 )/
√
2

in the T 2
I , [I = 1, 2, 3] complex planes as reflections across the real axes, RI ·XI = X̄I . We restrict to the subset of

factorisable three-cycles in the integer homology vector space, Πµ ∈ H3(T 6, Z), represented in terms of the homology
of one-cycles with lattice dual bases, [aI ], [bI ] ∈ H1(T 2

I , Z), by the three pairs of integer quantized winding numbers,
(nI

µ, m
I
µ). These three-cycles are represented in the orthogonal coordinate system of the three complex planes of T 6

by

[Πµ] = (nI
µ, m̃

I
µ), [m̃

I
µ = mI

µ − nI
µU

I
1 , U

I ≡ U I
1 + iU I

2 = −e
I
1

eI2
= −b̂I +

i

χI
, χI =

rI2
rI1

] (A.1)

where U I denote the T 2
I tori complex structure moduli whose real parts are subject to the restriction, b̂I = 0, 1

2 ,

for orthogonal and tilted tori, respectively. We have denoted by rI1 , r
I
2 the radius parameters of the one-cycles of

T 2
I projected on the pair of orthogonal axes. For non-orthogonal 2-d tori, T 2

I , we choose to work with the case of
upwards tilted tori, where rI2 refers to the one-cycle along the imaginary (vertical) axis of the complex plane and rI1
to the projection of the dual one-cycle radius along the real (horizontal) axis. The orientifold O6-planes are the loci
of points fixed under R which extend along the three uncompactified dimensions of Minkowski space-time, M4, and
wrap the three one-cycles, (nI

µ,m
I
µ) = (1, 0). Both the O6-planes and D6-branes are sources for the closed string

RR modes seven-form, C7, with RR charges determined by the winding numbers of the wrapped three-cycles. The
divergent tadpoles of RR modes due to the O6-planes in the one-loop closed string (Klein bottle surface) amplitude are
assumed to cancel against the tadpoles in the open string (cylinder and Möbius strip surface) amplitudes contributed
by introducing K parallel stacks of Nµ branes D6µ, [µ = 1, 2, · · · ,K = a, b, · · ·]. To the D6µ-brane stack wrapped
around [ΠI

µ] = (nI
µ, m̃

I
µ), is associated the orientifold mirror image D6µ′ -brane stack, wrapped around the image cycle

[ΠI
µ′ ] = (nI

µ′ , m̃I
µ′) = (nI

µ,−m̃I
µ). For toroidal orientifolds, the RR tadpole cancellation conditions are of form

K
∑

µ=1

Nµn
I
µn

J
µn

K
µ +

1

2
QOp = 0,

K
∑

µ=1

Nµn
I
µm̃

J
µm̃

K
µ = 0, [QOp = ∓2p−4fp = ∓32] (A.2)

where the summations run over the orientifold equivalence classes, counting mirror pairs as single units; I, J,K ∈
[1, 2, 3] run over the distinct permutations of the complex planes indices; fp = 29−p denotes the Op-planes multiplicity;
and the upper and lower signs of the orientifold charge QOp refer to the SO and Sp (orthogonal and symplectic group)
orientifold projections.
The D6a-brane location in the T 2

I complex planes is described by an oriented vector tilted relative to the O6-
plane (along the real axes) by the angles, πθIa = arctan(m̃I

a/n
I
aU

I
2 ). The D6-branes serve as boundaries for the

end points of open strings which carry their perturbative excitations. The open string sectors, (a, b) and (a, b′),
associated to the two pairs of branes, D6a/D6b and D6a/D6b′ , are assigned the interbrane angles, θab = θb − θa and
θab′ = θb′ −θa = −θb−θa. We use notational conventions where the brane-orientifold and interbrane angles vary inside
the intervals, θIa,b ∈ [−1,+1] and θIab ∈ [0,+1], [I = 1, 2, 3] with positive sign angles associated to counterclockwise
rotations. Transforming back to values of the angles inside these ranges requires geometric information on the signs of
winding numbers. The brane pairs a, b intersect at fixed numbers of points determined by the topological invariants

Iab =
∏

I

(nI
am̃

I
b − m̃I

an
I
b), Ia′b =

∏

I

(nI
a′m̃I

b − m̃I
a′nI

b) =
∏

I

(nI
am̃

I
b + m̃I

an
I
b). (A.3)

The low-energy dynamics on a single isolated stack of N D6-branes in the 4-d space-time M4 is approximately
that of a gauge field theory with gauge group U(N), supersymmetry N = 4, and a certain content of massless
modes associated with the branes moduli. The open string sectors for the D6a/D6b-brane pair supporting the gauge
symmetry U(Na)×U(Nb) include: (1) The diagonal modes, (µ, µ), [µ = a, b] which carry the adjoint representations;
(2) The orientifold twisted modes, (µ, µ′), which carry the symmetric and antisymmetric representations A, S of
U(Nµ) with the multiplicities, 1

