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Random Matrices and Their Applications
MSRI Publications
Volume 40, 2001

Integration over Angular Variables for Two
Coupled Matrices

G. MAHOUX, M. L. MEHTA, AND J.-M. NORMAND

ABSTRACT. An integral over the angular variables for two coupled n xXn real
symmetric, complex hermitian or quaternion self-dual matrices is expressed
in terms of the eigenvalues and eigenfunctions of a hamiltonian closely
related to the Calogero hamiltonian. This generalizes the known result for
the complex hermitian matrices. The integral can thus be evaluated for
n = 2 and reduced to a single sum for n = 3.

1. Introduction

The remarkable and useful formula
-1
1 /—12_(—1)/2n :
/dUexp(—ﬂtr(A—UAU ))—t"" j];[og!

X (A(.ﬂl:)A(:c'))71 det [exp <—%(xj - m%)z)] L (1-1)

has been known for the last two decades; see [Itzykson and Zuber 1980; Mehta
1981; Mehta 1991, Appendix A.5]. Here A and A’ are n X n complex her-
mitian matrices having eigenvalues = := {z1,...,2,} and @’ := {zf,...,z.}
respectively, integration is over the n X n complex unitary matrices U with the
invariant Haar measure dU normalized such that [dU = 1. The function A(x)
is the product of differences of the x;:

A) ::{1 ifn=1,

H1§j<k§n($k — .’I?j) if n Z 2.
We would like to have a similar formula when A and A’ are n x n real symmetric
or quaternion self~dual matrices and the integration is over n x n real orthogonal
or quaternion symplectic matrices U, a formula not presently known. These three
cases are usually denoted by a parameter 3 taking values 1, 2 and 4 corresponding

Mehta is a member of C.N.R.S. France.
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302 G. MAHOUX, M. L. MEHTA, AND J.-M. NORMAND

respectively to the integration over n X n real orthogonal, complex unitary and
quaternion symplectic matrices U. We will show that the integral in (1-1) with a
measure dU invariant under the appropriate group can be expressed in terms of
the eigenvalues and eigenfunctions of a particular hamiltonian. This hamiltonian
is closely related to the Calogero model [1969a; 1969b; 1971] where one considers
the quantum n-body problem with the hamiltonian

SRR CEE D SRR (1-2)

1<j<k<n

For n = 2 and n = 3 the complete set of the relevant eigenfunctions and eigen-
values are known. The three integrals (namely, for 8 = 1, 2, 4) can thus be
explicitly computed for n = 2 and reduced to a single infinite sum for n = 3 and
B=1or4. Forn>3and 8 =1or =4, the question remains open.

Integral (1-1) over the orthogonal group has also been of interest. Muirhead
[1982, Chapters 7 and 9; 1975] gives this integral in terms of a hypergeometric
function of two matrix variables, expressed itself as a series of matrix zonal
polynomials. But no general formula for these zonal polynomials is known.

2. The Diffusion Equation

Recall that, D; being constants, the partial differential (or diffusion) equation
RS 62

= == — 2-1

X 2.Di G-

with the initial condition
&(z;0) :=n(z)

has, for ¢ > 0, the unique solution

E(z;t) = /dw' K(z,z';t)n(z’), with dz’ :=dx] ...dxz),

n

K(z,z';t) == H ((27TDjt)1/2 exp (— 25jt(l‘j — x;)Q))

Jj=1

Indeed, for t > 0, K (x, 2’;t) satisfies (2-1) and it reduces to [’
t—0.

Now, in these formulae, we use as variables z; the n+8n(n—1)/2 real variables
that determine the matrix A, namely, the n real diagonal elements A;; and the
B components Aji) (with r = 1,..., ) of each of the n(n—1)/2 nondiagonal
elements A;. For real symmetric matrices, only one component A;j is present;
for complex hermitian matrices, the two components are the real and imaginary

i 1 0(z; —x;) as

parts of Aji; for the quaternion self-dual matrices, A, has four components, one
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scalar and three vectorial parts. Similarly, the z’; are the n + Bn(n—1)/2 real
variables that determine the matrix A’. The kernel K(z,z’;t) then becomes

K(AA'st ﬁ( 2mt) ~1/2 exp (—%(Ajj - Ag'j)z))
et ; )
< T em(- b~ t5))

1<j<k<nr=l1
1
— (2mt) /2 (nt) PR/ exp<—2—t (A — A’)Z). (2-2)

The integral
(5t) = [ da’ K(A A3, (2-3)

with the measure

= (H dAS'j) 11 H Ak (ry (2-4)

1<j<k<nr=1
satisfies the diffusion equation

:@ 62

% Vi Vai= 28A2+— > Yoo @9

1<j<k<nr= 1 Jk(T

and the initial condition
£(4;0) = n(A).

