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We evaluate the tree level four fermion string amplitudes in the TeV string mass scale models
with intersecting D6-branes. The coefficient functions of contact interactions subsuming the con-
tributions of string Regge resonance and winding mode excitations are obtained by subtracting out
the contributions from the string massless and massive momentum modes. Numerical applications
are developed for the Standard Model like solution of Cremades, Ibanez, and Marchesano for a
toroidal orientifold with four intersecting D6-brane stacks. The chirality conserving contact inter-
actions of the quarks and leptons are considered in applications to high energy collider and flavor
changing neutral current phenomenology. The two main free parameters consist of the string and
compactification mass scales, ms and M.. Useful constraints on these parameters are derived from
predictions for the Bhabha scattering differential cross section and for the observables associated
to the mass shifts of the neutral meson systems K — K, B — B, D — D and the lepton number
violating three-body leptonic decays of the charged leptons p and .

PACS numbers: 12.10.Dm,11.25.Mj

I. INTRODUCTION

The consideration of Dirichlet branes has led in recent years to remarkable advances in the particle physics model
building. This has made possible the construction of wide classes of Standard Model realizations for type I superstring
theories using branes which extend along the flat spatial dimensions of M4 and wrap around cycles of the internal
space manifold. The existing two approaches employing configurations of multiple type IIb branes located near
orbifold singularities [1-3] and type IIa branes intersecting at angles [4], which we designate henceforth for lack of
better names as setups of branes within branes and intersecting branes, respectively, are well-documented by now,
thanks to the reviews in [5] and [6-8]. The two most characteristic features of these string constructions reside in the
wider freedom in choosing the string theory mass scale and in the occurrence of localized chiral fermions in the string
spectrum.

Because they are amenable to experimental tests based on data from high-energy colliders and limits for rare
processes, the TeV string mass scale models [9, 10] are clearly those with the greatest impact on phenomenology. In
developing the string theory machinery for the physics from extra dimensions, one is especially encouraged by the
applications using orbifold field theories in higher dimensional spacetimes with matter fermions which move in the
bulk or are localized inside thin [11, 12] or thick [13-16] domain wall branes. The theoretical and experimental aspects
of collider studies of physics from extra dimensions are reviewed in [17-20] and [21]. The string theory framework
embodies a higher degree of consistency in comparison to the field theory framework, and is also more economical
thanks to a small parameter space restricted to the fundamental tension and coupling constant string parameters,
m? = 1/a’ and gs, along with adjustable parameters associated with the compactification and infrared cutoff mass
scales. Several examples that qualify as TeV scale string models have been constructed within the branes within
branes [22] and intersecting branes [23] approaches.

One important motivation for the interest in TeV scale string models is to gain insight on the hierarchy between the
contributions from the various string excitations. In particular, one wishes to understand how the exchange of string
Regge and winding modes compares with that of the gravitational Kaluza-Klein (KK) modes. This has a practical
importance since, unlike the contributions the latter ones can be well described, in principle, within the familiar field
theory framework.

The early string inspired studies were focused on models using single brane configurations [24, 25]. These have the
characteristic property that the open string Regge resonance modes contribute at the tree (disk surface) level while the
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closed string modes contribute at the one-loop (cylinder surface) level of the string perturbation theory on the world
sheet. (That the exchange of closed string modes can be viewed as a loop effect follows from the world sheet duality
linking the ultraviolet and infrared regimes.) The strong constraints from the N' = 4 supersymmetry preserved by the
extremal branes of type II supergravity which saturate the BPS (Bogomolny-Prasad-Sommerfeld) bound, restrict the
low-energy tree level contributions in single brane models to local operators of dimension D > 8. Using the orbifolding
mechanism, say, by placing the D-brane at an orbifold fixed point in order to reduce the number of preserved 4-d
supercharges and produce a chiral open string spectrum, is indeed helpful towards obtaining semirealistic models but
does not significantly modify the structure of string amplitudes. This is often referred as the inheritance property of
orbifolds. Another characteristic of the single D-brane models is the insensitivity of predictions with respect to the
structure of the internal space manifold. Here again the orbifold constraints on the Chan-Paton (CP) gauge factors
greatly improve the description by ensuring that massless poles in channels with exotic quantum numbers cancel out.
Useful applications to neutrino-nucleon elastic scattering at ultra-high energies [26, 27] and to the two-body reactions
at high-energy colliders [28-30] have been developed along these lines in terms of single D-brane models where m
and the CP factors are treated as free parameters. Also, building up on the initial studies of the single photon+jet
signal in the high energy hadronic collider reaction, p + p — 7 + j, recent works discuss the dijet signal [31] in the
reaction, p+p — j+ j, along with signals from the various processes at the LHC model [32] which could usefully test
the single D-brane models of TeV string scale..

The multiple brane setups bring a crucial novel feature in this discussion through the presence of localized massless
fermions whose contact interactions are not restricted to dimensions D > 8. This point was first recognized by
Antoniadis et al., [33] in the context of TeV scale string models with Dp/D(p+4)-branes. Finite tree level contributions
were indeed found for the dimension D = 6 local operators coupling four fermions of which at least a single pair belongs
to the non-diagonal open string sectors (p, p+4)+ (p+4, p). That the open string fermions localized at the intersection
of D-branes behave in much the same way as the twisted modes of closed strings [34, 35] was realized by several authors
in the context of multiple brane [36-38] and intersecting brane [39-44] models. The operator algebra approach for
the superconformal field theory on the world sheet can be used to calculate the tree level string amplitudes. We also
note as a side remark that the tools developed in recent years for the calculation of scattering amplitudes in gauge
theories [45] and string theories [46] should encourage pursuing applications for general n-point amplitudes at higher
loop orders.

So far, the collider studies of TeV string scale models have been mostly focused on setups with single branes [24, 25|
and branes within branes [33, 47, 48], as already said above. No comparable applications exist for the intersecting
branes models. Regarding the flavor physics, however, several studies have been devoted to both the branes within
branes [22] and the intersecting branes [49, 50] models. In parallel, a wide interest was aroused by the field theory
models in flat extra dimensions with thin branes [51, 52] and thick branes [53-57] or in warped spacetimes [58, 59].
The reader should be warned that the quoted references represent a tiny fraction of the literature on this subject.

In the present work we wish to pursue the discussion of the tree level contact interactions for four localized fermions
in intersecting brane models with the view to confront the predictions against experimental data for colliders and
flavor changing neutral current processes. Although the assumption of a low string mass scale is naturally paired
with that of large extra space dimensions, the requirement that the string theory remains weakly coupled turns out
to restrict the ratio of string to compactification scales, msr = ms/M,, to a relatively narrow interval of O(1). This
circumstance has motivated us in taking the contributions from world sheet instantons into account. We evaluate
the tree level string amplitudes by integrating the vacuum world sheet correlators over the moduli space of the disk
surface with two pairs of massless fermion vertex operators inserted on the boundary. Since the tools for calculating
open string amplitudes in intersecting brane models [36-39, 41, 43] are well documented by now, we shall present
very briefly the main formulas before proceeding to our main goal. The discussion will rely heavily on our previous
work [44].

We develop concrete calculations for the Standard Model solution obtained by Cremades et al., [60, 61] for a toroidal
orientifold with four D6-branes, using specifically the related family of solutions presented by Kokorelis [62]. This is
conceived as a local model (or premodel) described by a classical configuration of intersecting D6-branes decoupled
from the gravitational interactions and the geometric moduli fields. It is encouraging that other searches of solutions
for orientifolds with intersecting branes also select families of small size, as illustrated by the study focused on the
Zy X Zy orbifold models [63] realizing the supersymmetric Pati-Salam model with a hidden sector, and the statistical
studies of the open string landscape of vacua for the Zy x Z3 [64, 65] and Zg_r; [66] orbifolds realizing the minimal
supersymmetric standard model and the Pati-Salam model with hidden sectors.

The proper identification of physics from extra dimensions presupposes that one can combine the new physics
contributions with those from the Standard Model interactions in a consistent way. This condition is especially
critical for the string theory applications where a satisfactory implementation of the electroweak symmetry breaking
is not yet available. Rather than pursuing a full-fledged calculation, we shall adopt here a phenomenologically minded
approach, similar to that used in [33]. This consists in separating out by hand in the low-energy expansion of string



amplitudes the contributions from the string massless and momentum modes so as to access the contact interactions
which subsume the contributions from the string Regge and winding excitations.

The exchange of massive modes from extra dimensions can also induce flavor changing interactions among fermions
of different flavors which sit at points finite distances apart along the extra dimentions. These effects come on top of
the flavor mixing effects generated during the electroweak gauge symmetry breaking by the trilinear Yukawa couplings
of fermions to Higgs bosons. We focus here on a restricted set of hadronic and leptonic flavor observables believed to
be among the most sensitive ones. To simplify calculations, we introduce certain assumptions on the flavor structure
of the four fermion amplitudes which lead to an approximate factorization of the direct and indirect flavor changing
effects.

The outline of the present work is as follows. Building up on our previous work [44], we present in Section II
the tree level four fermion string amplitudes for the high energy processes of fermion-antifermion annihilation into
fermion-antifermion pairs and fermion pair scattering, f + f — f'+ f and f+ f' — f + f'. We next consider
an approximate construction of the contact interactions between pairs of quarks and/or leptons produced by the
decoupling of string excitations. Finally, specializing to the Standard Model solution of Cremades et al., [60, 61],
we present numerical results for the chirality conserving contact interactions as a function of the string and com-
pactification mass scales and the parameters describing the separation of intersection points. The corrections to the
Standard Model contributions are studied over the admissible parameter space for the string and compactification
mass scales. For comprehensiveness, we provide in Appendix A a brief review of the intersecting D6-brane models
putting a special emphasis on the topics relating to the parameterization of the branes intersection points and the
Chan-Paton gauge factors which have been lightly addressed so far. The discussion of tree level string amplitudes is
complemented in Appendix B by a review encompassing both the intersecting D6-brane and D3/D7-brane models
aimed at the two-body processes of fermion-antifermion annihilation into pairs of gauge bosons and of gauge boson
scattering, f—l—f—>7+7 and y+v—~v+7.

In Section III, we discuss the implications from the indirect high energy collider tests with a special focus on the
Bhabha scattering differential cross section. In Section IV, we examine the contributions from the flavor dependent four
fermion contact interactions to the hadronic and leptonic flavor changing observables associated to the mass splitting
of quark-antiquark neutral mesons and the lepton number violating three-body leptonic decays of the charged leptons.
For all the above applications, we compare our predictions with experimental data in order to infer lower bounds on
the string mass scale at a fixed ratio of the string to compactification mass scales.

II. TREE LEVEL STRING AMPLITUDES IN INTERSECTING BRANE MODELS

We calculate the tree level open string amplitudes for four massless fermion modes localized at the intersection of
D6-branes in toroidal orientifold models. After quoting in Subsec. IT A the general formula for the string amplitudes
and discussing its low-energy representation as infinite sums of pole terms and the subtraction prescription proposed
to construct the contact interactions, we specialize in Subsec. II B to the Standard Model vacuum solution of Cremades
et al., [60, 61] and present in Subsec. II C numerical predictions for the contact interactions. Several notations are
specified in Appendix A which provides a brief review of intersecting D6-branes models. All calculations are performed
with the space-time metric signature, (— -+ ++), using units where, o/ = 1/m? = 1, except on certain occasions where
o’ will be reinstated.

A. Four fermion string amplitudes and contact interactions

The open string amplitudes for four fermions localized at points of the internal manifold can be calculated most
conveniently by means of the superconformal field theory on the world sheet. The basic tools were initially developed
for the closed string orbifolds [34, 35] and refined in several subsequent works (see [68], for instance). The application
to the ‘twisted’” or non-diagonal modes of open string sectors was discussed later for the case of branes within
branes [33, 36-38] and of intersecting branes [39, 41, 44, 49].

1. String amplitudes of localized fermions

The general configuration of quantum numbers for the four fermion processes consist of two incoming conjugate
fermion pairs, f;(k1) + f;(k2) + fi.(ks) + f/(k4), localized at the four intersection points, X;, X;, Xg, X; € T®, of
the four D6-brane pairs, (D, A), (A, B) and (B, C), (C, D), intersecting at the angles, F6! and F6'T. The tree level
open string amplitudes are obtained from the correlators of vertex operators inserted at points x1, =2, x3, T4 on the



disk surface boundary by integrating over the disk moduli space of the punctured disk. Using the invariance under
the Mdobius group to set, 1 =0, 2 =z, 23 =1, x4 = X — 00, one can write the resulting formula as [44]

o = AV_g,(D, Ay, (£1)Vo,(4,8).5.k2 (T2)Voor (B,0) eska (73) Ve (0,0 ks (22)) /T (27) 264 (O k)]

= 0(3123471234171234(87 t) + Si324Ti324 V1324 (0, t) + S1243T1243V1243(5, U)>, (IL.1)

where we use the notations:

1
s a 2sm7r9
V1234(S,t):/ dxx 1( — "t-1 || E Z
0

Ti23a = Tho3a + T4321, Th234 = TT()\l)\2)\3/\4) 51234 = —51432 = (u{ YOy uz2) (ud 4Py uy),

g2l )
C = 2mgoa’ = 2 2K e VA e L

—(kl + k2)2 t= (kz + kg) , U = (kl + k3)2. (112)

The string amplitude A’ 1 in Eq. (IL.1) is built from three reduced (partial) amplitudes associated to the cyclically
inequivalent permutatmns of the insertion points. The second and third terms are obtained from the first term
associated with the reference configuration 1234 by substituting the mode labels 2 <+ 3 and 3 < 4, and modifying
the interval of the x-integral from x € [0,1] to = € [1,00] and x € [—0o0,0]. Each partial amplitude decomposes into
a pair of amplitudes associated to the direct and reverse orientation permutations of the labels, corresponding to the
substitutions, 2 «+ 4 and > (1 —z). The requirement that the world sheet boundary is embedded in the 77 on closed
four-polygons with sides along the branes ABC D, can be satisfied, in general, only by a single partial amplitude, the
conflict with the target space embedding forcing the other two to vanish. In our present notational conventions, only
the reference term, T1234)1234, survives, while the other two terms, T1324V1324, 7T1243V1243, cancel out.