2 (Iµµ′ ± IµO6), [IµO6 ≡ [πµ] · [πO6] =
∏

I(−mµ)]; and (3) The non-diagonal ‘twisted’

modes, (a, b) ∼ (b, a)† and (a′, b) ∼ (b, a′)†, which carry the bifundamental representations, Iab(Na, N̄b)⊕Ia′b(N̄a, N̄b).
The equivalence relations between open string sector sectors, (a, b) ∼ (b′, a′) ∼ (b, a)†, (a, b′) ∼ (b, a′) ∼ (b′, a)†, where
the dagger stands for the complex conjugation of the states space-time and internal group quantum numbers, lead to
interpret the intersection numbers Iab or Ia′b of negative signs as multiplicities for the modes with conjugate chirality
and group representation, |Iab|(N̄a, Nb) or |Ia′b|(Na, Nb).
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The key condition to preserve N = 1 supersymmetry on the branes 4-d intersection is that the wrapped three-
cycles be of special Lagrangian type. For Calabi-Yau manifolds, these are the cycles whose real number valued volume
integrals are calibrated by the holomorphic three-form, eiϕΩ3, characterized by a fixed choice of the angle parameter,
ϕ. In close analogy with the conditions selecting in closed string theories the holonomy of subgroups of the internal
space manifold symmetry group SO(6), one preserves N = 1 or N = 2 supersymmetry to the extent that the rotation
matrices relating the branes to the orientifold planes belong to the group SU(3) or SU(2) [4]. The requirement that
the wrapped cycles Πa and Πb are calibrated by the same three-form so that the D6a/D6b-brane pair preserves N = 1
supersymmetry, amounts to the conditions,

∑

I θ
I
a, b = 0 mod 2. In terms of the spinor weights ra(α) of SO(8) for the

16 supercharges conserved in the bulk, N = 1, 2 supersymmetry arises when a single or a pair of spinor weights r(α)
solves the equations,

∑4
a=1 r

a
(α)θ

a
µ = 0, [a = 1, · · · , 4; µ = 1, · · · ,K] where the intersection angle in M4 is set here to

zero, θ4 = 0. In the basis of independent spinor charges for SO(8) defined by

r(1) = (−++−), r(2) = (+ −+−), r(3) = (+ +−−), r(4) = (−−−−), (A.4)

with the notational convention, ra(1) = (−++−) = (− 1
2 ,

1
2 ,

1
2 ,− 1

2 ), [a = 1, 2, 3, 4] the three special angle configurations,

(0, θA,±θA), (θB , 0,±θB), (θC ,±θC , 0), preserve the N = 2 supersymmetries associated to the pairs of spinor weights,
(

r(2),r(3)
r(1),r(4)

)

,
(

r(1),r(3)
r(2),r(4)

)

,
(

r(1),r(2)
r(3),r(4)

)

.

We discuss next the dependence of intersection points on geometrical data for the angles and transverse separations
of D6A/D6B-brane pairs that do not necessarily pass through a common point of T 6. Suppressing the index I of
the 2-d tori T 2

I , for convenience, we parameterize the D6A-brane wrapped around the one-cycle of T 2 with winding
numbers (nA,mA) by the equation

XA(ξA) = (LAξA + qA + pAτ + dAtA)e1, (A.5)

where

LA = nA +mAτ = ñA + imAτ2, tA = −mAτ2 + iñA, ñA = nA +mAτ1,

[τ = τ1 + iτ2 =
e2
e1
, e1 = 2πr1, e2 = 2πr2e

iα] (A.6)

with τ denoting the T 2 torus complex structure modulus, dA the transverse displacement from the origin, qA, pA ∈ Z
the lattice displacements along the basis of dual cycles, and ξA, dA ∈ R parameterize points along longitudinal and
transverse directions. We have formulated the problem here in the case of sideways tilted torus, which is related to
the case of upwards tilted torus considered in Eq. (A.1) by the transformation, τ = −1/U . (The formulas for the
upwards and sideways tilted tori are also related by the substitutions, n → m, m → −n, e1 → e2, e2 → −e1.) We
now introduce a similar equation for D6B : XB(ξB)/e1 = LBξB + qB + pBτ + dBtB, and require the condition,
XA(ξA) = XB(ξB). The resulting pair of linear equations for the real variables ξA and ξB,

(

ñA −ñB

mA −mB

)(

ξA
ξB

)

= −
(

QAB

PAB

)

, (A.7)

where

QAB = QA −QB, PAB = PA − PB , Qµ = qµ − dµmµτ2, Pµ = pµ + dµñµ/τ2, [µ = A,B] (A.8)

is solved in matrix notation by

(

ξA
ξB

)

= − 1

IAB

(

mB −ñB

mA −ñA

)(

QAB

PAB

)

=⇒ XA =
kABLA

IAB
, XB =

k′BALB

IAB
,

[IAB = nAmB −mAnB, kAB = (ñBPAB −mBQAB) mod(IAB), k
′
BA = (ñAPAB −mAQAB) mod(IAB)].(A.9)