The dA’ in (2-4) is a measure invariant under the automorphism A’ — UA'U !
for any U in the group Gg of n X n real orthogonal, complex unitary or quater-
nion symplectic matrices, respectively for 3 = 1, 2 or 4. Let us assume from
now on that n(A’) is invariant under the same transformation; that is, n(A4’) =
n(UA'U?) for any U in Gg. From the invariance of the measure dA’ in (2-3),
(2-4) and the cyclic invariance of the trace in (2-2), it follows that £(A4;t) is also
invariant under the same transformation; that is, £(4;t) = EUAU1;t). We
can choose a matrix U4 in Gg to diagonalize A, 1

A= UAXUXI, X = [{B,(s”], (2*6)

and similarly for A’. The invariance of n and £ implies that n(A’) and £(A4;t)
are symmetric functions of the eigenvalues of A’ and A respectively; we denote
them as

n(a’) :==n(A) E(z;t) = £(4;1).
The hyperplanes z; = x for 1 < j < k < n divide the n-dimensional space into
n! sectors (sometimes called Weyl chambers). Taking advantage of the symmetry

1Diagonalization of quaternion matrices is not as well known as that of real or complex
matrices. See [Mehta 1989, Chapters 4 and 8|, for example.
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property of £(x; t), from now on we will restrict our attention to one of the sectors
where A(z) > 0, namely the sector § defined by the conditions

S:={x;jz1 <x2 <--- < 1p}. (2-7)

Changing the variables from matrix element components to the n (real) eigen-
values and the Bn(n—1)/2 real “angle” variables on which U4 and U/ depend,
we have as usual [Mehta 1991, Chapter 3]

1+8/2 ﬁ
I Bn(n—1)/ / ! B
dA' == <||F1+ﬂj/2>|A )|” da’ U, (2-8)

where dU’; is the invariant measure over the group 9 normalized such that
J dU!; = 1. Hence equation (2-3) reads, for any « in 8§,

f(:z:;t) = /n dz’! |A(m’)|ﬂ K(m,:l:,;t) n(m/), (2_9)
where
K(x,x';t) = (2mt) /24P 1)/4(1—[ %%)

X /dU exp( — Qlttr(x — UX'U*1)2>. (2-10)

It follows from the integration over the group Gz with the invariant measure
dU, and from the cyclic invariance of the trace, that X(xz,2’;t) is a function
symmetric in the z; and symmetric in the z%. Since the measure dz’ |A ! |ﬂ
and n(z') are symmetric in the z7, the 1ntegral in (2-9) can be restricted to the

sector 8§ and multiplying it by a factor nl; thus

E(z;t) = n!/sda:' (A(w'))ﬂﬂf(w,x';t)n(w'). (2-11)

We recognize in the right-hand side of (2-10) precisely the quantity we are in-
terested in. Namely, apart from explicitly known constant factors, this is the
left-hand side of (1-1), including now the cases where A, A’ are n x n real
symmetric or quaternion self-dual matrices and the integration is over n X n
real orthogonal or quaternion symplectic matrices. Our problem thus amounts
to constructing the kernel X(x,z’;t) of the evolution operator of the diffusion
equation (2-5).

Separating the laplacian V% into parts depending on = and on Ua, we get
(see Appendix A for proof)

8~ 0 0
V4 = (A=) ﬂz BTj(A(m ﬂaxj +D%,, (2-12)
j=1

2There the constant factor in (2-8) is not evaluated. The evaluation can be done by
computing [ dAe~ t* 4% both directly and using (3.3.10) of the reference.
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where D%]A involves derivatives with respect to the angle variables entering Uy,
one sees that &(x;t) satisfies the diffusion equation, for all = in 8:

o€ _ 1 -
prie —29'C§, (2-13)

__ BN~ 0 50
H:=—(A(x)) Z oz, (A(z)) oz,

Jj=1
nogo
—-> 5a - L (L2-2).  ew
=1 9% 1<j<k<n T3~ Tk T Tk

with the initial value £(z; 0) = n(x). Equation (2-13) is similar to a Schrédinger
equation with the hamiltonian H and a purely imaginary time —iht/2.

We now have to specify the space of functions £ and 7, in which we solve the
preceding equations.