The factorization of the residues of the massless pole terms from exchange of gauge bosons between fermion pairs
into products of three point current vertices determines the normalization factor as, C' = 2wg,a’. Using the familiar
results [69] for the D-branes of type II string theories yields the formula in Eq. (IL.1) expressing C in terms of the
gauge coupling constant g, of the 4-d gauge theory on the D6,-brane and the volume of the three-cycle |L,,| that it
wraps. The same formula applies to each factor of the complete gauge group. The orientifold symmetry is taken into
account by the factor K, which is assigned the value K,, = 1 or K, = 2 when the brane p is distinct or coincides
with its mirror image, corresponding to the cases with U(N) and extended SO(2N) or USp(2N) gauge symmetries,
respectively. It is important to realize that the relation between the string theory gauge coupling constants, g,,, and
their field theory counterparts which we denote momentarily by g[jt, also depends on the way in which the analogous
field theory model is constructed. An illustrative discussion of the model dependence is presented in [43]. For the
moment we express this relationship by the proportionality relation, ngu't = gu, involving the real parameter 7.

The factors I;(z) and Z, =Y, S for each T) in Eq. (IL.1) designate the quantum (oscillator) and zero mode
world sheet instanton contributions to the correlator of coordinate twist fields in the complex plane of T?. With
the choice of independent pair of cycles, C4 = (x1,22), Cp = (x2,23), surrounding the insertion points along the
world sheet boundary, z1,-- :c4, which map to the intersection points labeled i, j, k,! in T7, the summations in
the classical partition functlon Z% tun over the large lattice generated by the one-cycles LY and LL wrapped by
the D64/D6p-branes in TJ. Going through a full circle around the cycles Ca, Cp, induces the coordlnate fields
monodromies

V2Ac, X =211 — ey, V2Ac, X = 21(1 — 2™ )up, (I1.3)
where
VA =paLla+04=(pa+es)La+dy, vp=ppLlp+06h = (pp+e)Lp+dh, (IL.4)

with pa, pp € Z denoting the winding numbers. The 2-d large lattices generated by the brane pairs in the complex
planes of T? are displaced from the origin by the shifts separating the branes intersection points, 04 = AL +dA, 68 =
eBLp+dP, [%(LfL"BdA’B) = (] where the real parameters e, ¢ and d*, d” stand for the longitudinal and transverse
components of the shift vectors relative to branes A, B. Detailed formulas for the functions I(z) and Z, can be
found in our previous publication [44].

In the special case involving equal interbrane angles, 7 = o'’ , which corresponds to the parallelogram DABC with
D = B and A = C, the string amplitude simplifies to

1
s = CS1234 [T1234/ daz=1( -t Z AN
0
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with F'(a, b;c;z) denoting the Hypergeometric function and 19[2](7’) the Jacobi Theta function. We have separated
out the direct and reverse permutation terms in the quartic order trace factor, Ti234. Verifying the equality of the
factors multiplying 73234 and Ty321 provides a useful check on calculations.

The string amplitudes for four fermions localized at the intersections of Dp/D(p + 4)-branes are derived [33] by a
similar method to that used for intersecting branes. The resulting formulas are detailed in Appendix B along with
the similar results for the two-body processes, f +f — v +~yand vy +v — v+ 7.

2. Low-energy representations

The low-energy limit of compactified string theories is described by means of series expansions in powers of 1/s/m
and (mgr)~! = %C, where /s stands for the energy variable and r = 1/M, for the characteristic compactification

radius parameter. Tn the flat space limit, » — oo, both the partltlon function and fermion localization factors in the

z-integral of Eq. (IL.1) can be set to unity, Y., Z, = > e~ Sa@ 5 1, I (z) — 1. Ignoring momentarily the gauge
factor, one can express the string amplitude in this limit by the formula

1
B(—s,—t) = %S(s,t) = /0 dee™7H1 — )77

I'(1—s)T(1—1t) F(—s)[(-t) < L(=t=1)-- (=t —n)
F(l —s— t) ’ B(_S7 _t) F(—S — t) - ngo(_l) n'(—s T n) ] (117)

[S(s,t) =

where we have exhibited in the second line the representation of Euler Beta function in terms of an infinite series of
poles from s-channel exchange of the string Regge resonance of masses, M2 = nm?, [n € Z]. At finite r, applying
the familiar method of analytic continuation past poles to the a-integral [69] with the factors Z. and I(z) included,
produces infinite series of s-channel and t-channel pole terms at the squared masses of the open string momentum and
winding modes. Since for the equal angle case associated with the brane configuration DABC with C = A, B =D,
the argument variable 74(z) — 0 at small z, one must carry beforehand the modular transformation on the Theta
function with modular argument 74 (z). At small 1—z, the same applies to the Theta function with modular argument
TB (I)

selecting the regions near z = 0 in the representation of Eq. (IL.6) yields the low-energy expansion of the string
amplitude in the open string compactification modes

332 Ca3 2iTpp Bl

_t + EI 3327043

-My? .
A12,B23 2z7rpB 52%1

T1234 II,9 T4321 [I;9
’ ~CS ( I1YAB
o N7 2 s+ 3 M3, b, |Lc| Z

PA,PB

), (IL.8)

where
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2
M2 ., =sin®(x01)(pa + €' )2 [L41* + |2, Indap = 20(1) —p(07) — (1 —07), (I1.9)

|L
and ¢(z) is the PolyGamma function. The squared masses, th 5, consist of string momentum modes of the sector
(B, B) along the compact directions wrapped by the brane B, and string winding modes of the sector (A, A) for

strings stretched transversally to the cycle Lp. Expressing the normalization factor C' = 2mgs in the s- and t¢-
channel pole terms in terms of the corresponding parameters of branes B and C, respectively, then comparison

with the amplitude of the analogous field theory leads to the identifications, %Tusz; = (gj_;f)2 Y a(T*)12(T%)34 and
% (gc) > u(T)23(T%)14, where a labels the Lie algebra generators of the gauge groups on branes B, C. The



extra factor 2 in the denominator accounts for the field theory normalization convention used for the field theory
gauge coupling constant, corresponding to the gauge current vertex, < J§(0) >= gaT%, [Trace(ToTy) = $6a)-

2
The residues 5;]]5\:[“’3 of the poles at s = Mf{)B (and the similar residues of the poles at ¢t = M%)C) represent the
squares of the form factors for the three point couplings of fermion pairs localized at the D6 4 /D6 brane intersections
with the open string states of mass M4 g from the sectors (A4, A) and (B, B). As the interbrane angle runs over the
defining interval, ! € [0,1] in the T? tori, In &% 5 asymptotes to cot(r6!) — +oc at the interval end points while

reaching the minimum value, Ind% 5z ~ 2.77, at the mid-point 67 = 1. The divergence of Ind’ 5 at 67 = 0 and 1
implies then the absence of contributions from the exchange of string compactification modes for parallel branes, as
—M3 /2

expected by virtue of the momentum conservation. The form factor, Fap(pr) = d,5 , representing the cost for
a fermion particle to absorb the gauge boson momentum pp, arises as a consequence of the D-brane fuzziness caused
by the finite spatial extension of string modes. Its configuration space representation, Fap(y), can be evaluated by
writing the three point coupling of fermion pairs to the momentum modes of the D6 g-brane gauge connection field,
AE (x,y), as a Fourier integral over the cycle of radius Lp

m|Lp| 7| Lg|
d AB z, ]: -y} E PB) / dy cos yrB ]: _ zB + ...
/0 y AL (x,y)Fas(y —yP W|LB E ) ; Y (|LB|) Ay —y;) J
2 —p2 /(2|Lg|? Jﬁﬁéi
7 2 Ve AL (@) DR (IL.10)

with the resulting formula

2
Fap(y) ~ Le_mLB‘gl““AB, [yB =2neP|Lp]| (I1.11)
V 7lndan ' '

where y parameterizes the points on the Lp cycle which has been described here by the orbifold S'/Z, of length
7|Lp|; yP denotes the position of the fermion mode; N,, = 1 for pp # 0 and N,, = 1/v/2 for pg = 0; and the
central dots stand for the sine stationary modes. The above approximate formula for F4p(y) becomes exact in the
large radius limit, |Lp| — oo. The exchange of massive KK gauge bosons contributes to the four fermion amplitude
a sum of pole terms with residue factors, 2T PBES 6;%23/ ILs ‘2, where EjBk denotes the relative distance along the brane
B, as expected by comparison with Eq. (I1.9). A similar analysis holds for the momentum modes associated with
the brane C. By contrast, there is no field theory interpretation for the form factors accompanying the coupling of
localized fermions to the open string winding modes.

To illustrate further how the form factor originates within the field theory framework, we consider the toy-like 5-d
U(1) gauge theory with the fifth dimension compactified along the orbifold segment, y € [0, 7|Lp|], assuming that the
chiral fermions are trapped near the boundaries by some soliton kink solution involving a scalar field coupled to the
fermions. Making use of the Gaussian ansatz for the normalizable zero mode wave function of a fermion localized at

B
yi7

7|LB|
PV (y) = Ne~vi)*/ @), [/ dyv " ) () = 1, N ~ (——)%] (I.12)
0

mT20

where the normalization integral determining N has been evaluated in the limit L — oo, we infer the gauge vertex
coupling

7202p2

ﬂ‘LB‘ B
ZN AB pB) )/ dywz(o)*(y)wz(o)(y) cos( ypB ZNPB BT cos(ylszjr). (I1.13)
0 B

Comparison with the form factor Fap(pg) in Eq. (II.11) allows us to identify the half-width parameter as, o ~
v2Indsp/m. The above result for the form factor of fermion modes localized at intersecting branes agrees with that
derived [33] for the fermion modes of the non-diagonal sectors of D3/D7-branes, where 6/ = 1. (The half-width
parameter in [33], which we distinguish here by the suffix label ABL, is related to ours as, c4py = on/v/2. For
later reference, we note that our half-width parameter o identifies with the parameter denoted o in [56].) It is of
interest to note that a similar form factor also arises in the string amplitude for emission of a massive graviton mode
G(My) in the two-body reaction, f 4+ f — v + G(M,), with the characteristic dependence on the mass M of the

closed string mode [25], Fg(My) = e (Ma/mZ . Both the present string form factor and the one derived above,



7

Fop(Mop) = e~ My n(9)/ (ng), should be distinguished from the form factor arising from the quantum fluctuations
of branes [70-72]. Using a quantum field theory treatment of the Nambu-Goto action for domain walls with the
transverse coordinate y promoted to the would-be light Nambu-Goldstone scalar field associated to the spontaneous
breaking of translational invariance, Bando et al., [70] found that the coupling to momentum modes in the effective
4-d action is accompanied by the recoil form factor

2 .2
Free(M) = oA (A2 = M _ MFgDp’ 2 _ v
(4m)21, dm? |Lp|?

] (I1.14)

where My denotes the ultraviolet mass cut-off for the field theory on the domain wall whose tension parameter has
been identified above to that of the Dp-brane, 7p, = [m?/(27gp,)]?, with gauge coupling constant gp,. The specific
case of a soliton domain wall is discussed in [71]. From the comparison of the ratio of half-width parameters for the

. . . M?2 g2 g2
form factors associated to the brane fuzziness and recoil, A? : 2 = —=7r 21“m§2 SRk

in the second stage, Mpr ~ mg, we conclude that the suppression effect from brane recoil is parametrically weaker
than that from the string finite size. This property was previously discussed in [25].

1, where we have assumed

3. Contact interactions and flavor structure

The four fermion string amplitude receives infrared divergent contributions from the z-integral boundaries which
correspond to the massless s, ¢ channel pole terms from gauge bosons exchange. One way to regularize these harmless
poles is to subtract out the small regions in the z-integral near the end points z = 0, = = 1, while adding up the
corresponding pole terms by hand, as described by the subtraction, A — A — (=A% 4+ A|,—o) — (— A" + Al,—1).
To account for the electroweak symmetry breaking, one can use the same prescription where the added pole terms
correspond to the contributions from exchange of the physical gauge bosons with the observed finite values of the

masses. For the four fermion coupling ( fH'Yu f)(frp ¥ fi,) in the electrically charge neutral channel for the v, Z

u(fag (f)

gauge bosons, this is illustrated by the substitution, % — % + = s~ where ay(f) denote the Z boson vertex
z

couplings. A similar replacement holds for the t—channel poles.

The contact interactions, subsuming the contributions from the massive string Regge and winding excitations, can
be constructed in a similar way by subtracting also the pole terms associated to the string momentum excitations, as
illustrated by the schematic formula

izontact = A/ - 'A/SKK - A;,KK (1115)

The same subtraction procedure was previously used to define [33] the contact interactions in models with Dp/D(p+
4)-branes. For consistency, we remove the s—channel terms only for the configurations of intersection points with
A

i = j or €; = 0, and the {—channel terms only for those with k = [ or eﬁg = 0. No subtraction of momentum

modes is needed in the cases, i # j # k or eiA}- # 0, ejBk # 0, where the thresholds for the momentum modes are

separated by a finite gap corresponding to the mass terms, ¢%|L|>. One motivation for excluding the KK towers
from the contact interactions is simply that it is always possible to include separately their contributions through the
familiar field theory treatment, suitably generalized by the inclusion of form factors. In the flat space limit, Lp — oo,

with the brane form factors set to unity, §Mis 1, the contact interactions from KK modes are described by the
approximate formula

g /ILsl? - 9]23 Sn(ms|Lp|)"
p*/ILsl* —s)  2mi (n—2)

2
Lgpr = 29%312347-1234 > 0 S1234T1234, (IL.16)

peEZ

where S,, = lngn_"//;) with n = D — 4 denoting the number of real dimensions of the wrapped cycle.

In the kinematic regime where mass parameters and energies are negligible in comparison to mg, the four fermion
local couplings are dominated by the chirality conserving couplings of dimension D = 6. The corresponding terms in
the Standard Model effective Lagrangian are represented in the left and right chirality basis of fermion field operators
by the general structure

Lorr = Y [GFf(Fuvnfo) (1" 11) + GFE (Fuvufo) (Fry" I7)
!
G (frvufr)(FLA L) + GFE (Fryufr) (Fry* fR)], (IL.17)
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HH'

where G f j, = Num; with H, H' = (L, R). We follow the notational conventions for the coefficients G?f{{/

commonly adopted in the context of composite models [73], with ngm denoting relative + signs and Aj wp the
characteristic squared mass scale parameters. For later reference, we also quote the effective Lagrangian of use in
leptonic collider applications

Amnm HH' (- 7
Lprr = — G (nyuen)(fu " fur), (IL.18)
f,HZJ{’ AHff21' (1 + 66]‘)

where 0.y = 1ife = fand § = 0if e # f. The left chirality basis for the fermion fields is related to the mixed left-right
chirality basis by, L ~ R°T, thus implying the identity, (L1y"* L) = (RSY*R$), and the Fierz-Michel identities for the
quartic order matrix elements,

(Liy"Lo)(R3yuRa) = 2(L1Ry)(R3Ls), (L1y"La)(LsyuLa) = —(L1y"La)(LsvuL2), (I1.19)

where L, R denote c-number (commuting) Dirac spinors. The comparison with Eq. (IL.1) yields the explicit formula
for the dimensionless coefficient functions ngfI,{ / (L) defined by

m2 1
HH _ ™ Ku HH' _ SK,  |L| —se1y i 251n7r6‘
HH'

such that the string four fermion amplitude reads as, Az = mQK gjf/ < S1234 > H'< Ti234 > ¢ . For convenience,
we shall employ in the sequel a similar notational convention for the string amplitudes for fermions of fixed chiralities.

