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Matrices coupled in a chain. II. Spacing functions

For the eigenvalues of p complex hermitian n × n matrices coupled in a chain, we give a method of calculating the spacing functions. This is a generalization of the one matrix case which has been known for a long time.

Introduction

Let us recall here a few facts concerning the case of one matrix. For a n × n complex hermitian matrix A with matrix elements probability density exp[-tr V (A)], the probability density of its eigenvalues x := {x 1 , x 2 , ..., x n } is [START_REF] Mehta | Random Matrices[END_REF] 

F (x) ∝ exp   - n j=1 V (x j )   1≤i<j≤n (x j -x i ) 2 , (1.1a) 
∝ det[K(x i , x j )] i,j=1,...,n ,

where V (x) is a real polynomial of even order, the coefficient of the highest power being positive; K(x, y) is defined by

K(x, y) := exp - 1 2 V (x) - 1 2 V (y) n-1 i=0 1 h i P i (x)P i (y), (1.2) 
P i (x) is a real polynomial of degree i and the polynomials are chosen orthogonal with the weight exp[-V (x)],

P i (x)P j (x) exp[-V (x)]dx = h i δ ij . (1.3) 
Here and in what follows, all the integrals are taken from -∞ to +∞, unless explicitly stated otherwise.

The correlation function R k (x 1 , ..., x k ), i.e. the density of ordered sets of k eigenvalues within small intervals around x 1 , ..., x k , ignoring the other eigenvalues, is

R k (x 1 , ..., x k ) := n! (n -k)! F (x)dx k+1 ...dx n = det[K(x i , x j )] i,j=1,...,k . (1.4) 
The spacing function E(k, I), i.e. the probability that a chosen domain I contains exactly k eigenvalues (0

≤ k ≤ n), is E(k, I) := n! k!(n -k)! F (x)   k j=1 χ(x j )     n j=k+1 [1 -χ(x j )]   dx 1 ...dx n = 1 k! d dz k R(z, I) z=-1 , (1.5) 
where χ(x) is the characteristic function of the domain I,

χ(x) := 1, if x ∈ I, 0, otherwise, (1.6) 
and R(z, I) is the generating function of the integrals over I of the correlation functions

R k (x 1 , ..., x k ), R(z, I) := F (x) n j=1 [1 + zχ(x j )] dx j = n k=0 ρ k k! z k , (1.7 
)

ρ k =      1, k = 0, R k (x 1 , ..., x k ) k j=1 χ(x j )dx j , otherwise. (1.8)
The R(z, I) of Eq. (1.7) can be expressed as a determinant

R(z, I) = det[G ij ] i,j=0,...,n-1 , (1.9) 
where, using the orthogonality, Eq. (1.3), of polynomials P i (x) and splitting the constant and linear terms in z, G ij reads

G ij = 1 h i P i (x)P j (x) exp[-V (x)][1 + zχ(x)]dx = δ ij + Ḡij . (1.10)
Finally, R(z, I) can also be written as the Fredholm determinant

R(z, I) = n k=1 [1 + λ k (z, I)] (1.11)
of the integral equation N (x, y)f (y)dy = λf (x), (1.12) where remarkably the kernel N (x, y) is simply zK(x, y)χ(y) with K(x, y) of Eq. (1.2). The λ i (z, I) are the eigenvalues of the above equation and also of the matrix [ Ḡij ].

These results can be extended to a chain of p complex hermitian n × n matrices. We consider the probability density for their elements

F (A 1 , • • • , A p ) ∝ exp -tr 1 2 V 1 (A 1 ) + V 2 (A 2 ) + • • • + V p-1 (A p-1 ) + 1 2 V p (A p ) × exp [tr {c 1 A 1 A 2 + c 2 A 2 A 3 + • • • + c p-1 A p-1 A p }] . (1.13)
Here V j (x) are real polynomials of even order with positive coefficients of their highest powers and the c j are real constants such that all the integrals which follow converge. For each j the eigenvalues of the matrix A j are real and will be denoted by x j := {x j1 , x j2 , ..., x jn }. The probability density for the eigenvalues of all the p matrices resulting from Eq.

(

1.13) is [2-5] F (x 1 ; ...; x p ) = C exp - n r=1 1 2 V 1 (x 1r ) + V 2 (x 2r ) + • • • + V p-1 (x p-1r ) + 1 2 V p (x pr ) ×   1≤r<s≤n (x 1s -x 1r )(x ps -x pr )   det [e c 1 x 1r x 2s ] det [e c 2 x 2r x 3s ] • • • det [e c p-1 x p-1r x ps ] (1.14) = C   1≤r<s≤n (x 1s -x 1r )(x ps -x pr )   p-1 k=1 det [w k (x kr , x k+1s )] r,s=1,...,n , (1.15) 
where

w k (x, y) := exp - 1 2 V k (x) - 1 2 V k+1 (y) + c k xy , (1.16) 
and C is a normalisation constant such that the integral of F over all the np variables x ir is one. The correlation function

R k 1 ,...,k p (x 11 , ..., x 1k 1 ; ...; x p1 , ..., x pk p ) := F (x 1 ; ...; x p ) p j=1   n! (n -k j )! n r j =k j +1 dx jr j   , (1.17)
was calculated in a previous paper [START_REF] Eynard | Matrices coupled in a chain. I. Eigenvalue correlations[END_REF] to be an m × m determinant (m = k 1 + ... This is the density of ordered sets of k j eigenvalues of A j within small intervals around x j1 , ..., x jk j for j = 1, 2, ..., p.