3. The Evolution Operator

To construct the evolution operator of equation (2-13), we build a Hilbert
space L2(8, 1) of functions f(z). These functions are supposed to be the restric-
tions to the sector 8, defined in (2-7), of symmetric functions of the variables z;
in R™. The scalar product using Dirac’s notation is defined as

(flg) = /S dz p(z) f*(@)g()

and we choose the weight y(x) in such a way that 3 be hermitian. From (2-14)
one deduces for twice differentiable functions f and g the identity
) W;(£,9),

p(fHg—gHf) = Za (nW;(f,9) +Z(
(3-1)

where W; is the wronskian W;(f,g) := f0g/0x; — g0f/0z;. By integrating
both sides over the sector 8, the first term in the right-hand side of (3-1), which
is a divergence, gives an integral over the boundary 08 of 8. The points at finite
distance of 98 do not contribute: because of the symmetry of f and g extended
to R™, the vector with components W;(f,g) has no component normal to 08.
Also the points at infinity of 98 do not contribute if f and g vanish fast enough
at infinity; that is, if they belong to the domain of J. As for the second term, it
vanishes identically if and only if u satisfies n linear first order partial differential
equations, with the solution unique up to a constant c,

@) =c(A@)”. (3-2)

With such a weight u, 3 defines a hermitian operator in L£2(8, u).
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Looking at factorized solutions of the form ¢q(x)exp(—Eat/2) of (2-13),
va(x) is the eigenfunction with the eigenvalue &, of the t-independent hamil-
tonian H. In Dirac’s bracket notation ¢q () := (z|pa) satisfies the “Schrodinger
equation”

Hlpa) = Ealpa)- (3-3)
Here, o denotes a convenient set of indices. The orthogonality and closure
relations for the basis {|z)}} are

(@l = (u(2)) "o~ ), [ deu@)e)e] =1 (3-4)
8
and those for the basis {|pq)} are
(palivar) = (o)) 'Sla—o), [ dap@lipallpal =1, (39

where the positive weight p(a) can be chosen at will. With these notations, it
follows from (2-11) and (3-2)—(3-5) that the kernel X equals

C C
K(,a'st) = Sylele *e) = & [ da p@lpal@)e e, (3-0)

Using (2-10), this last equation allows us to extend (1-1) to the cases § = 1 and
08 =4

ol L i — Uxr12) = € oppn/2gint-n/a( 71 L1+5i/2)
/dUe p( - (X — UX'T 1)2) = (2 /2gnin (H i T

« [dan(@gala)e o). (31)

4. Connection with the Calogero Model

If we wanted to eliminate the linear derivative terms in (2-13) and (2-14), we
would change the unknown function for all  in the sector 8 defined in (2-7), as
follows

v(ast) = (M) ¢(@;0). (41)
A straightforward calculation shows that this ¢ (x;t) satisfies the partial differ-
ential equation
oy
vl
where H is precisely the Calogero hamiltonian (1-2). Looking at factorized
solutions of the form ¢q () exp(—Eqt/2) of (4-2), ¢o(x) is the eigenfunction
with the eigenvalue E, of the t-independent hamiltonian H. In Dirac’s bracket
notation ¢q () := (x|pa) satisfies the “Schrédinger equation”

H|¢a) = Ea|¢a>' (473)

The discussion of the hermitian character of H, (3-1) and what follows, can be
applied to H. For the function 9 of the form (4-1), with £(;t) analytic in @,

~ 3y (4-2)
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one can check that H is hermitian in 8 with p(x) = 1. Hence finding a solution
¢ of (4-3) in L2(8,1) is equivalent to calculating the integral (1-1). Indeed the
considerations leading from (2-13) to (3—6) when applied to (4-2) yields for all
x in &
vlait) = [ do'(ale 1) (M) 1) (44
s
with

(wle~¥Mal) = / doue(w)e™ ot gt (2. (4-5)

Here the orthogonality and closure relations for both bases {|)} and {|¢)} are
@la)=de-a), [ dela)al=1,
8
(Galder) =0 - ), [ dalda)idal =1

The &(x;t) defined in § from (4-1) and (4-4) is then extended to R™ by the
requirement that it is a symmetric function of the z;.