To make contact with the amplitudes of physical processes involving the mass eigenstate fields, we need to perform
the familiar bi-unitary linear transformations linking the above gauge basis to the mass eigenvector basis, f —
VITf, e — VT e, [f = g,1] which read in the left-right chirality basis as, fg — Vi fg, [H = L, R]. The flavor
mixing matrices, VLf , Vlg, are determined through the diagonalization of the fermion mass matrices in generation
space, VI{M fVLf [ (MF)diag, but in a partial way since the Standard Model contributions from the quarks and
leptons only depend on the products, Vogy = VL“VLd Tand V/ = vy VLGT, where the suffix label CKM refers to the
quarks Cabibbo-Kobayashi-Maskawa matrix. The effective Lagrangian of dimension D = 6 in the vector spaces of the
fermions generation and mass basis fields can now be expressed as

Lerr =Y Y GE(Firy" fi)) Forvufie)) praw + Hec,

f.f" H, H’
- Z Z ng Kl szVijH)(fI/cH’VuflIH’)]mass + H.e, (I1.21)
f.f" H,H’
where
27Tg ’ / ’ 277'92 /
Gt = I GH = G Vi Vi Vi Vi), GBI = Zgltt (11.22)

by using the familiar tensorial notation for the flavor and mass bases coefficients in Egs. (I1.20) which are labeled
by the same indices i, j,k,l € [1,2,3]. The 4-point couplings GZ kl of localized modes are subject to geometrical

selection rules which are expressed in terms of the shift vectors, w B4, associated to the embedding polygon with sides
D, A, B,C in each T#, by the conditions [67]

w,I:)A—I—wAB—I—w]IgC—I—wéA:OmOd AI, [wBAGA A/AI] (1123)

where we use notations defined just below Eq. (A.9).

B. Standard Model realization with four branes

We here specialize to the solution of Cremades et al., [60, 61] with the brane setup consisting of four D6-brane
(baryon, left, right and lepton) stacks of size N, =3, N, =1, N, =1, Ny = 1, supporting the extended Standard
Model gauge symmetry group, U(3), X SU(2), x U(1). x U(1)4. The weak gauge group, USp(2), ~ SU(2)p, identifies



with the enhanced gauge symmetry associated with the overlapping pair of mirror D6,/ D6 -branes, and the hyper-
charge with the linear combination of Abelian charges, Y = =+ — %= — % As noted by Kokorelis [62], the present
brane setup belongs to the family of solutions described by the winding numbers and intersection angles listed in the
following table whose members are labeled by the discrete parameters, p = (1, 1/3), e = £1, ¢ = 1, [e€ = 1] with
Bi=1—b; = 1, %], [i =1,2] in correspondence with the cases of orthogonal and flipped tori T§3.

1 2 2 3 3

Brane (N,) |[(ny,m,) (n2,m2) (n3,m3})

gﬁ:1,273 Susy Charges

Baryon (N, =3)| (1,0) (%,3p6ﬁ1) (%, —3peB2) (0,04, Fba)  7(1),7(a)

Left (Ny=1) | (0,¢8)  (5,0) (0,8  (6,,0,%6,)  (J7®)

T(2)57(4)

Right (N.=1) | (0,¢) (0, —¢) (35:0) (£, F0c,0) 73y, 7(a)

Lepton (Ng=1)| (1,0) (5,3peBr) (5, —3péB2) (0,+60a, Fba)  7(1),7(a)

The massless spectrum of left chirality multiplets localized at the intersection points includes three generations of
quarks and leptons. For the specific choice of brane angles characterized by a single vanishing angle and a pair
of angles equal up to a sign, the various brane pairs preserve N' = 2 supersymmetry each, provided the complex
structure parameters of T2273 satisfy the relation, S1x2 = B2x3. We have indicated in the last two columns of the
above table the brane-orientifold angles and the spinor weights of the conserved supercharges, with the upper and
lower signs corresponding to ¢ = € = +1. The finite intersection angles can then be expressed as, 0, = 6. = %, 0, =
04 = % tan~'(3p%efix2). Only when € = é = —1 do all the four branes share the common spinor supercharge,
74y = (= — ——), implying the existence of an unbroken A" = 1 supersymmetry in this case. The assignment of open
string sectors and gauge group representations for the quarks and leptons and for the two Higgs bosons is displayed

in the following table in correspondence with the gauge group SU(3), X SU(2)y x U(1)q x U(1)e X U(1)4.

Mode q uc d° l e Ve Hy H,

Brane|(a,b) + (a,b’) (c,a) (d,a) (d,b) + (d,b") (c,d) (d,c) (c,b) + (¢, ) (e,b)t + (¢, )1

Irrep | 3(3,2)100 3(3.1)-1,1,0 33, 1)=1,-10 3(1,2)001 3(1,1)0,—1,—1 3(1,1)0,—1,1| (1.2)0,1,0 (1,2)0,-1,0

The massless scalar modes for the pair of up and down Higg bosons arise as the hypermultiplet of the sector (¢, b) =
(c,b’) with ' = 2 supersymmetry, due to the coincidence of the branes ¢ and b along the first complex plane T?.
The effective gauge field theory for this family of models is free from anomalies, despite the fact that the brane setup
fails to satisfy the RR tadpole cancellation conditions. These can be satisfied, however, by including a hidden sector
of distant brane stacks which do not intersect with the observable brane stacks. The quark generations [60, 61] are
located in the three complex planes of T7 at the intersection points

D _k ®) P (ue (1) CIN
Péf)(q) — ft(zl) 3 €q o | ( (k)( )) _ | € (‘;Tbc 6q(2) §3F(§ 7 (IL.24)
€ 0 1-3e Pq (de) & 3¢+l

where the three entries in the upper and lower arrays stand for the coordinates in the orthogonal reference
frames, R(X!)/(27rf) and $(XT)/(27rl), [I = 1,2,3]. The intersection points for the lepton generations,

P;;f) 1), PC(,Z) (e9), P;f) (v°), are described by similar formulas to those for the quark generations with eél) — el(I), 6511) —

El(l). The intersection points along the branes are labeled by the integer index k € [0,1,2] ~ [0, 1, —1], with the branes
transverse distance described by the real parameters, 6((111)7 E((le), 61(121)7 51(131) , 5232 , Toe- (We deviate only in the defi-
nition of the parameters in the third complex plane with the notations of [60, 61] which use the choice of unit of
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length, (X 1=3)/(6mri=3). The relationship between us and them reads, (€¢(13))u5 = 3(€¢(13))th6m.) Numerical studies

for subsets of these parameters have been reported [49, 50] in attemps to fit the quarks and leptons Yukawa coupling
constant matrices. Directions to improve certain shortcomings of the predictions for the fermions mass matrices are
reviewed in [74]. Two important features of the present family of models are that the intersection points are separated
along the branes by distances of order, e ~ 1/3, and that all three intersection points for the electroweak doublet and
singlet fermion modes are placed at points which lie at finite distances apart only in the single complex planes, T3
and TZ, respectively.

The gauge matrices are constructed along the lines traced out in Appendix A. To the electroweak singlet leptons,
e® = (d,d), v° = (d,c), with multiplicities, I..g = =3, I.q = 3 and U(1). x U(1)q4 charges, (Q., Qq) = (—1,—1) and
(+1,—1), we ascribe in the subspace of gauge quantum numbers (c¢,d) the matrices /\((;éd), )\,(fcd) with non-vanishing
entries v and «, respectively, using the notations of Eq. (A.10). Explicitly, v = 1 for e® ~ (¢/,d)_1,-1 and a =1 for
v¢ ~ (d,c)—1,1, with other entries set to zero. For the modes charged under the color group SU(3),, choosing the
subspace (a, c), we ascribe to the electroweak singlet quarks, ut ~ (a, c), d°7 ~ (a,¢’), of charges (Q., Q.) = (+1,F1),
the bifundamental representation matrices )\u‘ﬁ), )\((;? with the non-vanishing entries for the column and array vectors,
Qa, Ya, in the notations of Eq. (A.10), transforming under the SU(3) group fundamental representations. For the
electroweak gauge group, USp(2) ~ SU(2), supported by the D6,-brane with the USp projection, the two components

of the electroweak doublet lepton mode, I = (v )T ~ (d,b), with charges, (Qq,T¥) = (1, £1), are ascribed the matrices,
)\l(bd), with the non-vanishing entries, v and «, using the notations of Eq. (A.10). A similar construction holds for the

two components of the electroweak doublet quark mode, ¢ = (u, d), which are ascribed the matrices ,\S;lb), with the
non-vanishing entries, 3, and «,. The CP matrices of the quarks and leptons modes are then given by the explicit
formulas

0 0 0O 0 0 1 0
)\(cd)ii 0.0 1 0| 110 0 00
<« ~Rloo oo T /l0 0 0 0]
10 00 0 -1 0 O
0 0 10 0 0 01
y@) _ L0 0 00} yay_1 [0 000
e v210 0 0 0) 7Y 210 1 0 0])°
0 -1 0 0 0 0 0O
0 00 O 0 0 0 0
)\(ac) _ i 0 0 O —5; )\(ac) i 0 0 ")/; 0
ve —alé 00 0 )07 T B 0 0 0 0
0 00 g o 0 e 0
(o3 aa
1 0 0 0 O 1 0 0 0 0
(ab) _ L (ab) _ =
A 210 BT 0 0% T 510 0 0 0] (I1.25)
0 0 0 O 0 —an 0 O

where the normalization condition is of form, Tr(Ay, )\}B) = dap, and, for convenience, we have kept a record of the
pair of branes vector subspaces associated to each mode. The quartic traces of CP matrices are easily calculated from
the above explicit representations. The sums of traces for the direct and reverse orientation terms, indicated below
by the suffix label (d + r), are given by the formulas

1

T T — T T — T Ty —

TT(d-l—r)()\(B)A(e))‘(e))‘(e)> = Tr(d—i-r)(/\(ec))‘(ec)/\(eq)‘(ec)) = 1, TT(d-i—r)()\(ec)/\(ec)/\(e)/\(e)) = 5,
1

i i _ i R Y _

T7(a1r) (N(ga) Mas) Aoy M) = T (ar) (Mag) Aag) Aer) Nee)) = T (@) (Awg) Mug) Aoy Aer)) = 5008
T T — T T —

Tr(arr) (M) Mgg) a9 Age)) = T Aaa) Mgo) Aan) Ags)) = Tasrs:

1 1
T T — — —
TT(d"FT)()\(Qa)/\(qg)/\(qg))\(qg)) = §Ta575, [Taﬁ,ﬂ; = 5(50(5575 + 5a65»yﬁ), q=u,d). (I1.26)
2

Making use of the U(N.) group identity, 222\[;1_1(T“)QB(T“)V5 = (das0py — NLC(SQBQ(;), with the first and second
terms inside parentheses being associated to the non-Abelian and Abelian group factors SU(N,) and U(1) of U(N,),
one can cast the tensorial structure of the trace factor for quarks in the fundamental representation of SU(N,) into
the operator form

N2—
= N.+1

1 a a
7-1234 = Ta,é’vé = 5(60165V5 + 50‘6567) = Z (T )QB(T )vé + 2—]\]660[3675, (1127)

a=1
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where the traceless Lie algebra generators of SU(N,) are normalized as, Trace(T,Ty) = %5,117. (The right hand side
is symmetric under the substitutions, 8 <> § or « > 7.) The corresponding quartic trace for leptons is 71234 = 1.
Identifying the leading pole term in Eq. (I1.9) to the pole term in the analogous field theory, and using the low-energy
limit with due account for the gauge factors in Eq. (I1.26), one finds that the ratio of the string to field theory gauge
coupling constants of the non-Abelian gauge factors should be set as, 7 = /2.

C. Numerical results for contact interactions

We start off by stating the main simplifications made in our numerical study. We choose to set all the radii
parameters, r{, equal to a common radius parameter, denoted by r = 1/M,.. The relation between the string theory
parameters, the wrapped three-cycles volume and gauge coupling constant parameters, gs, ms, La, ga, [A = a,b, ¢, d|
simplifies then to

47K Ags L . !
mar = (2593 e TPl [T im0 = 12 (11.25)
951 LAl rald 7 r

where K, . q =1, K; = 2. From the explicit formulas for the three-cycles volumes, we infer the relations between the
branes gauge coupling constants

Ea = Ed — [(p*Q + (3PBIX2)2)(P72 + (3Pﬁ2X3)2)]%, ﬁb _ X1X37 Ec _ X1X2

) B1 B2
9,/2  Lc  Pixe
— @ = s = = .
Jo = 9d g2 Ly  Pax3

(I1.29)

In the case with N = 1 supersymmetry, fax3 = (12, one has, L. = L, and 2g, 2= g 2. Specializing momentarily
to this supersymmetric case and using the proportionality relation between the string and field theory gauge coupling
constants discussed after Eq. (II.1), we can express the Standard Model gauge coupling constants g3, g2, g1 along
with the electric charge and weak angle parameters, e and sin 0y, by the formulas valid at the string mass scale

o1 .1 .1, 2
N93 = ga, N92=gb, M91) > = 29"+ 9.2+ 597" =297+ 9,

6 2 2 3 ,
_ _ _ 2 _ _ . g 3g, 1
2 2 2 2 2 2 _ J2 b
= (me) " =mg1) "+ g2) "= 59, +2g, ", sin” by = === = — — = .(IL.30
(ie) (1) (ngz) 3 ’ e™2 29,7469, 2(1+g§/(392))( )

Although the family of models under consideration has a parameter space of restricted size, to study the model
dependence of predictions we found it convenient to introduce a reference set of natural values for the geometric
parameters and consider small excursions in which the parameters are varied one by one. We define our reference set
of parameters as, p=1,e=1,é=1,61 =1,6; = 1.

The interbrane angle parameters in the three complex planes, HlIW =0l - 9{“ [w@ﬁ = arctan(mixl / ni)] are grouped
into two distinct sets with the entries in each set being equal up to permutations of the planes. For the reference
set of parameters with x! = 1, we find 6/(q) = 67(e) = (0.50,0.60,0.89), and 0! (u®) = 67 (v°) ~ 61 (d°) = 67 (e°) =
(0.50,0.89,0.60). Let us also quote, in reference to the discussion near Eq.(II.11), the numerical values assumed by
the form factor parameter, In ! = (2.77, 2.97, 10.1), for the above quoted values of the interbrane angles for 6! (q).
Varying the tori complex structure parameters inside the range, x! € [%, 2], or changing from orthogonal to tilted
tori, causes insignificant changes in the angles. For instance, the choice g1 = 82 = % yields 67(q) = (0.5,0.687,0.812).