The IAB solutions for ξA, ξB are in one-to-one correspondence with the pairs of integers kAB, k
′
BA. The shift vectors,

wBA ≡ XB −XA = (k′BALB − kABLA)/IAB , which link the positions of a given intersection point along the pair of
intersecting branes (B,A) in the complex plane of T 2, belong to the lattice coset, ΛBA/Λ, where ΛBA denotes the
grand torus lattice generated by the cycles LB, LA, and Λ the T 2 torus lattice [67].
We next discuss the vector space of open string states, (a, b), [a = b, a 6= b]. The state vectors,

|(a, b)k,N, r(α), (A, ij) > λ
(ab)
A,ij , are described by the four momentum k; the coordinates oscillator numberN ; the weight

vector r(α) of the SO(8) group Cartan torus lattice; and the gauge group multiplet component A. The CP gauge fac-

tors, λ
(ab)
A,ij , [i = 1, · · · , Na; j = 1, · · · , Nb] are matrices whose array and column indices i = (1, · · · , Na), j = (1, · · · , Nb)
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label the coincident branes inside the stacks a, b of size Na, Nb. In orientifolds, the combined systems of mirror brane

pairs, (a+a′, b+ b′), are described by single matrices, λ
(ab)
A,ij , [i, j ∈ (a+a′, b+ b′)] of size (2Na+2Nb)× (2Na+2Nb).

These are conveniently represented by 2 × 2 block matrices with sub-blocks labeled by a, a′, b, b′. The diagonal open

string states (a, a) are ascribed 2Na× 2Na gauge matrices, λ
(aa)
A,ij . We drop in the following the suffix labels (ab), (aa)

and A, i, j on the matrices, except when needed. We use conventions in which the matrices satisfy the normalization

and closure sum conditions, Trace(λAλ
†
B) = δAB,

∑

A Trace(O1λA)Trace(O2λA) = Trace(O1O2).
The orientifold symmetry ΩR acts on the gauge quantum numbers of brane stacks through the twist matrix given

by the direct product of 2Nµ×2Nµ unitary matrices, γΩR,µ, [µ = a, b]. The orientifold projection on physical states is

then defined by, λ
(ab)
A = ηAγΩR,aλ

(ab)T
A γ−1

ΩR,b, where ηA are state dependent complex phase factors. These conditions

must be imposed only for brane stacks µ which wrap cycles coinciding with their orientifold mirror images, µ = µ′,
hence fixed under the orientifold twist, Πµ = Πµ′ = ΠO6. In the case of a brane stack µ at generic angles, µ 6= µ′, no
conditions need be imposed beyond requiring that the representations for µ and µ′ be conjugate. Nevertheless, it is
convenient to treat in a unified way the cases with µ = µ′ and µ 6= µ′, by taking the orientifold projection matrix in
the latter subspaces to be trivial, γΩR,µ = 1. The SO and Sp orientifold projections, corresponding to QO6 = ∓25,
are characterized by the property of the twist embedding matrix, γTΩR,µ = ±γΩR,µ.
We now specialize to the Sp type projection which is the appropriate one for the model of interest to us to be

discussed in Subsection II B. Solving the condition for the bifundamental representation, λ(µν) = −γΩR,µλ
(µν)T γ−1

ΩR,ν ,

with antisymmetric twist matrices, γΩR,a, [a = µ, ν] of dimension (2Nµ+2Nν)×(2Nµ+2Nν), and the similar condition

for the adjoint representation matrix, λ(Gµ), of dimension 2Nµ × 2Nµ, one obtains

λ(Gµ) =

(

m s1
s2 −mT

)

, λ(µν) =

(

0 B
B′ 0

)

,

[B =

(

α β
γ δ

)

, B′ =

(

−δT βT

γT −αT

)

, γΩR,µ =

(

0 1Nµ

−1Nµ 0

)

] (A.10)

where the sub-blocks m,α, β, γ, δ and s1, s2 designate arbitrary generic and symmetric matrices with m, s1, s2
and α, β, γ, δ having dimensions Nµ × Nµ and Nµ × Nν , respectively. The conjugate group representations are

assigned Hermitian conjugate matrices. The adjoint representation matrix λ(Gµ) in Eq. (A.10) involves 2Nµ(2Nµ+1)/2
independent parameters, as needed to match the dimension of the gauge group USp(2Nµ). The special case for the

matrix λ(Gµ) with s1 = s2 = 0 corresponds to the adjoint representation of U(Nµ), involving the expected number of

N2
µ independent parameters. For the bifundamental representation matrix λ(µν), the entries in the sub-blocks B and

B′ are related by the requirement that the substitution µ↔ µ′ corresponds to charge conjugation. The infinitesimal
transformations of the gauge matrices λ(R) in the representation R of sector (µ, ν), obtained from the commutator
with the adjoint representation matrix,

δµνλ
(R) ≡ (δµ + δν)λ

(R) ≡ [λ(Gµ) ⊕ λ(Gν), λ(R)], [λ(Gµ) = (ǫµ,−ǫµ)⊗ Iν + Iµ ⊗ (ǫν ,−ǫν)] (A.11)

act on the sub-block matrix entries of the matrices B, B′ for the bifundamental representations as

δµνα = ǫµα− αǫν , δµνβ = ǫµβ + βǫν , δµνγ = −ǫµγ − γǫν , δµνδ = −ǫµδ + δǫν . (A.12)

The four inequivalent bifundamental representations are thus in one-to-one correspondence with the sub-blocks,
α, β, γ, δ, characterized by the charge assignments, (Qµ, Qν) : α ∼ (1,−1), β ∼ (1, 1), γ ∼ (−1,−1), δ ∼ (−1, 1).