In spite of a slight difference of the point of view, our problem is similar to that
of Calogero. In sections 2 and 3 we deal with either one particle in n dimensions
and completely symmetric wave functions in (z1, ..., 2, ) or with n bosons in one
dimension. Calogero considers n particles in one dimension which can be bosons,
fermions or boltzmannions. Calogero’s particles, all on the real line, cannot cross
each other due to the singular potential (see Appendix B). The phase space is
thus naturally divided in n! sectors, each sector corresponding to a certain order
of the n particles. For Calogero it is sufficient to find the eigenfunctions and
eigenvalues in any one sector, say when z; < zo < --- < z,, the solutions in
other sectors being obtained by the proper symmetry according as the particles
satisfy Boltzmann, Bose or Fermi statistics [Calogero 1969a). In our case, the
“Schrédinger equation” (4-3) for a single particle in n dimensions is well defined
only in § and the singular potential requires a special treatment as detailed in
Appendix B for the case n = 2.

When 3 = 2, the hamiltonian (1-2) reduces to the “kinetic energy”

—> " 0%/0a3,
j=1

each variable z; in the “Schrodinger equation” (4-3) separates, and the normal-
ized solutions with the corresponding eigenvalues are

n

H 2 exp(ik;z;),

Z a_{kla 'akn}a

<.
—

where k; are real varying from —oo to oo.
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Gaussian integrals in (4-5) over the k; can be performed and on extending it
by symmetry to the whole of R™ [Itzykson and Zuber 1980] one gets back (1-1),
as one should.

When 8 =1 or 8 = 4, the solutions of (3-3) or of (4-3) are not completely
known for general n.

5. The Case n =2

The Hilbert space considered in section 3 is L2 (a:l < za, 2-h/2 (22 —ml)ﬁ) and
the hermitian hamiltonian reads
0? 82 Ié; ( 0 0 )
6131 8.’1/‘2 )
Following Calogero [1969a] with a slight modification, we change the variables
to
P +.T2, g T2 A(w),
V2 V2 V2
where X varies from —oo to oo and x from 0 to co. This is an orthogonal change
of variables, and (3-3) becomes

0?2 ? G 0
%o=~(5%* a7 * 3 05)
We look for solutions of the form

o(X,z) = f(X)g(z).

The variables can be separated. Letting primes denote differentiation, we get

p==Ep.

F1(X) = ~K* £ (X), 1)
9"(2) + 29 (&) + Kg(z) =0, 6-2)
and
E=Eky = K? + k’z,

where g is real. Since —d?/dX? is the square of the hermitian operator
—id/dX, K? is real nonnegative. As a consequence k? is also real. Then (5-1) has
only a continuous spectrum labelled by K real and a complete set of normalized

solutions )
X) = ——=exp(iKX K real. 5-3
Setting g(z) := 2~V J(x) and v := (8 — 1)/2, equation (5-2) changes to Bessel’s

differential equation
2*J"(z) + &J'(z) + (K2 — v*) J(z) =0,

having two linearly independent solutions. They are: for k2 > 0 the Bessel
functions J,(kz) and Y, (kz) with & > 0, and for k& = —k? < 0 the modified
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Bessel functions I,,(kz) and K,(kz) with £ > 0. Only the solution J, provides
a function

gk(z) = (kz) " Jy(kz), v=(8-1)/2 (5-4)
which is square-integrable for > 0 with the measure z”. Then (5-2) has only
a continuous spectrum labelled by k real nonnegative. The orthogonality and
closure relations (3-5) for the gx(x) with & > 0 read

/0 " dr 2P gu(@)g (z) = KRk — k)

o0
|t Pa@ae) =a 5@ -2
0
They can be verified by taking the limit p — 0 in [Gradshteyn and Ryzhik 1991,
page 718, formula 6.633.2]:
o0 22 _1 —(2242'2)/(4p2 CB.’E’

/0 dkke % J,(kz)J, (kz') = 52 (@ +2)/e7 ], (ﬁ) (5-5)

Thus

(@le= |y = / dK / dk KB~ HRI2 £ (X0) e (X ) gu(2) gn (o).
— 00 0

The integration over K is a gaussian integral while for the integration over k one
can use (5-5). One finally gets from (3-7)

L par1?) = VT e-ne LO48)
/dU exp( o tr(A—-UA'U 1)2)_ 5 461 2I‘(1+ﬂ/2)

x (22— 21)(ah = 21) " L1y (m — 1) (ah = ma)>

2t

1
x exp(—o; (o8 + 28 + 25 +23” — (o1 + 22) @) +23) ). (5°6)

This result can be directly verified for 8 = 1. For 8 = 2, we have

I js(2) =14/ % sinh z,

and (5-6) gives back the known result (1-1), as it should. More effort is needed
to verify directly the result for 8 = 4.