With the free parameters consisting of ms and msr = ms/M,., the string coupling constant is fixed in terms of
m|Lalg’

AT K o 4
decompactification limit at fixed ms, the condition gs o< (msr)® < 1 restricts the radius parameter to msr = O(1).

More precisely, setting tentatively in mgr = (4;;1‘%5? )%, [A = a,b] the Standard Model gauge coupling constants to
A

their observed values at the Z boson mass scale, g7(mz) = 0.127, g3(mz) = 0.425, g3(mz) = 1.44, we can express

the conditions that the string theory is weakly coupled by the numerical results evaluated for the reference set of
~ 1/3/ 2/3

parameters, mgr ~ [0.95, 3.9]gs""/n?/°.

The weak angle depends sensitively on the geometric parameters. While setting g, = gp reproduces the favored
value, sin® Oy = %, using the reference set of parameters with y! = 1, would yield instead, g2/(g2/2) = Ly/Lq =~
1/10 = sin? Oy ~ 3/46. However, as verified from the explicit formula, sin? Oy = 1/[2(1+281(14+96%x3)/ (3x1x3))],
one can always fit the weak angle by adjusting the geometric parameters, for instance, by setting, 5, = 1/2 with all

the gauge coupling constants by, gs = . For the string theory not to be driven to strong coupling in the
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x! equal. The renormalization group analysis of the gauge coupling constants for the present model is known to be
consistent with grand unification with the parameters adjusted at [75] my ~ My ~ 106 GeV for m,/M. ~ (2 — 5).
On the other hand, the qualitative study of the coupling constant unification for the class of minimal supersymmetric
standard models selected by sampling over vacuum solutions of intersecting branes on orientifolds [76] indicates that
the maximal allowed string scale may vary over a wide interval, provided one regards the branes gauge coupling
constants as free parameters. In order to justify the TeV string scale scenario of interest to us, one must invoke string
threshold corrections which produce an accelerated power law running between the compactification and string mass
scales [77]. Although the small extent of the admissible interval for the momentum scale, @ € [M,, m;], could render
this option problematic, some freedom is still left in choosing the geometric parameters. To verify this statement we
have pursued a qualitative study of the relation between the one-loop order running gauge coupling constants holding
for the present model,

2 25sin? 0 —1] 44 2 My
sin_ b (m2) - log Mz~ pp(ley2, (IL.31)

U |32 0m2) 2(mz) m2 M,

using similar inputs as those discussed in our previous work [44]. The power law running term on the right hand side
is controlled by a linear combination of slope parameters denoted by b. We have checked that with the assigned string
mass scale, ms ~ 1 TeV, we can satisfy the above relation by using the indicative values, b~ 20, X} ~ d.

We now turn to the predictions for the chirality conserving contact interactions of four quarks and/or leptons.
In view of the uncertainties on the renormalization group scale evolution of the gauge coupling constants and the

coeflicient functions, we have chosen to express gs by selecting the electroweak gauge coupling constant, g, = ngs, in
|£o|n* g5 (mz)

the defining formula g5 = , with the proportionality factor set at n = 1.

The information on the branes configurations and on the structure of the associated coefficient functions is displayed
in Table I for Cremades et al., [60, 61] model. The volume of cycles may vary substantially from one brane stack to
the other, so it is important to keep track of the data assigned to the brane configurations DABC which affect the
normalization factor of the local operators. Since we could not find any analytic approximation that yields reliable
estimates for the coefficients ggﬁl in the appropriate range of msr values, we have numerically evaluated Eq. (I1.20)
by following the same procedure described in our previous work [44]. The contributions from the localization and
classical partition function factors in the x-integral are evaluated by numerical quadrature after removing the massless
and momentum mode contributions by subtracting the leading terms near the end points * — 0 and x — 1, according
to the prescription described schematically by Eq. (I1.15). The series summations over the world sheet instantons
must be carried out to large enough orders, max(pa) ~ 6 — 10 and the z-integral must be evaluated with care. (We
have made use of the Mathematica package.)

The numerical values of the flavor diagonal (AF = 0) coefficients, g1, obtained with the reference set of param-
eters at the three values of the effective radius parameter, msr = 1, 2, 3, are displayed in the last three columns of
Table I. These results all refer to the AF' = 0 configurations with coincident intersection points, e4 = eg = (0,0, 0).
The presence of strong cancellations from competing terms appears clearly from the fact that the coefficients change
sign with variable mgr. The results for the various flavor and chirality configurations are seen to cluster around two

group of values associated with the pure and mixed chirality configurations, f} » and f7f#, which also correspond

to the cases with equal and unequal angles. The coefficients in the unequal angles group, e?e%, ¢id%, uke%, are

roughly equal and separated by a gap of about a factor 5 — 10 from the coefficients in the equal angles group,
qL7 e‘i, ut B dR, et B Le 7 d? Re %- Since the exchange of massive vector and axial vector bosons contribute pure and
mixed chirality amplitudes of same and opposite signs, respectively, we infer from the comparison of the coeflicients
with same and opposite chiralities that the string excitations are akin to linear combinations of Vector and axial vector
modes. The flavor diagonal coefficients all feature the power law growth with the radius parameter, |g// 7 | o (mgr)o/2.
It is worth noting that the approximate representation in Eq. (I1.9), subsuming the contributions near the boundaries
of the z-integral, would not reproduce the observed power law dependence of the coefficients on mgr.

The observed regularities in the coefficients are partly accounted for by the symmetric character of the brane setup
in the model at hand. Since the branes a and d are always parallel in all three planes equal interactions are found for
q} and e} and for d, and e},. Numerically close values are also found for, u§?, d* and e§*, due to the fact that the
brane angles in the various configurations are equal up to permutations of the complex planes The mixed chirality
coefficients are larger because they involve brane configurations with two sets of unequal angles.

For a clearer assessment of the dependence on mgr, we display in Figures 1, 2 and 3 plots of the coeflicients gw kl
We study here the sensitivity on the geometric parameters by varying these one by one with respect to the reference
set. Note that the longitudinal distances €4, €p are associated with flavor change while the transverse distances are
associated with gauge symmetry breaking. We group the configurations into three classes corresponding to the flavor
change: AF =0: ea=€ep=0; AF=1: €¢4=0, eg Z0;and AF =2: €4 #0, eg # 0. Figures 1 and 2 refer to
the unmixed chirality configurations with equal brane angles and Figure 3 to the mixed chirality configurations with
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TABLE I: Chirality conserving contact interactions of two quark and/or lepton pairs of fized chiralities. In Column 1, we specify
the four fermions configuration; in Column 2, the target space polygon DABC which realizes the world sheet embedding; in
Column 3, the interbrane angles 6, 0" associated to the two pairs of conjugate fermions f, f'; in Column 4, the quartic traces
over the gauge matrices including the direct and reverse permutations, Ti2sa = Th2sa + Tus21, multiplied by the Dirac spinor
matriz element, Si234, using the conventional ordering for the flavor and color indices i,j,--- and «, 3, -- of the incoming
fermions, f1.i,a(—0)f2,5,5(0)fs,k~(—0") f1,,6(0"), with the dependence on color indices defined by, Tupys = 3(0ap0~s + 6asdyp);

and in Column 5, the numerical predictions in Cremades et al., [60, 61] model for the flavor diagonal coefficients gfg/ =

(mgKA/AJI;fI/{Q,gi) in Eq. (I1.20) at the three values of the compactification scale parameter, msr =1, 2, 3.

’ g2 4
Fermions f2f 2 (DABC) 4, ¢’ zKi“ Ti234 S1234 g (Ly)
2
(er)?(er)?  (bdbd) Oap, Oap 2};? (e1Ly"ear)(sypear)  |+0.049 — 0.270 — 0.952

2
(e9)%(e5)*  (ddc)) Ocg, Ocrq 2 (Eary"err)(Earyuesr)  |+0.049 — 0.270 — 0.974

2
(er)?(e$)?  (dd/db) Buq, Oba 2}”(? 1 (e2r7"e1r)(EaLvuesL) —0.405 — 1.92 — 5.74

2
(qr)*(qr)? (baba)  Oap, Oap 2}2’; wp~ys (1LY q2n) (@3 Yuqar) |+0.049 — 0.270 — 0.952

2
W$)?(w$)?  (acac) Oea, Oca 2;9; wiys (U2rY u1r) (Uaryuusr) | 0.0422 — 0.286 — 1.015

(d5)%(dg)?  (ac’ac’) Ouq, O 22{5 wpyo(dary*dir)(daryudsr) |+0.049 — 0.270 — 0.974

-
(qL)z(ui)z (abac) eba, Oca QK—gbb%Ta[g.yg((jQL’yuqlL)(ﬁ4R’7‘LU3R) —0.388 — 1.85 — 5.54

2

a2 _
(qL)2(d%)2 (abac’) Oab, Ocrq —Kib %5a676(q2L'7uq1L)(d4R’Y,ud3R) —0.405 — 1.92 — 5.74

™ 2 — —
(q)%(er)®  (babd) O, Oap 722 L10ap(@iey"qor)(Esryuear) | 0.049 —0.270 — 0.974

Xy 2 — —
(u$)?e$)? (cacd) Oac, 04 QKZ“ %6a5(u137“uz3)(e43wu633) —0.165 — 1.43 — 4.15

2
a

(d$)%(e$)?  (dadd) Ouur, Oge 2;2 1Tus(dirY"d2r)(Esryuear) |—0.0157 — 0.835 — 2.22

unequal brane angles. The presence of cusp discontinuities in certain curves is due to our use of logarithmic plots for
the absolute values of the coefficients aimed at representing quantitatively the size of the suppression.

We see on panel (a) of Fig. 1 that the predictions are spread by an approximate factor 2 — 3 for reasonably
restricted variations of the shape parameters. Using tilted 2-d tori, or increasing the complex structure parameter
X!, results in enhanced coefficients, while decreasing x! results in reduced coefficients. The AF = 1 coefficients with
finite ep in panel (b) are suppressed by order 107! while the AF = 2 coefficients with finite €4 and ep in panel (c)
are suppressed by factors of order 1072 — 10~%. The specific dependence on m,r is a result of the tension between
the power growth from the overall normalization factor g5 o< (msr)? and the exponential suppression from Z.. That
the suppression effect is controlled by the classical factor is clear from the fact that the coefficients have comparable
values near mgyr = 1.

The plots in Fig. 2 again confirm that x! < 1 and x! > 1 lead to reduced and enhanced coefficients. The nearly
one order of magnitude suppression of the AF = 1 coefficients is independent of y!. That the suppression is weaker
than expected is explained by the specific feature in the present model that only a single component of the vectors
ek are finite. The comparable predictions found for e = (0,1/3,0) and (0,2/3,0) are explained by the torus lattice
periodicity. The cancellation effects from the oscillating factors e?*¢L explain both the change of sign from positive
to negative coefficients and the smooth variation with mgr.
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The plots in Fig. 3 show that the coefficients in the unequal angle cases are systematically larger than those found
for equal angles. The dependence of the wrapped cycle volumes on the torus shape parameters spreads the coeflicients
by a factor of 2 — 3.

Two general features of the predictions are the rapid power law increase with mgr of the flavor conserving AF = 0
coefficients and the hierarchies of order 10~! and 10~* separating these from the flavor changing AF =1 and AF =2
coefficients which vary more slowly over the allowed interval for m,r. While the variation of the coefficients with
mgr is not apparent on the result in Eq. (IL.9), obtained by restricting the z-integral to the end point contributions,
it appears possible to use this approximate formula in order to explain the dependence on the distance parameters,
€4, €g. Examination of the combined contributions from the string momentum and winding modes to the coeflicients

\sm(ﬂ'G )(ZDAJFEA)LI‘ JF‘PB/LBl 271'7:[)3653

HH | Ll
gip =
1 Tl 22 Sy = T L

(I1.32)

shows that for small finite €4 the leading contribution to the ratio of AF = 1 to AF = 0 amplitudes is of form
e_pAEA‘£A|(mST)2, while the AF = 2 amplitudes include the additional suppression from the oscillating factors, 275,

It is interesting to compare our predictions for the contact interactions of four fermions with those obtained in the
Dp/D(p + 4)-brane models [33]. (The formalism is briefly reviewed in Appendix B.) For the coupling of four modes,
|(3,71)]?((3,7)|2, the comparison at fixed 4-d gauge coupling constant of our estimate, 27Tgffl,{/812347'1234 ~~ 2m(0.05 —
0.5)(ms7)?S1234T1234, With the result found by Antoniadis et al., [33] in the large radius limit, 77234[0.12 Pio3q +
0.33 Si234], reveals an order of magnitude concordance.

Finally, we compare our predictions with the contributions from the momentum modes evaluated by means of
Eq. (I1.16) for n = 3. The resulting rough estimate, (g%ﬁl)KK o~ mSn(msr)nwm ~ (msr)3Lp, indicates that
the contributions from the string momentum modes are significantly larger than those from winding modes. We
should remember, however, that the present estimate must be regarded as an upper bound since it relies on the large
r limit and ignores the form factor suppression.

III. INDIRECT HIGH ENERGY COLLIDER TESTS

We discuss in the present section the collider physics applications based on the formalism presented in Subsection IT A
and in Appendix B for the orientifold model of Cremades et al., [60, 61]. Since the distinction between the mass and
gauge bases is not essential for these observables, all the results in this section are obtained by setting the flavor
mixing matrices to unity, V}jI =

A. Bounds on contact interactions mass scales

It is important to distinguish the mass scale A associated to the D = 6 operators from the mass scale My associated
to the D = 8 operators in the 4-d effective Lagrange density quadratic in the energy-momentum tensor (78|, Lprr =
i%T#UT‘“’. The analyses of available high energy collider experimental data using field theories in extra space

dimensions are sensitive to values of these mass scales, My = 1.5 TeV [78], A =2 — 6 TeV [79] and A = 1 — 8 TeV [80].