+ k p ) R k 1 ,...,
Here we will consider the spacing function E(k 1 , I 1 ; ...; k p , I p ), i.e. the probability that the domain I j contains exactly k j eigenvalues of the matrix A j for j = 1, ..., p, 0 ≤ k j ≤ n. The domains I j may have overlaps. As in the one matrix case one has evidently

E(k 1 , I 1 ; ...; k p , I p ) = 1 k 1 ! ∂ ∂z 1 k 1 ... 1 k p ! ∂ ∂z p k p R(z 1 , I 1 ; ...; z p , I p ) z 1 =...=z p =-1 , (1.19) with the generating function R(z 1 , I 1 ; ...; z p , I p ) = F (x 1 ; ...; x p ) p j=1 n r=1 [1 + z j χ j (x jr )] dx jr (1.20) = n k 1 =0 ... n k p =0 ρ k 1 ,...,k p k 1 !...k p ! z k 1 1 ...z k p p , (1.21) 
ρ k 1 ,...,k p =      1, k 1 = ... = k p = 0, p j=1   I j k j r=1 dx jr   R k 1 ,...,k p (x 11 , • • • , x 1k 1 ; • • • ; x p1 , • • • , x pk p ), otherwise, (1.22) 
χ j (x) being the characteristic function of the domain I j , Eq. (1.6).

The function R(z 1 , I 1 ; ...; z p , I p ) will be expressed as a n × n determinant. It will also be written as a Fredholm determinant, the kernel of which will now depend on the variables z 1 , ..., z p and the domains I 1 , ..., I p in a more involved way than in the one matrix case. In particular, it does not have the remarkable form mentioned after Eq. (1.12). 

The generating function R(z

) = (n!) p-1 C ∆(x 1 )∆(x p )   p-1 j=1 n r=1 w j (x jr , x j+1r )   ×   p j=1 n r=1 1 + z j χ j (x jr ) dx jr   . (2.2)
Recall that a polynomial is called monic when the coefficient of the highest power is one. Also recall that the product of differences ∆(x) can be written as a determinant

∆(x) = det[x j-1 i ] = det[P j-1 (x i )] = det[Q j-1 (x i )],
(2.3) where P j (x) and Q j (x) are arbitrary monic polynomials of degree j. As usual, we will choose these polynomials real and bi-orthogonal [6]

P j (x)(w 1 * w 2 * ... * w p-1 )(x, y)Q k (y)dxdy = h j δ jk , (2.4) 
with the obvious notation (f * g)(x, y) = f (x, ξ)g(ξ, y)dξ.

(2.5)

The normalization constant C is [START_REF] Eynard | Matrices coupled in a chain. I. Eigenvalue correlations[END_REF],

C = (n!) -p n-1 i=0 h -1 i . (2.6) 
Now expand the determinant as a sum over n! permutations (i

) := 0, • • • , n-1 i 1 , • • • , i n , π(i) being its sign, det[P s-1 (x 1r )] = (i) π(i)P i 1 (x 11 )P i 2 (x 12 )...P i n (x 1n ).
(2.7) Doing the same thing for det[Q s-1 (x pr )] and integrating over all the np variables x jr ; j = 1, ..., p; r = 1, ..., n in Eq. (2.2), one gets

R(z 1 , I 1 ; ...; z p , I p ) = 1 n! (i) (j) π(i)π(j)G i 1 j 1 G i 2 j 2 ...G i n j n = det[G ij ] i,j=0,...,n-1 , (2.8) 
where

G ij = 1 h i P i (x 1 ) p-1 k=1 w k (x k , x k+1 ) Q j (x p ) p k=1 [1 + z k χ k (x k )]dx k .
(2.9) When all the z k vanish, G ij is equal to δ ij as a consequence of the bi-orthogonality, Eq. (2.4), of the polynomials P i (x) and Q i (x). Let us define Ḡij as follows

Ḡij := G ij -δ ij ,
(2.10)

so that Ḡij = 1 h i P i (x 1 ) p-1 k=1 w k (x k , x k+1 ) Q j (x p ) p k=1 [1 + z k χ k (x k )] -1 p k=1 dx k . (2.11)
Any n × n determinant is the product of its n eigenvalues and therefore one has

R(z 1 , I 1 ; ...; z p , I p ) = n k=1 [1 + λ k (z 1 , I 1 ; ...; z p , I p )] ,
(2.12)

where the λ k (z 1 , I 1 ; ...; z p , I p ) are the n roots (not necessarily distinct, either real or pairwise complex conjugates, since Ḡij is real) of the algebraic equation in λ

det[ Ḡij -λδ ij ] = 0.
(2.13)