6. The Case n =3

The Hilbert space considered in section 3 is £2 (a:l < xy < 3, 2°/2 (A(w))ﬂ),
and the hermitian hamiltonian reads

e (B 2L P (1 (0 )
o 0z? = 0x3  0x (z2 —x3) \Oz2  Oz3

bl (20, 1 (0 D)
($3 — {151) 6{1,'3 6.231 (.’El — .’Eg) 8.’131 8x2 )
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Following Calogero [1969a] with some slight modifications, we change the vari-
ables to

1

X = %(ml + xo + fE3), (671)
1

x = —ﬁ(—xl + ) =: 7 cosb,
1 .

Y= %(—xl — 2o + 2x3) :=rsind.

It is convenient to make this change of variables in two steps: from z1, x2, T3 to
X, z, y and then to X, r, 8. Thereby one gets

Az) = —%ﬁ cos(30).

Therefore, in the sector 1 < 3 < z3, X varies from —oco to oo; z, y and r vary
from 0 to oo; and € varies from 7/6 to w/2. Using the identity

tan @ +tan(0 + g) +tan<0 + 2%) = 3tan 30,

one has

0? 02 10 1 02 10 1 0
=5t 0t ror T rrow) 30 (s g~ 230 5g).

Now we look for factorized solutions of the form
§(X,r,0) = f(X)g(r)h(0)-

The variables can again be separated. The equation (H — £)¢ = 0 splits into
three equations

f1(X) = -K*f(X), (6-2)
r2g"(r) + (1 +3B)rg'(r) + (k*r* — L?)g(r) = 0, (6-3)
h"(6) — 33 tan(30)h/ (6) + L2h(0) = 0, (6-4)

where we have introduced three constants K2, k? and L?, with
&= 8[(7]9 = K? + k2.

Like (5-1), equation (6-2) has a continuous spectrum labelled by K real, a
complete set of normalized solutions given by (5-3) and k? is real.

Setting g(r) := r3#/2J(r) in (6-3) one gets Bessel’s differential equation for
J:

2J(2)+ 2 (2) + (22 —vH)J(2) =0, z=kr, v?=L*4+(33/2)%

As in (5-4), only the Bessel function J,(z) with k real nonnegative and v =
I+ 38/2 with [ an integer, that is,

L? =v2 —(38/2)% = 1(1 + 3B3) (6-5)
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gives for (6-3) a square integrable solution g(r) over z; < zp < z3 with the
measure 735+1,

The singularities of (6—4) are at the points  with cos 36 = 0, that is, the end
points of the interval [7/6,7/2]. It is convenient to shift from the variable 6 to
the new variable z = (1 — sin36), which maps this interval [r/6,7/2] on the
interval [0, 1]. The function F(2) := h(0) satisfies the hypergeometric differential
equation

77 ]‘ ! L2
21— 2)F +(1+ﬁ)(5 —z)F + 2R =0,
A careful examination shows that any solution of this equation has necessarily
a singularity in the variable z, either at z = 0 or at z = 1, unless L?/9 has
the form m(m+0), where m is an integer. This leads, using (6-5), to the only
acceptable integer values of [, namely [ = 3m, for m a nonnegative integer. The
unique regular solution h(f) is then a Gegenbauer polynomial in sin 36.
Finally,

1 ,
X) = zKX’
fK( ) \/ﬂe
gk,m("') = (kT)73ﬂ/2J3m+3ﬂ/2(kT),
hm(0) = const F(—m, m + 3; (1 + B); 3(1 —sin30))

(
B [(2°Bm+38/2mI\?
_I‘(§>< 27T (m + B) ) CP/?) (sin 30).

The orthogonality and closure relations (3-5) for g m(r)hm(¢) read
0o /2
/ dr r30 1 / d0(— cos 30)° gi,m (1) han (0) gkr m (1) s (6)
0 /6
=k 30 15(k — k') Omm,

7B S g @0

m=0
=301 (—cos 30) P5(r —r')5(0 — 0").
Therefore
oo [o'e] oo
(z|e74/2|g" :/ dK/ dk kP Y e (K42
- 0 m=0

X FK(X) fic (X")resm (1) B (0) g, (1) P (0
where we recall that the variables are: X given by (6-1) and r and 6 such that

1+ 1o — 2263

\/5(1‘1 - 1‘2) ’

r? = %((ml - .’E2)2 + (z9 — .’E3)2 + (z3 — m1)2), tanf =
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and X', r/, 0" have the same expressions in terms of x}, x5, z5. The integrations
over K and k can be done as before and yield