In the single Dp-brane models, the quantum gravity mass scale My was found to be parametrically larger than the
23/4

~ 2,
with the intersecting brane models, it is convenient to consider in place of My the closely related gravitational mass
scale Mg defined in the case with n flat extra dimensions by [11], MaT?r" = MP = (4nGn)~!. The mass scale Mg

is related to the fundamental string parameters of single D3 4-brane models as [25] (Mg /ms)® = 167/g%. Repeating
the same calculations for intersecting D6 4-branes gives us the modified formula in the large radius limit

string scale [25], 2z

thus making the detection of new physics effects harder. To pursue the comparison

Mg.g 167
) ==

My gA(msT)6|mA —”AUI|/U2

( (I1L.1)

The strong dependence on the geometric parameters indicates the interesting possibility that Mg may assume lower
values in multiple brane models.

We now discuss the constraints on the string mass parameter, mg, inferred by comparing our predictions for the
chirality conserving contact interactions of D = 6 with a subset of the available experimental limits [81]. For the lepton

and lepton-quark configurations, e, €2¢? and the quark configuration, g7, respectively, we evaluate the bounds on
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the string scale parameter, m? = gPL-»Aef2 1+ 6er)g% /K4, at fixed myr, by setting the gauge coupling constants,
s 41,44 YL L fl9a

g4 /K4 at g3/2 ~ 0.213 and g5 ~ 1.44, respectively. Using the numerical values of the coefficients in Table I, we

obtain the following bounds on mg for the choice of three representative experimental limits on the mass scales:

A%, (ecee) > [4.7, 6.1] = my > [0.69, 2.1, 3.9]
A7, (eeqq) > [23.3, 12.5] = my > [2.4, 3.0, 5.6]
A%, (qqqq) > [2.7] = ms > [0.72, 1.7, 3.2, (T11.2)

where all masses are expressed in TeV units and the three entries refer to the values mgr = [1, 2, 3].

We next consider the constraint from the enhanced supernova cooling through the reaction producing right handed
neutrino-antineutrino pairs by quark-antiquark pairs, ¢ + § — v° + v, which is allowed as long as the contributions
to the neutrino Dirac mass are bounded by the supernova temperature, m, < Tsy =~ 50 MeV. The lower bound on
the mass scale in the effective Lagrangian, Lprp = ﬁ((ﬁu%(]) (ZrY*vR), is found for the SN1987A to cover the
range [82], A?® > (90 — 250) TeV. For concreteness, we set our choice on the lower bound, A?% > 200 TeV. Using
the numerical predictions in Table I and assuming the approximate equalities between the chirality basis amplitudes,
qi v ~ qiuf and d3,v ~ dj,, we obtain the numerical estimate for the coefficient, (g2%  +¢FR ) ~1[0.66, 1.26, 2.14]
for msr = [1, 2, 3]. The resulting bounds on the string mass scale read, ms > [43, 82, 139] TeV. For reference,
we note that the comparison with the contribution from the string momentum modes yields [50] the weaker bound,
ms > (5 — 10) TeV.

B. Bhabha scattering cross section

Useful constraints on the new physics are set by the experimental data at the high-energy colliders involving the
two-body processes [84] of Bhabha, Moller and photon pair scattering and fermion-antifermion pair production. The
absence of significant deviations from the Standard Model predictions has led the statistical analyses of data to set
exclusion limits on the free parameters. The global fits to the combined high-energy collider data based on the single
D-brane model, with the gauge factors treated as free parameters, yields [83] ms > (0.69 — 1.96) TeV.

We focus here on the Bhabha scattering differential cross section for which high precision measurements along with
higher order calculations of the pertubation theory corrections are due in the future. Experimental data has been
collected by the LEP collaborations [85-87]. The studies based on single Dp-brane models, describing the ratio of the
string to Standard Model differential cross sections by the approximate formula [25]

(dor/dS2)

R S T — s 2
R(cosh) = (o /A 5nr |S(s,1)] ,2
[S(s,t)z%}‘?—i%?zl—%—i—---] (II1.3)

yield by comparison with the experimental data at the center of mass energy /s = 183 GeV the 95% confidence
level exclusion limit on the string mass scale, ms > 410 GeV. Similar bounds are found in the analysis [88] including
the experimental data at /s = 188.7 GeV. At the higher energy, /s = 1 TeV, the 95% confidence exclusion limit
obtained under similar conditions should extend the sensitivity reach to [25], ms > 3.1 TeV.

We now present our predictions for the Bhabha scattering differential cross section evaluated with Cremades et
al., [60, 61] model by adding the contributions from the contact interactions in Eq. (II.15) to the Standard Model
amplitudes, using the formalism detailed in Appendix B2. In Fig. 4 and Fig. 5, we show plots of the ratio R(cos#f) as
a function of the scattering angle variable, cos, for the center of mass energies, /s = 183 GeV and /s = 500 GeV,
respectively. The selected set of values for my are different for these two cases, as dictated by the fact that the string
corrections scale as s/m?.

For a qualitative comparison with experimental data, we note that the LEP data points for the ratio at /s = 0.183
TeV are spread over the interval of cosf € [—1, +1] inside the band limited by the horizontal lines at, R(cosf) =
(1.0 £ 0.4). As for the single D-brane model prediction [25] in Eq.(II1.3), this is represented by a nearly straight line
which slopes from 1.06 to 1.0 as cosf increases from —1 to 1. The exchange of string Regge and winding modes are
seen to give a small reduction of R(cosf) near the forward scattering angles, cosé ~ 1, gradually turning into a large
enhancement near the backward angles, cosf ~ —1. This implies a change from a relative negative sign to a positive
sign at some intermediate angle in the interval cos® € [—1, +1]. The contributions grow rapidly with increasing
msr. Requiring the predicted ratios in Figs. 4 and 5 to remain bounded inside the interval R(cos) € [0.8,1.2]
for cos® € [—1, +1] imposes lower bounds on the string scale which cover the ranges, ms > (0.5 — 3.) TeV and
ms > (2. — 5.) TeV, respectively, for the interval of values m,r € [1, 3].
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We have also performed a more realistic calculation of the Bhabha scattering differential cross section in which the
total regularized string amplitudes are obtained by subtracting by hand the pole terms from exchange of massless and
massive momentum modes for the v + Z gauge bosons, while adding up the contributions from the physical v + Z
pole terms, using the prescription in Eq. (II.15). To ease the numerical calculations we have only evaluated the pure
chirality amplitudes LL, RR, while assuming the mixed chirality amplitudes LR, RL to be proportional to these.
The model dependence on the ratio of pure to mixed chirality amplitudes thus resides in the adjustable proportionality
constant, ¥ = Gec e, [Gepe, = GRL/GEE = GER /GLL | which we have taken to vary inside the interval, z = [3, 5].

The ratio R(cos#) of the predicted differential cross section to that of the Standard Model is plotted in Fig. 6 at
the center of mass energies, /s = 183 and 500 GeV (left and right hand panels) for the two values of the string scale,
ms = 1, 2 TeV and ms = 2, 4 TeV, respectively. The comparison of the curves I, II, and similarly of the curves
I1I, IV, measures the sensitivity of R(cos#) with respect to the string scale ms. On the other hand, the comparison
of the curves I, III, and similarly of the curves 11, IV, measures the sensitivity with respect to the mixed chirality
amplitudes. The large spread of predictions with variable x and m, shows that Bhabha scattering can usefully test
the model dependence. The results from the present complete calculation agree qualitatively with those in Figs. 4
and 5, although the change of slope and subsequent rise of the ratio with decreasing cos 6 are generally less steep. We
conclude that the representation of string amplitudes by contact interactions is reliable for the considered incident
energies.

IV. FLAVOR CHANGING NEUTRAL CURRENT PROCESSES
A. Direct and indirect flavor changing effects

The flavor changing neutral current observables are determined by the non-diagonal elements of the mass basis
coefficients of contact interactions, Gjj; . These receive direct flavor changing contributions from the four point
string amplitudes and indirect contributions from the linear transformations linking the gauge and mass bases of
the fermions. Without further input information on the flavor structure, it appears impossible to infer quantitative
constraints from a comparison with the flavor changing observables.

A natural description of the fermions flavor quantum numbers is provided by the basis labeled by the branes
intersection points. The geometric constraints on string amplitudes, as stated by Eq. (I1.23), directly translate as
selection rules on the flavor amplitudes in this basis. For Cremades et al., [60, 61] model, however, these rules turn out
to be trivial ones, owing to the fact that the intersection points for the fixed chirality modes lie at finite distances apart
only in single complex planes. Since the conditions involve at least one shift vector defined modulo 1, no zero entries
are enforced either on the trilinear Yukawa interactions, /\lfj Jif§H, or on the four fermions interactions, Gij,klfif J frfi-

This property is also responsible for the separable structure of the Yukawa coupling constants, )\ij = a;b;, implying
that the mass matrices of quarks and leptons all have unit rank. Although the flavor non-diagonal coefficients are
generally finite, the AF = 1, 2 operators associated with the configurations, i = j # k = [ and i # j # k, are strongly
suppressed with increasing mgr by the classical partition function factor for longitudinal distance parameters, €4, €g
of O(1). However, the fact that the tree level string amplitudes depend on the relative distances between intersection
points, ef} and eﬁ, introduces certain restrictions on the flavor structure of the coefficients G 1.

We here focus on the two flavor changing neutral current observables associated to the mass splitting of CP
conjugate pairs of neutral mesons made of quark-antiquark pairs, P = ¢;q;, P = Giq;j, and the three-body decays
of leptons, I; — I; + I + l;. For simplicity, we assume that the Standard Model contributions to these observables
are negligible relative to those from the contact interactions, so that we can directly use the experimental limit to
derive bounds on the string scale. Convenient formulas for the contributions to these observables from the chirality
conserving local operators have been obtained in [89] for models with extra U(1) gauge symmetries. We follow closely
the formalism developed in the latter work, while accounting for the fact that the dependence on the color quantum
numbers is different in our case. The observables for the real and imaginary parts of the P° — P% mass splitting,
Amp = —R(< P|LEFT2|PY >) and ep = —S(< Ry|LE272P° >)/(2v/2mp), are given in our notations by the
explicit formulas

Amp_—zmpFP[ %(GLL +GERY — o, R(GER)),

17,37 17,1] 17,]
mpF
ep = \/_Amp[ s(fo” +GERY — o, S(GER), (IV.1)
where a =3z —|— (L)2 Note that the definition for the indirect CP violation observable applies specifically

Mg, +Mg;

to the K — K system, ep = €x. The quarks flavor indices 7, j are set in accordance with the conventional assignments
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for the neutral mesons, K°(5d), B°(bd), B%(bs), D°(uc), with Fp denoting the mesons two-body leptonic decay
coupling constants. We have evaluated the hadronic matrix elements of the four fermion local operators for the
pseudoscalar mesons to vacuum transition by making use of the vacuum insertion approximation. The bilinear axial
current hadronic matrix elements are determined through the PCAC hypothesis in terms of the measured parameters
Fp. Using the conventional definitions for the matrix elements of quark bilinear current operators

_ FK
< 08ary"dsr|K°(p) >= — < K°(p)|5ary"dsr|0 >= i ———=p"0as,
Sary"dsL| K" (p) (p)|Sar"dsL| 26\/2—19 8

FKmK

< 0|5a75ds| K°(p) >=< K°(p)|5ar5ds|0 >= — 3\/_(ms n md)éaﬁ, (IV.2)
one can write the matrix elements of the relevant quadratic operators as
Hhs = RO ) 0o I = T G+ )
bhos =< K°|(Sa7"dsr) (5,77 dsr) | K° >= —FI;ZK [Bapdys + 2(#@@)25@%
= QufrsTasns = FIQ‘W, QLR Toys =~ 1 oK _yoy (IV.3)

ms + Mgy

where the saturation of color indices displayed in the last entry above uses the tensor, Tngys = %(60[35% + 0a50,3)-
differs from that quoted in [89], oy = & + 3(—2£—)2, which

15,13 3\mg, +mg
refers to the dependence on color indices involving the diagonal tensor, d,gd~s. Similar formulas hold for the B and
D mesons.

The contributions from contact interactions to the lepton number violating three-body decay rates of charged
leptons are given by [89]

The factor o/i accompanying the coefficient GLE

5

[lej —ei+ep+eé)= =[G zkz|2+|szz|2+|Gﬂ kl|2+|G]Z ?) + (L < R). (IV.4)

384 38473

The partial rates for the pair of decay reactions, u= — e~ + e 4+ e~ and 77~ — e~ + e + ¢, with j = 2, 3 and
i =k =10=1, are described by the simplified formula

mgj 2TGA \21o|LL |2 2 2
F(eﬂ —)61—|—61—|—61) 384#3(m2K ) [2| _]zu| +2|g_]zu| +|g]zu| +|g_]zu| ]5 (IVS)

where we have included an extra symmetry factor % in order to account for the pair of identical charged leptons in
the final states.