APPENDIX B: TWO-BODY PROCESSES AT HIGH ENERGY COLLIDERS

1. Tree level string amplitudes for processes with fermion and gauge boson pairs

We discuss in this appendix the tree level four point open string amplitudes in models related to the intersecting
brane models. For comparison with the results in Subsec. II A, we first consider the branes within branes models.
We start, for completeness, with the case of four fermion modes belonging to the diagonal sector (p, p) of a Dp-brane
which corresponds to the single Dp-brane model [25]. The result can be derived by dimensional reduction of the
familiar formula for the D9-branes of type I theory

A′
(p,p)4 = GDpT1234

∫ 1

0

dxx−s−1(1− x)−t−1[(1− x)S1234 − xS1423] + perms
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= −GDpT1234
S(s, t)
st

(tS1234 − sS1432) + perms, (B.1)

where we use same notations as in Eqs. (II.1) and (II.6). The above formula is formally related to that in Eq. (II.1) by

the substitution, CS1234V1234 → −GDp(tS1234 − sS1432)
S(s,t)

st . Matching to the pole term from massless gauge boson

exchange determines the normalization factor as, GDpT1234 = 2g2Dp, where the Dp-brane gauge coupling constant gDp

enters the gauge current vertex as,
√
2gDpT

aγλ.
We now focus on the massless fermion modes of the Dp/D(p+ 4)-brane models localized at brane intersections in

the non-diagonal sectors, (p, p + 4) + (p + 4, p). The calculations, discussed initially in [33], bear formal similarities
with those for intersecting branes. We specialize to the case p = 3 of setups with D3/D7I-brane pairs with I = 1, 2, 3.
There are two possible channels for the couplings of four non-diagonal sector modes (3, 7I), which correspond to the
configurations |(3, 7)I |4 and |(3, 7I)|2|(3, 7J)|2. The string amplitude for the first channel, [(3, 7)I ]

4, involving two
identical pairs of conjugate fermion modes is given by

A′
(3,7I)4

= C′
Dp

∫ 1

0

dxx−s−1(1− x)−t−1[(1− x)S1234 − xS1432]

(

T1234
∏

A

(
ϑ[ ǫA0 ](τA)

F
1
2 (x)

) + T4321
∏

A

(
ϑ[ ǫA0 ](τB)

F
1
2 (1− x)

)

)

,

[τA(x) = i|LA|2
F (1− x)

F (x)
, τB(x) = i|LA|2

F (x)

F (1 − x)
, F (x) = F (

1

2
,
1

2
; 1;x)] (B.2)

where the label A = (Jm, Km), [m = 1, 2] in the products runs over the real dimensions of the 4-d sub-torus T 2
J ×T 2

K

of the internal torus T 6 wrapped by the D7I-brane, the Wilson line parameters along the corresponding sub-torus are
denoted by ǫA, and the sub-torus volume parameter is defined by, |LA|2 = r2Jr

2
K . The direct and reverse orientation

terms inside the large parentheses are related by the change of integration variable, x→ (1−x). Combining the regions
of the x-integral near x = 0 and x = 1 yields the low-energy approximate representation of the string amplitude as
infinite series of s-channel or t-channel poles located at the string compactification modes

A′
(3,7I)4,0

+A′
(3,7I)4,1

≃ C′
Dp

∑

pA∈Z

(

T1234[S1234

∏

A δ
−(pA+ǫA)2r2A

−s+∑A(pA + ǫA)2r2A
− S4321

∏

A δ
−p2

A/r2Ae2πipAǫA/rA
−t+∑A p

2
A/r

2
A

]

+T4321[S1234

∏

A δ
−p2

A/r2Ae2πipAǫA/rA
−s+∑A p

2
A/r

2
A

− S4321

∏

A δ
−(pA+ǫA)2r2A

−t+∑A(pA + ǫA)2r2A
]

)

, (B.3)

where the momentum modes in the open string sector (7I , 7I) arise after use of the Poisson resummation formula
and the winding modes belong to the open string sector (3, 3). The massless pole terms determine the normalization

constant in terms of the gauge coupling constants by the formula, C′
DpT1234 = 2πgs =

2g2
DpVp−3m

p−3
s

(2π)p−3 with Vp−3 ∼
(2πr)p−3 denoting the volume of the (p− 3)-cycle of the internal manifold wrapped by the Dp-brane. For the Abelian
gauge group case, C′