One can always write a Fredholm integral equation with a separable kernel whose eigenvalues are identical to these (cf. reference [START_REF] Mehta | Two coupled matrices: eigenvalue correlations and spacing functions[END_REF] for the case of p = 2 matrices). Indeed, for any eigenvalue λ the system of linear equations

n-1 j=0 Ḡij ξ j = λξ i (2.14)
has at least one solution ξ i , i = 0, ..., n-1, not all zero. Multiplying both sides of the above equation by Q i (x), summing over i and using Eq. (2.11) gives the Fredholm equation

N (x, x p )f (x p )dx p = λf (x), (2.15) 
where

f (x) := n-1 i=0 ξ i Q i (x), (2.16) N (x, x p ) := n-1 i=0 1 h i Q i (x) P i (x 1 ) p-1 k=1 w k (x k , x k+1 ) p k=1 [1 + z k χ k (x k )] -1 p-1 k=1 dx k .
(2.17)

Hence if λ is an eigenvalue of the matrix [ Ḡij ], it is also an eigenvalue of the integral equation (2.15). Conversely, since the kernel N (x, x p ) is a sum of separable ones and since the polynomials Q i (x) for i = 0, ..., n -1 are linearly independent, if λ and f (x) are, respectively an eigenvalue and an eigenfunction of this integral equation, then f (x) is necessarily of the form

f (x) = n-1 i=0 ξ i Q i (x), (2.18) 
and the ξ i , i = 0, ..., n -1, not all zero, satisfy Eq. (2.14). Therefore λ is a root of Eq.

(2.13).

When one considers the eigenvalues of a single matrix anywhere in the chain, disregarding those of the other matrices, everything works as if one is dealing with the one matrix case and formulas (1.2), (1.5), (1.7) and (1.11) are valid with minor replacements. Similarly, when one considers properties of the eigenvalues of k (1 ≤ k ≤ p) matrices situated anywhere in the chain, not necessarily consecutive, everything works as if one is dealing with a chain of only k matrices; the presence of other matrices modifying only the couplings.

To say something more about the general case seems difficult. When V j (x) = a j x 2 , j = 1, ..., p, then the polynomials P j (x) and Q j (x) are Hermite polynomials P j (x) = H j (αx), Q j (x) = H j (βx), the constants α and β depending on the parameters a j and the couplings c j . In this particular case the calculation can be pushed to the end (see appendix).

  1 , I 1 ; ...; z p , I p ) the variables x 21 , ..., x 2n and so one can replace the second determinant det[w 2 (x 2r , x 3s )] by a single term, say the diagonal one, and multiply the result by n!. In this way, under the integral sign one can replace successively each of the p-1 determinants det[w k (x kr , x k+1s )] by a single term multiplying the result each time by n! R(z 1 , I 1 ; ...; z p , I p

	The expression of F , Eq. (1.15), contains a product of determinants. As the product of
	differences			
	∆(x 1 ) =	1≤r<s≤n	(x 1s -x 1r )	(2.1)
	and det[w 1 (x 1r , x 2s )] are completely antisymmetric and other factors in the integrand
	of Eq. (1.20) are completely symmetric in the variables x 11 , ..., x 1n , one can replace
	det[w			

1 (x 1r , x 2s )] under the integral sign in Eq. (1.20) by a single term, say the diagonal one, and multiply by n!. This single term is invariant under a permutation of the variables x 1r and simultaneously the same permutation on the variables x 2r . Therefore, after integration over the x 1r , r = 1, ..., n, the integrand, excluding the factor det[w 2 (x 2r , x 3s )], is completely antisymmetric in

Appendix

For V j (x) = a j x 2 , j = 1, ..., p, setting W a,b,c (x, y) := exp -1 2 ax 2 -1 2 by 2 + cxy , (A.1) one gets according to Eq. (2.5) the multiplication law

where

From Eq. (1.16), w k (x, y) = W a k ,a k+1 ,c k (x, y) and a repeated use of the above multiplication law yields

where a, b, c and d are constants depending on the parameters a 1 , ..., a p and c 1 , ..., c p-1 .

The orthogonality relation (2.4) of the polynomials P j (x) and Q j (x) takes the form

namely the same relation as in the two matrix case with the weight W (x, y), an exponential of a quadratic form in x and y. It follows that P j (x) and Q j (x) are Hermite polynomials of x times a constant

1/2 ; (A.7)

The eigenvalue density of the matrix A 1 , for example, ignoring the eigenvalues of other matrices, is from Eq. (1.18)

H 2 j (αx) 2 j j! , (A.9) which in the large n limit is a semi-circle of radius √ 2n/α. Thus in this particular case of coupled matrices one recovers Wigner's "semi-circle law" for the eigenvalues of a single matrix.

The kernel of the integral equation (2.15) is given by Eq. (2.17) with P j (x), Q j (x) and h j as given above. To get further, one has to take explicitly the domains I j into account.