The bounds on the string scale implied by the mesons mass shifts and the charged leptons decay rates are expressed
by the explicit formulas

1

2mg% 2mpF3 1 . - 2

me > {— KAA pr[gﬁ(gz@ﬁj + gz] z]) O/ %(gll_/]lfj)] )
27_‘_9124 m5 1/4

ms > ( . )(2|g]1 u|2+2|g]zu|2+2|g]z u|2+2|g]zu| ) . (IVG)

%
Ka ) 38473 (e; — €; + € + &

In view of the partial information that we dispose on the matrices Vé and the complicated summations over the
flavor basis amplitudes, we choose to perform an approximate calculation motivated by the specific flavor structure
of contact interactions for the model at hand. We only retain the coeflicients ggl,;ll with ¢ = j, k = [, denoted by

ggH/ = gﬁf,;, and neglect the distinction between intersection points, by assuming the diagonal terms g;; to be
independent of 7 and the non-diagonal terms to be symmetric, ¢;; = g;;. Applying now the unitarity conditions on the
quarks transformation matrices, V7, allows us to express the mass basis coefficients for the neutral meson observables
in the form

ggg — (2hljh _|: h h;_] + hZJiL;j)(gzI;IHI - gzk ) + 2hZth] (gu - g_]I—IIcHI) + (hlj hz_] + hljh )(ggH, - g]I—IIcH/)v
[hij = Vg[ Vg;, hij = Vg:jvgjj, i £ 5 £k (IV.7)
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where 1}, hgj are given by same formulas as hi;, hi; with H — H’. Assuming further that the non-diagonal elements
are independent of the specific pair, ¢, j, so that gi12 = g13 = go3, leads to the factorized form

g0 ~ Vi o™ =gl )
W = 2hwhij + 2hwhij + hijhi; + hijhg;). (IV.8)

We have considered the alternative approximation defined by assuming that the diagonal coeflicients g;; = gq are
independent of ¢ and the non-diagonal ones satisfy g;x = gri =~ gnd, but without imposing the unitarity conditions.
The resulting form of the AF' = 2 coefficients reads

gi’]{g ~ VHH, (WHH, + WH,H* +XHH,)g'n,d7
HH' a HH' HH'
[Vij Z VH szH*ng / szH’ jk? Wi; Z V;I,ikvglfjlvlg/,ikvqt,jw X" o= Z Vlg,ikvgt,jkvg',ilvmylg>

k£l k£l

For the coefficients gw W entering the charged leptons decay widths, we use the same assumptions as in the calcu-
lation done just above to obtain the simplified formula for the mass basis coefficients

Gjiii = VjiGii + V'lgju
[Vji = Zvlifjk VH/sz "ik>s _]z ZVHJIC VH’le /zl] (IVlO)
& k£l

B. Results and discussion

We have numerically calculated the mesons mass shifts and the three-body leptonic decay rates for Cremades et
al., [60, 61] model with the reference set of parameters described previously and the longitudinal distances set at,
ea = (0,0,0), eg = (0,1/3,0). Somewhat arbitrarily, we choose to set the various flavor mixing matrices equal to the
CKM matrix, Vfl’l = Veoxkwm, [H = L, R]. The following input data, expressed in GeV units, are needed to calculate
the mass shifts:

me =3x 1073, mg=7x 1073, ms = 0.095, m. = 1.25, my = 4.20;

Fr =0.1598, mg = 0.497, Amg = 3.483 x 107'°, VK =0.0979;

Fp =0.176, mp = 5. 2794 Amp = 3.337 x 10—13 YBa = 0.000125;

Fp, —0176 mp, = 5.367, Amp, = 1.145 x 10~ 0B = 0.00347;

Fp = 0.2226, mp — 1.8645, Amp — 4.607 x 10~, V2 = 0.0979. (IV.11)

The following input data, expressed in GeV units, are needed to calculate the charged leptons three-body decays:

me = 0.511 x 107%, m,, = 0.1056, T'(x — e +e+e) < 3.29 x 1073, RVy = —0.198633, RV,; = 0.198722;
m, = 1777, T(T = e+ e+ &) < 4.529 x 1072, R(V31) = 0.00641, R(V%,) = —0.00660. (IV.12)

The results obtained with the flavor mixing described by the approximate formulas in Eqgs. (IV.8) and (IV.10) are
plotted in Fig. 7. The use of Eq. (IV.9) gives similar results. We see that the bounds on mg, at fixed msr, increase
with increasing mgr according to the approximate power law, (msr)5/ 4. Wide disparities appear between different
cases mainly because of the flavor mixing factor. The most constraining observable, corresponding to the K — K
mass shift, yields the bound, ms > O(10%) TeV. Relaxing our assumption that the Standard Model contributions are
negligible can only strengthen the bounds on mgs. However, one may expect significantly weaker bounds if the flavor
and mass bases were not too strongly misaligned so that the flavor change is dominated by the direct contributions.
For instance, using the order of magnitude predictions for the off-diagonal coefficient gg l,gl, in panel (¢) of Fig. 1, with

Vg = 1, would reduce the bound on mg from the K — K mass shift by a factor of order 10~! — 1072. A careful
treatment of the flavor structure of the model would be needed in order to make a more definite statement.

For comparison, we note that the bound from the K — K mass shift obtained in [49, 50] by using the approximate
representation of Eq. (IL.9) for the string momentum modes reads, ms > 100 TeV. A similar gap exists for the other
flavor changing observables. However, these results were obtained by setting, mr ~ 20, which lies well above the
allowed interval.

We comment briefly on the CP violating observable, ex, which is set by the experimental data for the K — m+m
decays to the value, |ex|ezp = |n00| = (2.285 4 0.019) 1073, Since the coefficients g are real, the prediction for
ex depends in a crumal way on the flavor mixing matrices. In our treatment of the 1nd1rect ﬂavor mixing leading to



19

Eq. (IV.8), the predictions for ex and the mass shift scale as, |ex/Amg| = |S(VE)/R(VE)|. Since the CP violation
effects enter the CKM matrix through the second and third fermion generations, VS is real and hence e = 0. The

alternative prescription for the flavor mixing described by Eq. (IV.9), with the matrices Vé still identified with the
CKM matrix, yields an uninteresting small bound on m.

It is also instructive to compare with the split fermion models. The bound from the K — K mass shift [56],
M. > B[VEF(pa)]z ~ (100 — 600) TeV with 8 = 1125 TeV and F(pa) ~ (2. —8.), is of same magnitude as ours, while
sampling over the parameters which control the indirect flavor mixing effects give the ability to suppress the bound by
factors of 10 — 100. The description of exchange contributions in these models differs from that in intersecting brane
models where the flavor hierarchies originate in the instanton contributions, rather than the wave function overlaps,
and the parameter space is more restricted. In addition to the extra dimension size parameter, M. = 1/r, the split
fermion models [56] introduce the scaled localization width and fermion separation parameters, p = o/r and o = Ay/o,
which qualitatively identify with the string theory parameters, p ~ M./ms and o ~ emgs/M. = emgr, assuming
o ~ 1/ms. We conclude from this indirect comparison that the wide hierarchies, o € [0,15] and p € [107%,1074],
which are needed in split fermion models to weaken the bounds on M., are not favored by the analogous intersecting
brane models.

Finally, we present the result of an indicative study of the tau-lepton hadronic and semi-hadronic decays, 7 — 7+ p
and 7 — 7+ 7 + u, based on the analysis [90] of the effective interaction for the associated subprocesses, ALgppr =
%([m‘%)((ﬁuq) + H.c., which yields the bound, A™? > 12 TeV. Using the predictions in panel (¢) of Fig. 1, we
deduce the bound mgs = A74g, (gquL)% > 0.5 TeV at mgsr = 1. At larger m,r, neglecting the flavor mixing effects leads
to useless small bounds due to the strong suppression of the flavor non-diagonal string amplitude.

V. SUMMARY AND CONCLUSIONS

We have discussed in this work collider and flavor physics tests of the four fermion tree level string amplitudes in
intersecting brane models. Although the study was specialized to the isolated orientifold premodel of Cremades et
al., [60, 61] realizing the Standard Model, this is a good representative of the families of string models selected in
current explorations of the landscape of open string vacua. Based on a qualitative examination of the predictions for
the gauge coupling constants, we also verified that it is compatible with a TeV string mass scale.

The string theory predictions depend on two free mass parameters, ms and M, = 1/r, along with the geometric
shape parameters of the internal T torus and known inputs for the electroweak gauge bosons masses and gauge
coupling constants. The necessary condition for weakly coupled open strings imposes the restricted variation interval,
mgr = mg/M,. € [1,4]. We have studied the four fermion contact interactions from exchange of string Regge and
winding modes in various configurations of the quarks and leptons, paying special attention to the gauge group
structure and the contributions from world sheet instantons. The general features of predictions for the contact
interactions may be briefly summarized as follows. The size of coefficients present regularities which reflect in part
the symmetric configuration of the brane setup. The sensitivity of predictions to the tori shape parameters leads to a
moderate sensitivity of the flavor diagonal coefficients AF = 0 on geometric parameters which spreads predictions by
a factor 2 — 3. The widest disparities occur between the mixed and unmixed chirality amplitudes. Two characteristic
features reside in the strong growth of the flavor diagonal coefficients, (ms7)®/2, and the strong suppression of the
flavor non-diagonal AF = 1, 2 relative to AF = 0 by factors of order 10~ and 10™%, due to the classical partition
function factor when the distances between intersection points relative to the wrapped cycles radius are of e = O(1/3).

The Bhabha scattering differential cross section is an important high precision observable for which the theoretical
and experimental uncertainties are expected to reach O(1073) in the future. We have considered a qualitative
comparison with the LEP data which leads to bounds on the string mass scale of TeV order. These are expectedly
stronger than the bounds obtained in the single brane model [25] where the local operators have dimension 8. It
should be useful to pursue a systematic study for the set of 2 — 2 body processes including the Drell-Yan lepton pair
production and the parton subprocesses with initial states, for e + ¢, ¢ + ¢ and ¢ + ¢'.

We have also considered the direct contributions to the four fermion contact interactions from string Regge and
winding modes to a subset of flavor changing neutral current observables using an approximate description of the
indirect flavor mixing effects where the direct and indirect flavor changing effects factorize. The K — K mass splitting
yield the strongest constraint, ms > 103 TeV. This bound, as well as other ones deduced from flavor changing
observables, are an order of magnitude stronger than those obtained from the contributions to contact interactions
due to the string momentum modes [49, 50]. Tt is fair to say, however, that this conclusion is at best qualitative
since the two calculations rely on different inputs and approximations. To obtain more realistic estimates, the highest
priority should be set on obtaining realistic inputs for the flavor mixing matrices which match the predictions for
the fermions mass matrices to observations while improving on the restrictive rank 1 property of the fermions mass
matrices in the model at hand.
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APPENDIX A: BRIEF REVIEW OF OPEN STRING SECTORS IN TOROIDAL ORIENTIFOLDS

We consider type I string theory compactified on factorisable toroidal orientifolds, 7¢/QR, [T°® = H 71 T?] where
the involution symmetry, R = H 7_, R, acts on the orthogonal basis of complex coordinates, X! = (X{ +iX3)/v?2 V2
in the 77, [I = 1,2, 3] complex planes as reflections across the real axes, Ry - X I'= X!. We restrict to the subset of
factorisable three- cycles in the integer homology vector space, II,, € H? (T6 Z), represented in terms of the homology
of one-cycles with lattice dual bases, [a!], [b'] € HY(T?, Z), by the three pairs of integer quantized winding numbers,

n!, ml). These three-cycles are represented in the orthogonal coordinate system of the three complex planes of T
wr
by
I ; ol
- . ) e
lH#l = (nfu mfl,)? [mfl, = mfl, - nfl,UlI’ UI = UII + ZUQI = _6_} = _bl + le X1 = _§l (Al)
2 L1

where U’ denote the T? tori complex structure moduli whose real parts are subject to the restriction, by = 0, %,
for orthogonal and tilted tori, respectively. We have denoted by r{, 7 the radius parameters of the one-cycles of
T? projected on the pair of orthogonal axes. For non-orthogonal 2-d tori, 77, we choose to work with the case of
upwards tilted tori, where r{ refers to the one-cycle along the imaginary (vertical) axis of the complex plane and r{
to the projection of the dual one-cycle radius along the real (horizontal) axis. The orientifold O6-planes are the loci
of points fixed under R which extend along the three uncompactified dimensions of Minkowski space-time, My, and
wrap the three one-cycles, (nfb,mu) = (1,0). Both the O6-planes and D6-branes are sources for the closed string
RR modes seven-form, Cr, with RR charges determined by the winding numbers of the wrapped three-cycles. The
divergent tadpoles of RR modes due to the O6-planes in the one-loop closed string (Klein bottle surface) amplitude are
assumed to cancel against the tadpoles in the open string (cylinder and Mébius strip surface) amplitudes contributed
by introducing K parallel stacks of N, branes D6, [p =1,2,- = a,b,---]. To the D6,-brane stack wrapped

around [II]] = (n},, /), is associated the orientifold mirror image D6 brane stack, wrapped around the image cycle
1y ) il I
ML, ] = (n, #,) (n#, —m],). For toroidal orientifolds, the RR tadpole cancellation conditions are of form
Z Nynkn!nlf + 5Qop = 0. Z Nkl =0, [Qop = F2~*f, = 32 (A2)

where the summations run over the orientifold equivalence classes, counting mirror pairs as single units; I, J, K €
[1,2, 3] run over the distinct permutations of the complex planes indices; f, = 2977 denotes the Op-planes multiplicity;
and the upper and lower signs of the orientifold charge Qo) refer to the SO and Sp (orthogonal and symplectic group)
orientifold projections.

The D6,-brane location in the T? complex planes is described by an oriented vector tilted relative to the O6-
plane (along the real axes) by the angles, 70! = arctan(ml/nlUJ). The D6-branes serve as boundaries for the
end points of open strings which carry their perturbative excitations. The open string sectors, (a,b) and (a,b’),
associated to the two pairs of branes, D6,/D6, and D6,/D6y, are assigned the interbrane angles, 6, = 6, — 0, and
Ouy = Oy —0, = —0p, —0,. We use notational conventions where the brane-orientifold and interbrane angles vary inside
the intervals, 61, € [-1,+1] and ¢!, € [0,+1], [I = 1,2, 3] with positive sign angles associated to counterclockwise
rotations. Translorming back to values of the angles inside these ranges requires geometric information on the signs of
winding numbers. The brane pairs a, b intersect at fixed numbers of points determined by the topological invariants

1 = [Tk}~ nd). L = [0kt~ ndond) = T[nlind -+ il (A3
I I I

The low-energy dynamics on a single isolated stack of N D6-branes in the 4-d space-time My is approximately
that of a gauge field theory with gauge group U(N), supersymmetry A/ = 4, and a certain content of massless
modes associated with the branes moduli. The open string sectors for the D6,/ D6y-brane pair supporting the gauge
symmetry U(N,) x U(Np) include: (1) The diagonal modes, (i, 1), [ = a, b] which carry the adjoint representations;
(2) The orientifold twisted modes, (p, '), which carry the symmetric and antisymmetric representations A, S of
U(N,,) with the multiplicities, (1. & 1,06), [Iu06 = [m,] - [fo6] = [1;(—my)]; and (3) The non-diagonal ‘twisted’
modes, (a,b) ~ (b,a)" and (a’,b) ~ (b, a’), which carry the bifundamental representations, I,s(Na, Ny) D Lup (N, Np).
The equivalence relations between open string sector sectors, (a,b) ~ (¢/,a’) ~ (b,a)', (a,t’) ~ (b,a’) ~ (V',a), where
the dagger stands for the complex conjugation of the states space-time and internal group quantum numbers, lead to
interpret the intersection numbers I,;, or I, of negative signs as multiplicities for the modes with conjugate chirality
and group representation, |I,p|(Na, Np) or |[Iup|(Na, Np).
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The key condition to preserve A/ = 1 supersymmetry on the branes 4-d intersection is that the wrapped three-
cycles be of special Lagrangian type. For Calabi-Yau manifolds, these are the cycles whose real number valued volume
integrals are calibrated by the holomorphic three-form, e*#{)3, characterized by a fixed choice of the angle parameter,
. In close analogy with the conditions selecting in closed string theories the holonomy of subgroups of the internal
space manifold symmetry group SO(6), one preserves A' = 1 or N = 2 supersymmetry to the extent that the rotation
matrices relating the branes to the orientifold planes belong to the group SU(3) or SU(2) [4]. The requirement that
the wrapped cycles I1, and II; are calibrated by the same three-form so that the D6,/ D6,-brane pair preserves N' = 1
supersymmetry, amounts to the conditions, ), 9{17 » = 0 mod 2. In terms of the spinor weights r‘(’a) of SO(8) for the