DpT1234 = C′
DpT4321 = 2g2D3 = 2g2D7r

2
Jr

2
K .

For the channel |(3, 7I)|2|(3, 7J)|2, involving two distinct pairs of conjugate fermion modes, (3, 7I) and (3, 7J), [I 6=
J ] the string amplitude is given by the formula

A′
(3,7I )2(3,7J )2

= C′
Dp

∫ 1

0

dxx−s−1(1− x)−t−1

(

T1234[(1− x)S1234 + xP1432]
∏

A

(
ϑ[ ǫA0 ](τA)

F
1
2 (x)

)

+T4321[(1− x)P1234 + xS1432]
∏

A

(
ϑ[ ǫA0 ](τB)

F
1
2 (1− x)

)

)

, (B.4)

where

P1234 = (uT1 γ
0u2)(u

T
3 γ

0u4), S1234 = (uT1 γ
0γµu2)(u

T
3 γ

0γµu4). (B.5)

The label A in the products
∏

A now runs over the directions of the wrapped internal sub-torus T 2
K common to the

D7I , D7J -branes, corresponding to A = Km, [m = 1, 2] and τA, τB retain the same definition as above except
that the volume parameter is now given by, |LA|2 = r2K . The Dirac spinor scalar quartic coupling, P1234, appears
because the modes in the non-diagonal open string sector (7I , 7J) to which the fermion pairs couple are Lorentz
scalars. Combining the contributions from the regions of the x-integral near x = 0 and x = 1, yields the low-energy
representations as infinite series of s-channel and t-channel poles located at the string compactification modes

A′
(3,7I)4,0

+A′
(3,7I)4,1

≃ C′
Dp

∑

pA

(

T1234[S1234

∏

A δ
−(pA+ǫA)2r2A

−s+∑A(pA + ǫA)2r2A
+ P1432

∏

A δ
−p2

A/r2Ae2πipAǫA/rA
−t+∑A p

2
A/r

2
A

]
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+T4321[P1234

∏

A δ
−p2

A/r2Ae2πipAǫA/rA
−s+∑A p

2
A/r

2
A

+ S1432

∏

A δ
−(pA+ǫA)2r2A

−t+∑A(pA + ǫA)2r2A
]

)

. (B.6)

The normalization factor is given by the same formula as found above.
We next discuss the 2 → 2 body processes involving the gauge boson pair production by fermion-antifermion

annihilation and the gauge boson pair scattering processes. The string amplitudes have a universal form with the
model dependence residing only in the gauge structure. In particular, identical formulas hold in single and multiple
Dp-brane models. For the localized fermions of intersecting brane models, the string amplitude for photon pair
production by fermion-antifermion annihilation, A′

eeγγ ≡ A′(e+(k1) + e−(k2) + γ(k3) + γ(k4)), is calculated from

the world sheet vacuum correlator, < V
(− 1

2 )

−θ V
(− 1

2 )

θ V
(−1)
Aµ

V
(0)
Aν

>. The dependence on the interbrane angles from the

correlator of a single pair of coordinate twist fields is found to exactly cancel that coming from contracting the
corresponding pair of spinor twist fields. The rest of the calculation is standard and gives the same result as that
obtained by dimensional reduction from the D9-brane amplitude [91]

A′
(eeγγ) = GDp[T1234

S(s, t)
st

− T1324
S(u, t)
ut

+ T1243
S(s, u)
su

]K(u1, u2, ǫ3, ǫ4),

[K(u1, u2, ǫ3, ǫ4) = t (ū1ǫ/3(k/2 + k/4)ǫ/4u2) + u (ū1ǫ4(k/2 + k/3)ǫ/3u2),
T1234 = Trace(λ1λ2λ3λ4) + Trace(λ4λ3λ2λ1)] (B.7)

where the factor depending on the polarization wave functions, K(u1, u2, ǫ3, ǫ4), is (anti)symmetric under permutations
of the (fermion) boson particle labels. Assuming, for simplicity, the three gauge trace factors to be equal, the
factorization on the massless pole terms identifies the normalization constant to the gauge coupling constant in the
Abelian and U(N) non-Abelian group cases as, GDpT1234 = 2g2Dp and GDpT1234 = 2g2Dp[

∑

a(T
a)12 ·(T a)34+

N+1
2N (1)12 ·

(1)34].
The string amplitude for the gauge boson pair scattering process, A′

γγγγ ≡ A′(γ(k1) + γ(k2) + γ(k3) + γ(k4)), is of
same form as that obtained in the familiar D9-brane case [91]

A′
(γγγγ) = G′

Dp[T1234
1

st
S(s, t) + T1324

1

ut
S(u, t) + T1243

1

su
S(u, s)]Kγ(ǫ1, ǫ2, ǫ3, ǫ4),

Kγ(ǫ1, ǫ2, ǫ3, ǫ4) = −1

4
[st (ǫ1 · ǫ3)(ǫ2 · ǫ4) + perms] +

s

2
((ǫ1 · k4)(ǫ3 · k2)(ǫ2 · ǫ4) + perms), (B.8)

where the normalization constant is related to the gauge coupling constant by, G′
DpT1234 = G′

DpT1324 = G′
DpT1243 =

2g2Dp.