16 supercharges conserved in the bulk, N'= 1, 2 supersymmetry arises when a single or a pair of spinor weights T(a)

solves the equations, Zi:l r‘(la)Gz =0, [a=1,---,4; p=1,---, K] where the intersection angle in M, is set here to

zero, 0* = 0. In the basis of independent spinor charges for SO(8) defined by

ray=(=++-), rgy=(H—-+-), rgy=(++-—), ry = (= — =), (A.4)

1
2
(0,04,%604), (05,0,+05), (¢, +0¢,0), preserve the N' = 2 supersymmetries associated to the pairs of spinor weights,

() Cor: ()

We discuss next the dependence of intersection points on geometrical data for the angles and transverse separations
of D64 /D6 p-brane pairs that do not necessarily pass through a common point of 7°. Suppressing the index I of
the 2-d tori T?, for convenience, we parameterize the D6 4-brane wrapped around the one-cycle of T2 with winding
numbers (na,my4) by the equation

Xa(€a) = (Laka+ qa +pat +data)er, (A.5)
where
Lg=mngy +mAT€: NaA+1MaTe, T4 = —MaTo +1Na, g =NA+ MaTy,
[T:Tl +iT2:—2, e; = 2mry, €2=27TT‘26ia] (AG)
€1

with 7 denoting the 7 torus complex structure modulus, d4 the transverse displacement from the origin, g4, pa € Z
the lattice displacements along the basis of dual cycles, and £4, da € R parameterize points along longitudinal and
transverse directions. We have formulated the problem here in the case of sideways tilted torus, which is related to
the case of upwards tilted torus considered in Eq. (A.1) by the transformation, 7 = —1/U. (The formulas for the
upwards and sideways tilted tori are also related by the substitutions, n — m, m — —n, e; — ea, e2 — —e;.) We
now introduce a similar equation for D6p : Xg(€p)/e1 = Lpép + g + pe7T + dptp, and require the condition,
Xa(€a) = XB(€p). The resulting pair of linear equations for the real variables £4 and &g,

<:%i __7771151;> <§;) - (%ﬁ) (A.7)

QaB =Qa—Qp, Pap = Ps — P, Qu:qH_dumuT% Pu :pu+duﬁu/72u [NZA,B] (A8)

where

is solved in matrix notation by

<§A>_ 1 <mB —ﬁB> <QAB) . XA:kABLA7 XB:k/BALB,

€8) Iap \ma —na )\ Pap Iap Iap
[Iap =namp —mang, kap = (ApPap — mpQap) mod(Iap), ks = ("aPap —maQap) mod(Iap)|(A.9)

The I4p solutions for £4, £p are in one-to-one correspondence with the pairs of integers kag, k4. The shift vectors,
wpa = Xp— Xa = (kgaLe — kapLa)/Iag, which link the positions of a given intersection point along the pair of
intersecting branes (B, A) in the complex plane of T2, belong to the lattice coset, Aga/A, where Aga denotes the
grand torus lattice generated by the cycles Lp, La, and A the T? torus lattice [67].

We next discuss the vector space of open string states, (a,b), [a = b, a # b]. The state vectors,
|(a,b)k, N, 7(a), (A,i5) > )\SZZZ, are described by the four momentum k; the coordinates oscillator number N; the weight
vector 7, of the SO(8) group Cartan torus lattice; and the gauge group multiplet component A. The CP gauge fac-

tors, )\fﬁ;, [i=1,--+,Ng; j=1,---, Np] are matrices whose array and column indices ¢ = (1,---, Ng), 7 = (1,---, Np)
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label the coincident branes inside the stacks a, b of size N,, Np. In orientifolds, the combined systems of mirror brane
pairs, (a+a’, b+V'), are described by single matrices, )\EZZE, [i, j € (a+d, b+b)] of size (2N, +2Np) X (2Ng +2Ny).
These are conveniently represented by 2 x 2 block matrices with sub-blocks labeled by a,a’,b,b". The diagonal open
string states (a, a) are ascribed 2N, x 2N, gauge matrices, /\Ef'zj) We drop in the following the suffix labels (ab), (aa)
and A, 7,7 on the matrices, except when needed. We use conventions in which the matrices satisfy the normalization
and closure sum conditions, Trace()\A)\E,) =0aB, 4 Trace(O1Aa)Trace(O2Xa) = Trace(0O,0z).

The orientifold symmetry 2R acts on the gauge quantum numbers of brane stacks through the twist matrix given
by the direct product of 2N, x 2N,, unitary matrices, yor,u, [t = a,b]. The orientifold projection on physical states is

then defined by, /\Efb) = nAﬂyQR,a)\f:b)T*yg}z’b, where 14 are state dependent complex phase factors. These conditions
must be imposed only for brane stacks p which wrap cycles coinciding with their orientifold mirror images, pu = p/,
hence fixed under the orientifold twist, II, = II,» = Ilpe. In the case of a brane stack p at generic angles, ;1 # ¢/, no
conditions need be imposed beyond requiring that the representations for u and u’ be conjugate. Nevertheless, it is
convenient to treat in a unified way the cases with u =y’ and p # p/, by taking the orientifold projection matrix in
the latter subspaces to be trivial, yog,, = 1. The SO and Sp orientifold projections, corresponding to Qos = F2°,
are characterized by the property of the twist embedding matrix, ”ng) u = Erer.pu-

We now specialize to the Sp type projection which is the appropriate one for the model of interest to us to be
discussed in Subsection II B. Solving the condition for the bifundamental representation, A(#*) = —Yar, u)‘(W)T%_nlz,w
with antisymmetric twist matrices, yor,q¢, [@ = i, v] of dimension (2N, +2N,,) x (2N,+2N, ), and the similar condition
for the adjoint representation matrix, A(¢#) of dimension 2N, x 2N, one obtains

G _ (M s w)_ (0 B
A _<82 _mT aA - B’ 0 )

ST T
[B = (?; g), B = ( jT _BQT), YOR.u = (-101\@ 18’“)] (A.10)

where the sub-blocks m,«, B, v, 0 and s;, s2 designate arbitrary generic and symmetric matrices with m, s1, s
and a, B, 7, 0 having dimensions N, x N, and N, x N, respectively. The conjugate group representations are
assigned Hermitian conjugate matrices. The adjoint representation matrix A(¢») in Eq. (A.10) involves 2N, (2N, +1)/2
independent parameters, as needed to match the dimension of the gauge group USp(2N,,). The special case for the
matrix A(G») with s; = s = 0 corresponds to the adjoint representation of U(N,), involving the expected number of
N 3 independent parameters. For the bifundamental representation matrix A(**)| the entries in the sub-blocks B and
B’ are related by the requirement that the substitution p <> p’ corresponds to charge conjugation. The infinitesimal
transformations of the gauge matrices A®) in the representation R of sector (u,v), obtained from the commutator
with the adjoint representation matrix,

S A = (8, + 0,)A = NG @ NG NB] NG = (e, =€) @ L, + [, ® (e, —€)]  (A.11)

act on the sub-block matrix entries of the matrices B, B’ for the bifundamental representations as
S = €y — ey, OB = €48 + Beu, Sy = —€uy — Yeu, S = —€,0 + 06y (A.12)
The four inequivalent bifundamental representations are thus in one-to-one correspondence with the sub-blocks,

a, B, v, 6, characterized by the charge assignments, (Qn,Q.) : o~ (1,-1), B~ (1,1), v~ (-1,-1), § ~ (—1,1).

APPENDIX B: TWO-BODY PROCESSES AT HIGH ENERGY COLLIDERS
1. Tree level string amplitudes for processes with fermion and gauge boson pairs

We discuss in this appendix the tree level four point open string amplitudes in models related to the intersecting
brane models. For comparison with the results in Subsec. IT A, we first consider the branes within branes models.
We start, for completeness, with the case of four fermion modes belonging to the diagonal sector (p, p) of a Dp-brane
which corresponds to the single Dp-brane model [25]. The result can be derived by dimensional reduction of the
familiar formula for the D9-branes of type I theory

1
Alppyt = GDPT1234/ doa™* 71 (1 — 2) 7" [(1 — 2)S1234 — ©S1a23] + perms
0
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S(s,t)

= —GppTi2s4 (tS1234 — 5S1432) + perms, (B.1)

where we use same notations as in Egs. (II.1) and (I1.6). The above formula is formally related to that in Eq. (IL.1) by

the substitution, CSi234Vi234 — —Gpp(tS1234 — 581432)5( t) . Matching to the pole term from massless gauge boson
exchange determines the normalization factor as, G p,Ti231 = 297 Dp» Where the Dp-brane gauge coupling constant gpp

enters the gauge current vertex as, ﬁgDpTa*y)\.

We now focus on the massless fermion modes of the Dp/D(p + 4)-brane models localized at brane intersections in
the non-diagonal sectors, (p,p +4) + (p + 4,p). The calculations, discussed initially in [33], bear formal similarities
with those for intersecting branes. We specialize to the case p = 3 of setups with D3/D7;-brane pairs with I = 1,2, 3.
There are two possible channels for the couplings of four non-diagonal sector modes (3, 7;), which correspond to the
configurations [(3,7);|* and |(3,77)|?(3,7s)|?>. The string amplitude for the first channel, [(3,7);]*, involving two
identical pairs of conjugate fermion modes is given by

/ ! ! —s—1 t—1 [ ](
Al 7y = C’Dp/o drx (1 —2)7"7 (1 — 2)S1234 — S1432] (T1234 H %( + Tu3z1 H 1 ) ),
(ra(e) = 1P 5 rale) =LA s F(0) = F(5 i) (B2)

where the label A = (J,,,, K,,), [m = 1,2] in the products runs over the real dimensions of the 4-d sub-torus 77 x T
of the internal torus 7% wrapped by the D7;-brane, the Wilson line parameters along the corresponding sub-torus are
denoted by €4, and the sub-torus volume parameter is defined by, |L4|*> = r37%. The direct and reverse orientation
terms inside the large parentheses are related by the change of integration variable, z — (1—x). Combining the regions
of the z-integral near x = 0 and = = 1 yields the low-energy approximate representation of the string amplitude as
infinite series of s-channel or ¢-channel poles located at the string compactification modes

5*(ZDA+6A)2T§‘ 5*P2A/T§xezﬂipAEA /TA
/! / ~ C/ T S . S
A(377I)410 ! A(377I)411 o pAZGZ ( 1234[ 123 —s+ ZA(pA + 6A)27324 2 —t+ EA pi/ri
HA 5*PQA/T2A(527TZ'PA€A/TA H §—(Patea)ry
T. S -8 B.3
+T4321[S1234 P L S At en)? TA] (B.3)

where the momentum modes in the open string sector (7;,7;) arise after use of the Poisson resummation formula
and the winding modes belong to the open string sector (3, 3). The massless pole terms determine the normalization
20y /e s with Vg ~
(277)P~3 denoting the volume of the (p — 3)- cycle of the internal manifold wrapped by the Dp-brane. For the Abelian
gauge group case, Cpr1234 CDpT4321 = 2¢%5 = 2g%,757%.

For the channel |(3,77)|?((3,7)|?, involving two distinct pairs of conjugate fermion modes, (3,77) and (3,75), [I #
J] the string amplitude is given by the formula

constant in terms of the gauge coupling constants by the formula, Cpr1234 = 27gs =

/ v ! —s—1 —t—1 19[664](7'14)
Aisrnzery: =Cbp | dex (1-x) T1234[(1 — 2)S1234 + 2 P1432) H(il )
0

) 4 @)
+T321[(1 — #)P123s + 2S1432] 1;[(%(@;)))) ; (B.4)
where
Prasas = (u] YOus)(ug 1 us), Siaza = (uj YOv"uz)(ug Y v, us). (B.5)

The label A in the products [, now runs over the directions of the wrapped internal sub-torus TZ common to the
D7, D7;-branes, corresponding to A = K,,,, [m = 1,2] and 74, 7p retain the same definition as above except
that the volume parameter is now given by, |La|?> = r%. The Dirac spinor scalar quartic coupling, Pi234, appears
because the modes in the non-diagonal open string sector (7;,7;) to which the fermion pairs couple are Lorentz
scalars. Combining the contributions from the regions of the z-integral near x = 0 and x = 1, yields the low-energy

representations as infinite series of s-channel and ¢-channel poles located at the string compactification modes

5*(PA+€A)27“2 H 57P2A/T2AeQ7Ti;DAEA ra
+ P1as2
s+ 2 4(pa+ea)ry —t+ 24P/

Az a0 T Al rea = Chy Z (T1234[51234

pA



+T4321[P1234

§—Pa/rh g2mipaca §—(patea)ri
c /ra I ) (B.6)

+ S
—s+ > P4/ 1432—t+EA(pA+eA)2T?4]

The normalization factor is given by the same formula as found above.

We next discuss the 2 — 2 body processes involving the gauge boson pair production by fermion-antifermion
annihilation and the gauge boson pair scattering processes. The string amplitudes have a universal form with the
model dependence residing only in the gauge structure. In particular, identical formulas hold in single and multiple
Dp-brane models. For the localized fermions of intersecting brane models, the string amplitude for photon pair
production by fermion-antifermion annihilation, Aeew = A'(et (k1) + e (k2) + v(ks) + y(k4)), is calculated from

the world sheet vacuum correlator, < V_(9 2)1/9( )Véul)Vé?/) >. The dependence on the interbrane angles from the
correlator of a single pair of coordinate twist fields is found to exactly cancel that coming from contracting the
corresponding pair of spinor twist fields. The rest of the calculation is standard and gives the same result as that
obtained by dimensional reduction from the D9-brane amplitude [91]

S(s,1) S(u,t)

u
Alceryy = GoplTiz3a — Ti324 + Ti24 %]K(Ula Uz, €3, €4),

[K(u1,uz2,€3,€1) =1 (@?ﬁ(%z + ¢4)¢432) +u (dres(K2 + K3)fsuz),
71234 = TTaCG()\l)\QAg/\4) + TTCLCS(A4/\3)\2)\1)] (B?)

where the factor depending on the polarization wave functions, K (u1, us, €3, €4), is (anti)symmetric under permutations
of the (fermion) boson particle labels. Assuming, for simplicity, the three gauge trace factors to be equal, the
factorization on the massless pole terms identifies the normalization constant to the gauge coupling constant in the
Abelian and U (V) non-Abelian group cases as, GppTi234 = 291231) and GppTi234 = 2g%p[za(T“)12 (T)34+ S5 NH (1)12
(1)34]-

The string amplitude for the gauge boson pair scattering process, A’ = A'(v(k1) +v(k2) +v(k3) +(k4)), is of
same form as that obtained in the familiar D9-brane case [91]

1 1 1
Al = G/Dp[7-1234§5(8, t) + 71324ES(U’LL) + 7'124353(% $)] Ky (€1, €2, €3, €4),

1 s
K, (e1,€2,€3,€4) = _Z[St (€1 - €3)(€2 - €4) + perms] + B ((e1 - Fa)(e3 - k2)(e2 - €4) + perms), (B.8)

where the normalization constant is related to the gauge coupling constant by, G'Dp7'1234 = G’Dp7'1324 = G’Dp7'1243 =
292, .
P

2. Helicity amplitudes

To enable the comparison with experimental measurements, it is useful to express the various string ampli-
tudes in the spin helicity basis of the various modes. A convenient way to proceed is by first establishing the
correspondence dictionary between the kinematics of string amplitudes, where all particles are incoming, with
that of physical processes, and using next the familiar crossing relations which transform particles to antiparti-
cles and flip the sign of momenta and helicities. Thus, the amplitude for fermion-antifermion pair production,
fi(p1) + f5 (p2) = f5 (p3) + fi (pa), is obtained from the string amplitude, A(f1 (k1) + f2(k2) + f3(k3) + fa(k4)), by
setting, fi(k1) = fi"(p1), fa(k2) = fo (p2), fa(ks) = f~(=p3), fa(ks) = f*(~pa), which involves substituting the
momenta, kinematic variables and Dirac spinors as

(k1, k2, k3, ka] = [p1, p2, —p3, —pal,

[s = —(k1+ k), t = —(ka + k3)®, u=—(k1 + k3)®] => [s = —(p1 +p2)°, t = —(p1 — pa)*, u=—(p1 — ps)°],

[ur(k1), ua(k2), us(ks), ua(ka)] = [v*(p1), u(p2), v (ps), v(pa)]- (B.9)
For the choice of kinematic variables in the center of mass frame, py = —pa = p, —p3 = ps =9/, [p- P = cosf| the
kinematic invariants read, s = 4p?, t = —ssin’ g, U = —8§cos> g. The helicity polarization basis for the spin one-half

Dirac fermions is descr1bed by the familiar formulas
_ . 1 4 . —-A
e=ec u@A)=pl  |@ap) e=cvEA)=p( ) @o-a0),
—sin ¢ cos ¢
60 = 610) = (17 ) onti = nt9 = (2 ). (B.10)
2

Sin 3
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The Dirac spinor matrix elements in the configuration of helicities for the physical process, fTf~ — f~ f* are given
by

AU (01) + 12 (p2) = £ (03) + £ ) 0) | (+ = =) (+ = +)| (= = =)
S1234 = (0(p1) 7" u(p2))(@(ps)yuv(pa)) —2u —2t 0
S1a32 = (0(p1)y*v(pa))(u(p3)v,u(p2)) 2u 0 —2s

tS1234 — 551432 2u? —2t2 252

The results for the other helicity configurations are inferred from the above formulas by invoking the symmetry
under space parity. The string amplitude in the three independent helicity configurations for the physical process,
€x, +ex, = €x, + ey, are given in the single brane and the intersecting brane cases by

M 4 S(s,t
(A(gp)j Tt ])Dp =—Gpp (st )[2u2, —2t?,25%] + perms,
(Alf[jdrf#rf#’ffff])lSB = 2mgsT1234 V1234 —2u, —2t,0]. (B.11)

To account for the electroweak symmetry breaking in the charge neutral channels one needs to substitute the massless
photon pole term by the sum of v 4+ Z boson pole terms. The Z boson exchange contribution is obtained from that

of v exchange by the substitution, s — s —m?%, along with the following replacements for the chirality couplings
LL,RR,LR,RL:

et = etlar(fai(f), ar(flag(f), ar(f)ak(f), ar(f)ar(f)],

() = 25w

, ag(f) = S—W, sw = sinfw, ey = cos Oy ]. (B.12)
SWCWwW Cw

The differential cross section for the spin-unpolarized Bhabha scattering process, €+ e — € + e, obtained by adding
to the Standard Model terms the contributions from the D = 6 contact interactions, is given by

do o’ 2 2 2 2 21 4s |2 204t |2
< gesd O X[u |[ALLl” + u’|ARr|” + 27| AR | + 25| AR L[]
_ _ 4 277LL 4 1 1 2 1 1
Apr = Aleger — eher) = Al + A2’ [Ady = STt az,(e)(— mZ Tt mZ )l;
_ _ o 277RR o 1 1 1 1
_ + 4 R — +—+ _ 2
Apr = Alejegp > epeg) = Agy T + A [Agnr _§+¥+aR(e)(s—m2Z t_m2Z)]’
— - ———— |, MRL o 1 1
App = Alefep —efer) =Agy  + aA2’ Ay~ =Af " = T aL(e)aR(e)it 2 I,
1 17
s _ _ —_4+  MRL __ e
L = A(e‘};eL — ezeR) = A}'M T4+ A2’ [AgM T = AS]\T’ = + aR(e)aL(e)S — m2Z],
_ _ NLR
AtLR = A(eEeR — eEeR) = A}'I\"F—"— + A2
s _ _ —4+4_ . TLR
ir=Alefer = eher) = Agii + A2’ (B.13)

where o = % and 4 denote the coefficients of the local operators previously defined in Eq. (IL17), and ag (e)

designate the Z-boson vertex couplings defined in Eq. (B.12). We use the suffix label s, ¢ to distinguish the s- and
t-channel pole terms.

For the fermion pair scattering processes, the correspondence dictionary between the kinematical variables in the
physical process, A(f1(p1) + f2(p2) = f3(p3) + fa(p4)), and the string process, A(f1(k1) + fa(k2) + f3(k3) + fa(ka)),

can be written as

k1, k2, ks, ka] = [=ps, p1, —pa, p2], [ua(k1), ua(k2), us(ks), ua(ks)] = [u*(ps), u(p1), u’(pa), u(p2)],
= (k1 +k3)?] = [t = —(p1 —pa)?, u=—(p1 — p3)®, s = —(p1 + 1B"14)

(8= —(k1 +k2)?, t = (ko +k3)?, @
For clarity, we have distinguished the kinematic invariants of the string theory process by adding momentarily hat
symbols. In the center of mass frame of the physical process, p1 = —pa = p, —pPs = ps = P, [p-P = cosb]
the kinematic invariants read, s = 4p?, t = —ssin® %, u = —scos> %. We specialize now to the physical process,
e (p1)+aqm (p2) — e (ps)+qm (pa), where the Dirac spinor matrix elements in the single D-brane and the intersecting
brane cases, signalled by the suffix labels Dp and I.SB, are given by
(181234 — 8S1432) Dp = [25°, —20°]; (S1284) 158 = [—240, —21] = [-2s, —2u], (B.15)
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with the two entries inside brackets corresponding to the equal and unequal helicity cases, [H = H', H # H']. The
helicity basis amplitudes for the physical process can be written for the single D-brane and the intersecting brane
cases as

2 1
Aler +qu — en + i) pp = GpplS(u, t)f—ufrm +8(s, u)§ﬂ234 +8(t, s)gfrlm] (_u2 /82> :

2s
Aler + qur — eq + g )1sB = —CVi324 (4, 1) Tiz24 + Viasa(s, ) Ti2sa + Vi2a3 (s, t) T1243] (2u>’ (B.16)

with the upper and lower entries corresponding to the configurations with equal and unequal helicities, [H = H', H #
H'.

The helicity amplitudes for the gauge boson pair production process, e™(p1) + ¢~ (p2) — v(p3) + ¥(p4), are given
by the formulas

u

_ [ _ U t
A(éE + er, — 7L+ /YR) = ?A(e—}x_’ + er — YR+ ’YL) = 2g%p\/;[g8(svt) - S(’U,, t) + ES(Sau)L (B17)

where we have assumed the various gauge factors to be equal. The helicity amplitudes for the gauge boson pair
scattering process are given by the explicit formulas

Al(ve +vm = v + ) = 2912310%][(37 t,u) (t2}52>’
[f(s,t,u) = sS(t,u) + tS(u, s) + uS(s, )] (B.18)

where the upper and lower entries correspond to the configurations with equal and unequal helicities, [H = H', H #
H']. Note the crossing relations, A(vir +v2r — V3L + V4r)|s.t.u = A(V1L + Yar = V3L + V2R)|t.5,u-
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FIG. 1: The contact interaction coefficient gg-y],fl/ = mEKM/(AJ;If}II%gZ) for the operator e} predicted in Cremades et al., [60, 61]
model is plotted as a function of msr. Same results hold for the operator qi and numerically close results hold for the operators
uk, d and €. The reference set of parameters specifying the model is defined by, p=1, e=1,é=1, x' =1, i =1, o =
1, ea = (0,0,0), e = (0,0,0) (see the text just below Eq. (11.30)). In panel (a), the five curves I,11,111,IV,V are obtained
by starting from the reference set (I) and performing in succession the following variations: x' = 2 (II), B2 = 1/2 (III),
B1=P2=1/2 (IV) and x* = % (V). In panel (b), the three curves I,I1,I11 are obtained by starting from the reference set of
parameters (I) and including the changes, ep = (0,%,0) (II) and ep = (0,2,0) (I11). In panel (c), the two curves I,1I refer
to the reference set of parameters with the choices, ea = ep = (0,%,0) (I) and ea = ep = (0, 2,0) (II).The presence of cusps
in the curves of panel (c) is due to the use of semi-logarithmic plots for the absolute values of the coefficients.
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FIG. 2: The contact interaction coefficient gg-y],fl/ for the operator (e5)* ~ e% is plotted as a function of msr. We use same

conventions as in Fig. (1). Same results hold for the operator (d$)* ~ d% and numerically close results hold for the operator

(ui)* ~ uk. The three panels (a), (b), (c) are associated to x' = %, 1, 2. In each panel, we display three curves obtained by

starting from the reference set of parameters (I) and changing the longitudinal distance parameter to ep = (0,%,0) (II) and
es = (0, %, 0) (I1I). The presence of cusps in certain curves is due to the use of semi-logarithmic plots for the absolute values

of the coefficients.
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FIG. 3: The contact interaction coefficients gg-y],fl/ = mEKM/(AJI;fI/ng) are plotted as a function of msr for various configurations
of the quarks and leptons. We use same conventions as in Fig. (1). In the panel (a) referring to the operator €3 (e$)? ~ el ek,
we display four curves obtained by starting from the reference set of parameters (I), and independently changing the single
parameters, x' = 2 (II), Bo = 1/2 (I1I), 1 = B2 = 1/2 (IV). In the panel (b) referring to the operator ee%, we display
two curves obtained for the reference set of parameters with the values of the longitudinal distance parameter, eg = (0, %, 0) (1)

and eg = (0, %,O) (II). In panel (c), we display the coefficients for the quark and quark-lepton operators, qiu%, unen, daex,

obtained with the reference set of parameters.
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FIG. 4: The ratio (do/dcos0)sri+contact/(do/dcos@)sn for the Bhabha scattering differential cross section at the center of
mass energy \/s = 183 GeV 1s plotted as a function of cos 6 using the coefficients of contact interactions predicted in Cremades
et al., [60, 61] with the reference set of parameters. We consider four values of the string scale parameter, ms = 0.5, 1.5, 2., 3.
TeV, and two values of the compactification scale parameter, msr =1, 3. The group of four lowermost curves from the bottom
right corner is associated to msr = 3, and the group of four uppermost curves close to the horizontal axis is associated to
msr = 1. The predictions for variable string scale within each group are drawn with dashed curves using dashings of increasing
length in correspondence with the increasing sequence of values, ms = 0.5, 1.5, 2., 3. TeV.
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TOTAL/ SM E_cn¥0. 500, mﬁs=[2.0,R3.O, 4.0, 5.0], ms r=1[1, 3]

FIG. 5: The ratio (do/d cos 0)sn+contact/(do/dcos @) s for Bhabha scattering differential cross section at the center of mass
energy /s = 500 GeV is plotted as a function of cos@ using the coefficients of contact interactions predicted in Cremades et
al., [60, 61] with the reference set of parameters. The group of four lowermost curves from the bottom right corner is associated
to msr = 3, and the group of four uppermost curves close to the horizontal azis is associated to msr = 1. The predictions for
variable string scale within each group are drawn with dashed curves using dashings of increasing length in correspondence with
the increasing sequence of values, ms = 2., 3., 4., 5. TeV.
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FIG. 6: The ratio (do/dcos0)sni+contact/(do/dcos@)sn for Bhabha scattering differential cross section at the center of mass
energies /s = 183. GeV and /s = 500. GeV are plotted as a function of cos@ for the string amplitudes predicted in Cremades
et al., [60, 61] model with the reference set of parameters, using gi = g3(mz) = 0.425 and a(mz) = 1/127.9. The total cross
section is evaluated for the subtraction regularized string amplitudes with the massless gauge boson pole terms replaced by the
corresponding pole terms at the physical masses of the neutral v, Z gauge bosons. We consider the approximate estimate for
the mized chirality amplitudes, GET, GBL | setting these to a constant multiple of the pure chirality amplitudes, G**, GFE,
defined by the parameterization, GIE = GFE = 2GIT = zGEE, with the two extreme numerical values © = %, 5. We
also consider the two values for the string mass scale, ms = 1, 2 TeV and ms = 2, 4 TeV, in correspondence with the two
center of mass energies, /s = 0.183 TeV and /s = 0.500 TeV. On the left hand side, the upper and lower panels (a) and
(b) display the ratio for msr = 1 and mer = 3 at /s = 183. GeV with the four curves I, II, III, IV (in full, dotted,
short-dashed, dashed lines) referring to the values of the string mass scale and the proportionality factor between the mized and
pure chirality amplitudes: (x = G**/G"" m./TeV) = (3,1), (3,2), (5,1), (5,2) TeV. On the right hand side, the upper and
lower panels (¢) and (d) display the ratio for msr =1 and mer = 3 at /s = 500. GeV with the four curves I, II, I1I, IV
referring to the values of the string mass scale and the proportionality factor between the mized and pure chirality amplitudes:
(x = GFR/GHY ms/ TeV) = (%72)7 (%74)7 (5,2), (5,4).
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FIG. 7: Lower bounds on ms as a function of msr deduced from experimental data for the neutral mesons mass shifts and the
three-body leptonic decays of charged leptons. The curves labeled 1, II, II1, IV refer to the |AFy| = 2 mass shift observables
of the neutral meson systems K — K, B — B, Bs — Bs, D — D using the experimental inputs quoted in Eq. (IV.11). The curves
labeled V, VI refer to the |AF;| =1 observables for the charged leptons three-body decay rates, u —+e+e+e 7 —e+e+eé
using the experimental inputs quoted in Eq. (IV.12).