2. Helicity amplitudes

To enable the comparison with experimental measurements, it is useful to express the various string ampli-
tudes in the spin helicity basis of the various modes. A convenient way to proceed is by first establishing the
correspondence dictionary between the kinematics of string amplitudes, where all particles are incoming, with
that of physical processes, and using next the familiar crossing relations which transform particles to antiparti-
cles and flip the sign of momenta and helicities. Thus, the amplitude for fermion-antifermion pair production,
f+
1 (p1) + f−

2 (p2) → f−
3 (p3) + f+

4 (p4), is obtained from the string amplitude, A(f1(k1) + f2(k2) + f3(k3) + f4(k4)), by
setting, f1(k1) = f+

1 (p1), f2(k2) = f−
2 (p2), f3(k3) = f−(−p3), f4(k4) = f+(−p4), which involves substituting the

momenta, kinematic variables and Dirac spinors as

[k1, k2, k3, k4] =⇒ [p1, p2, −p3, −p4],
[s = −(k1 + k2)

2, t = −(k2 + k3)
2, u = −(k1 + k3)

2] =⇒ [s = −(p1 + p2)
2, t = −(p1 − p4)

2, u = −(p1 − p3)
2],

[u1(k1), u2(k2), u3(k3), u4(k4)] =⇒ [v⋆(p1), u(p2), u
⋆(p3), v(p4)]. (B.9)

For the choice of kinematic variables in the center of mass frame, ~p1 = −~p2 = ~p, −~p3 = ~p4 = ~p′, [~p · ~p′ = cos θ] the
kinematic invariants read, s = 4p2, t = −s sin2 θ

2 , u = −s cos2 θ
2 . The helicity polarization basis for the spin one-half

Dirac fermions is described by the familiar formulas

e = e− : u(~p, λ) = p

(

1

λ

)

⊗ φλ(~p); ē = e+ : v(~p, λ) = p

(−λ
1

)

⊗ φ−λ(~p),

[φL(~p) = φ−1(~p) =

(− sin θ
2

cos θ
2

)

, φR(~p) = φ1(~p) =

(

cos θ
2

sin θ
2

)

. (B.10)
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The Dirac spinor matrix elements in the configuration of helicities for the physical process, f+f− → f−f+ are given
by

A(f
(λ1)
1 (p1) + f

(λ2)
2 (p2) → f

(λ3)
3 (p3) + f

(λ4)
4 )(p4) (+ −−+) (+ −+−) (− −−−)

S1234 ≡ (v̄(p1)γ
µu(p2))(ū(p3)γµv(p4)) −2u −2t 0

S1432 ≡ (v̄(p1)γ
µv(p4))(ū(p3)γµu(p2)) 2u 0 −2s

tS1234 − sS1432 2u2 −2t2 2s2

The results for the other helicity configurations are inferred from the above formulas by invoking the symmetry
under space parity. The string amplitude in the three independent helicity configurations for the physical process,
ēλ1 + eλ2 → ēλ4 + eλ3 , are given in the single brane and the intersecting brane cases by

(A
′[+−+−,+−−+,−−−−]
(p,p)4 )Dp = −GDp

S(s, t)
st

[2u2,−2t2, 2s2] + perms,

(A
′[+−+−,+−−+,−−−−]
f4 )ISB = 2πgsT1234V1234[−2u,−2t, 0]. (B.11)

To account for the electroweak symmetry breaking in the charge neutral channels one needs to substitute the massless
photon pole term by the sum of γ + Z boson pole terms. The Z boson exchange contribution is obtained from that
of γ exchange by the substitution, s → s − m2

Z , along with the following replacements for the chirality couplings
LL,RR,LR,RL:

e2f → e2f [aL(f)a
⋆
L(f), aR(f)a

⋆
R(f), aL(f)a

⋆
R(f), aR(f)a

⋆
L(f)],

[aL(f) =
− 1

2 + s2W
sW cW

, aR(f) =
sW
cW

, sW = sin θW , cW = cos θW ]. (B.12)

The differential cross section for the spin-unpolarized Bhabha scattering process, ē+ e→ ē+ e, obtained by adding
to the Standard Model terms the contributions from the D = 6 contact interactions, is given by

<
dσ

d cos θ
>=

α2π

2s
[u2|ALL|2 + u2|ARR|2 + 2t2|As

RL|2 + 2s2|At
RL|2]

ALL = A(e+Re
−
L → e+Re

−
L) = A+−+−

SM +
2ηLL

αΛ2
, [A+−+−

SM =
1

s
+

1

t
+ a2L(e)(

1

s−m2
Z

+
1

t−m2
Z

)],

ARR = A(e+Le
−
R → e+Le

−
R) = A−+−+

SM +
2ηRR

αΛ2
, [A−+−+

SM =
1

s
+

1

t
+ a2R(e)(

1

s−m2
Z

+
1

t−m2
Z

)],

At
RL = A(e+Le

−
L → e+Le

−
L ) = A−−−−

SM +
ηRL

αΛ2
, [A−−−−

SM = A++++
SM =

1

t
+ aL(e)aR(e)

1

t−m2
Z

],

As
RL = A(e+Re

−
L → e+Le

−
R) = A+−−+

SM +
ηRL

αΛ2
, [A+−−+

SM = A−++−
SM =

1

s
+ aR(e)aL(e)

1

s−m2
Z

],

At
LR = A(e+Re

−
R → e+Re

−
R) = A++++

SM +
ηLR

αΛ2
,

As
LR = A(e+Le

−
R → e+Re

−
L ) = A−++−

SM +
ηLR

αΛ2
, (B.13)

where α = e2

4π and ηHH′

Λ2 denote the coefficients of the local operators previously defined in Eq. (II.17), and aH(e)
designate the Z-boson vertex couplings defined in Eq. (B.12). We use the suffix label s, t to distinguish the s- and
t-channel pole terms.
For the fermion pair scattering processes, the correspondence dictionary between the kinematical variables in the

physical process, A(f1(p1) + f2(p2) → f3(p3) + f4(p4)), and the string process, A(f1(k1) + f2(k2) + f3(k3) + f4(k4)),
can be written as

[k1, k2, k3, k4] =⇒ [−p3, p1,−p4, p2], [u1(k1), u2(k2), u3(k3), u4(k4)] =⇒ [u⋆(p3), u(p1), u
⋆(p4), u(p2)],

[ŝ = −(k1 + k2)
2, t̂ = −(k2 + k3)

2, û = −(k1 + k3)
2] =⇒ [t = −(p1 − p4)

2, u = −(p1 − p3)
2, s = −(p1 + p2)

2].(B.14)

For clarity, we have distinguished the kinematic invariants of the string theory process by adding momentarily hat
symbols. In the center of mass frame of the physical process, ~p1 = −~p2 = ~p, −~p3 = ~p4 = ~p′, [~p · ~p′ = cos θ]
the kinematic invariants read, s = 4p2, t = −s sin2 θ

2 , u = −s cos2 θ
2 . We specialize now to the physical process,

eH(p1)+qH′(p2) → eH(p3)+qH′(p4), where the Dirac spinor matrix elements in the singleD-brane and the intersecting
brane cases, signalled by the suffix labels Dp and ISB, are given by

(t̂S1234 − ŝS1432)Dp = [2s2, −2u2]; (S1234)ISB = [−2û, −2t̂] = [−2s, −2u], (B.15)
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with the two entries inside brackets corresponding to the equal and unequal helicity cases, [H = H ′, H 6= H ′]. The
helicity basis amplitudes for the physical process can be written for the single D-brane and the intersecting brane
cases as

A(eH + qH′ → eH + qH′)Dp = GDp[S(u, t)
s2

tu
T1324 + S(s, u) s

u
T1234 + S(t, s)s

t
T1243]

(

1

−u2/s2
)

,

A(eH + qH′ → eH + qH′)ISB = −C[V1324(u, t)T1324 + V1234(s, u)T1234 + V1243(s, t)T1243]
(

2s

2u

)

, (B.16)

with the upper and lower entries corresponding to the configurations with equal and unequal helicities, [H = H ′, H 6=
H ′].
The helicity amplitudes for the gauge boson pair production process, e+(p1) + e−(p2) → γ(p3) + γ(p4), are given

by the formulas

A(ē+R + e−L → γL + γR) =
u

t
A(ē+R + e−L → γR + γL) = 2g2Dp

√

u

t
[
u

s
S(s, t)− S(u, t) + t

s
S(s, u)], (B.17)

where we have assumed the various gauge factors to be equal. The helicity amplitudes for the gauge boson pair
scattering process are given by the explicit formulas

A(γH + γH′ → γH + γH′) = 2g2Dp

s

tu
f(s, t, u)

(

1

t2/s2

)

,

[f(s, t, u) = sS(t, u) + tS(u, s) + uS(s, t)] (B.18)

where the upper and lower entries correspond to the configurations with equal and unequal helicities, [H = H ′, H 6=
H ′]. Note the crossing relations, A(γ1L + γ2R → γ3L + γ4R)|s,t,u = A(γ1L + γ4R → γ3L + γ2R)|t,s,u.
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FIG. 1: The contact interaction coefficient gHH′

ij,kl = m2
sKµ/(Λ

ff ′
2

HH′g
2
µ) for the operator e4L predicted in Cremades et al., [60, 61]

model is plotted as a function of msr. Same results hold for the operator q4L and numerically close results hold for the operators
u4
R, d4R and e4R. The reference set of parameters specifying the model is defined by, ρ = 1, ǫ = 1, ǫ̃ = 1, χI = 1, β1 = 1, β2 =

1, ǫA = (0, 0, 0), ǫB = (0, 0, 0) (see the text just below Eq. (II.30)). In panel (a), the five curves I, II, III, IV, V are obtained
by starting from the reference set (I) and performing in succession the following variations: χI = 2 (II), β2 = 1/2 (III),
β1 = β2 = 1/2 (IV ) and χI = 1

2
(V ). In panel (b), the three curves I, II, III are obtained by starting from the reference set of

parameters (I) and including the changes, ǫB = (0, 1

3
, 0) (II) and ǫB = (0, 2

3
, 0) (III). In panel (c), the two curves I, II refer

to the reference set of parameters with the choices, ǫA = ǫB = (0, 1

3
, 0) (I) and ǫA = ǫB = (0, 2

3
, 0) (II).The presence of cusps

in the curves of panel (c) is due to the use of semi-logarithmic plots for the absolute values of the coefficients.
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FIG. 2: The contact interaction coefficient gHH′

ij,kl for the operator (ecL)
4 ∼ e4R is plotted as a function of msr. We use same

conventions as in Fig. (1). Same results hold for the operator (dcL)
4 ∼ d4R and numerically close results hold for the operator

(uc
L)

4 ∼ u4
R. The three panels (a), (b), (c) are associated to χI = 1

2
, 1, 2. In each panel, we display three curves obtained by

starting from the reference set of parameters (I) and changing the longitudinal distance parameter to ǫB = (0, 1

3
, 0) (II) and

ǫB = (0, 2

3
, 0) (III). The presence of cusps in certain curves is due to the use of semi-logarithmic plots for the absolute values

of the coefficients.
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FIG. 4: The ratio (dσ/d cos θ)SM+contact/(dσ/d cos θ)SM for the Bhabha scattering differential cross section at the center of
mass energy

√
s = 183 GeV is plotted as a function of cos θ using the coefficients of contact interactions predicted in Cremades

et al., [60, 61] with the reference set of parameters. We consider four values of the string scale parameter, ms = 0.5, 1.5, 2., 3.
TeV, and two values of the compactification scale parameter, msr = 1, 3. The group of four lowermost curves from the bottom
right corner is associated to msr = 3, and the group of four uppermost curves close to the horizontal axis is associated to
msr = 1. The predictions for variable string scale within each group are drawn with dashed curves using dashings of increasing
length in correspondence with the increasing sequence of values, ms = 0.5, 1.5, 2., 3. TeV.
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FIG. 5: The ratio (dσ/d cos θ)SM+contact/(dσ/d cos θ)SM for Bhabha scattering differential cross section at the center of mass
energy

√
s = 500 GeV is plotted as a function of cos θ using the coefficients of contact interactions predicted in Cremades et

al., [60, 61] with the reference set of parameters. The group of four lowermost curves from the bottom right corner is associated
to msr = 3, and the group of four uppermost curves close to the horizontal axis is associated to msr = 1. The predictions for
variable string scale within each group are drawn with dashed curves using dashings of increasing length in correspondence with
the increasing sequence of values, ms = 2., 3., 4., 5. TeV.
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FIG. 6: The ratio (dσ/d cos θ)SM+contact/(dσ/d cos θ)SM for Bhabha scattering differential cross section at the center of mass
energies

√
s = 183. GeV and

√
s = 500. GeV are plotted as a function of cos θ for the string amplitudes predicted in Cremades

et al., [60, 61] model with the reference set of parameters, using g2b = g22(mZ) = 0.425 and α(mZ) = 1/127.9. The total cross
section is evaluated for the subtraction regularized string amplitudes with the massless gauge boson pole terms replaced by the
corresponding pole terms at the physical masses of the neutral γ, Z gauge bosons. We consider the approximate estimate for
the mixed chirality amplitudes, GLR, GRL, setting these to a constant multiple of the pure chirality amplitudes, GLL, GRR,
defined by the parameterization, GLR = GRL = xGLL = xGRR, with the two extreme numerical values x = 1

2
, 5. We

also consider the two values for the string mass scale, ms = 1, 2 TeV and ms = 2, 4 TeV, in correspondence with the two
center of mass energies,

√
s = 0.183 TeV and

√
s = 0.500 TeV. On the left hand side, the upper and lower panels (a) and

(b) display the ratio for msr = 1 and msr = 3 at
√
s = 183. GeV with the four curves I, II, III, IV (in full, dotted,

short-dashed, dashed lines) referring to the values of the string mass scale and the proportionality factor between the mixed and
pure chirality amplitudes: (x = GLR/GLL, ms/TeV) = ( 1

2
, 1), ( 1

2
, 2), (5, 1), (5, 2) TeV. On the right hand side, the upper and

lower panels (c) and (d) display the ratio for msr = 1 and msr = 3 at
√
s = 500. GeV with the four curves I, II, III, IV

referring to the values of the string mass scale and the proportionality factor between the mixed and pure chirality amplitudes:
(x = GLR/GLL,ms/TeV) = ( 1

2
, 2), ( 1

2
, 4), (5, 2), (5, 4).
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of the neutral meson systems K − K̄,B− B̄, Bs − B̄s, D− D̄ using the experimental inputs quoted in Eq. (IV.11). The curves
labeled V, V I refer to the |∆Fl| = 1 observables for the charged leptons three-body decay rates, µ → e + e + ē, τ → e + e + ē
using the experimental inputs quoted in Eq. (IV.12).