/ dK e KX—X)=5K* _ \/2—Wexp<—l(X X) )
oo t 2t

o - 1 ’
/ dk)keiik Jy(kT‘)Jy(k’r’) — lexp( (’I’ + 7'/2))[1/(2).
; n 2 t

Collecting the constants one gets from (3-7)
/dU exp <—2lt tr(A — UA’U‘1)2> =3(2t)%/21(B)T(23)

x (rr')38/2 exp(—%t (X-X")P+r’+ r'2)> S,
with

o~ (m+8/2)m rr’
S = mzzo T(m45) C(ﬂ/z(sm30)C(ﬂ/2)(s1n30)I3m+35/2< ) (6-6)

Therefore the integration over the 3 x 3 orthogonal, unitary or symplectic ma-
trices is effectively replaced by the infinite sum S of (6-6).

For B = 2, the Gegenbauer polynomials reduce to Chebyshev polynomials of
the second kind:

) _ _ sin(m+1)¢
C.’ (cos0) = Uy, (cosf) : R
Using the integral representation
1 27
I.(2) = Py / d¢ exp(zcos ¢ £ ing) (6-7)
T Jo

one can write the sum (6-6) as

<& sin((m+1) (5-30)) sin((m+1) (5-30¢"))
5= Z sin (%—30 sin (%—30’)

1 [ rr! )
X — do exp(— cos ¢j:z(3m+3)¢>
21 Jo t

00 27
= P—y— 3; p—TT Z / do e(rr'/t) Cos¢(eim(30736'+3¢) _eim(7r730730’+3¢))‘
a - 0
m——

Interchanging the order of summation and integration and using the identity

i €'m* = 2 i 0(z + 2mm),

m=—0oQ m=—0oQ
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one gets

COS(30) COS(30’) S — %(e(r‘r’/t) cos(6—6") + e(rr'/t)cos(070'+27r/3)
+ e(rr'/t) cos(0—60'—27/3) e—(rr'/t) cos(0+6")

_ ef(r'r’/t) cos(6+6'+2m/3) ef(rr'/t) cos(9+9'72ﬂ'/3)) .

The six terms in the right-hand side correspond to the six terms in the expansion
of the 3 x 3 determinant det[exp(—(1/2t)(z; — yk)2)]j’k=172,3 of (1-1), and the
correctness of the multiplying factors can be easily checked.

For 8 = 1 the Gegenbauer polynomials reduce to Legendre polynomials,
Y3 (2) = P,,(z); while for 3 = 4 we have from [Bateman 1953, p. 176, §10.9,
eq. (23)]

d
—Ca(2) =20(2),
or more explicitely
sin((m+1)0) cos((m+2)0)
c®? NH= —— 7 1)————————=.
m(cost) == e~ T g

But we do not know how to evaluate the sum S in (6-6).
A sum similar to (6-6) is known [Watson 1952, p. 370, eq. (9)], namely

— (ED)™(m+v)m! ., ) /

g T(m + 20) C (cos0)Crr (cos 0) Ly (2)
V2w I, _1/5(zsin@sin@’)
22T (v)2 (zsinfsin@)v—1/2

The only significant difference with our sum is the index m + v of the Bessel
function I instead of 3(m + v).

m=0

exp(+zcosfcosf’).

7. The Case n > 3

When n > 3, following Calogero [1971], with slight modifications we can again
change variables to

1
X := %(-’h—l---- + xy)
1
2j 1= ————(—x1 — - —z; +jriy1), j=12,...,n—1L
3G +1)

This is an orthogonal change of variables, so that

n 82 82 n—1 82

522~ ox2 T 2u 9.2
j=1 "7 j=1 713
The “linear derivative terms”

> (- xk)l(a%j - a%k)

1<j<k<n
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being independent of the “center of mass” X, one can separate the variable X.
One can then change to “polar coordinates”

z1 :=rcosbq,
zj=rsinf;...sinf;_ycosb;, 2<j<n-—2,
Zn_1:=rsinf; ... sinf, 2,

=8 n-20 1_,

a2 ot 7 et Evor
j=1 "7
1
2 _ — L 2
r= n Z (‘T’IJ ‘rk) ’
1<j<k<n

and separate the variable r. The linear derivative terms having a complicated ex-
pression in terms of the remaining variables 6;, it seems difficult to say something
more.

A. Expression of the Laplacian. Proof of Equation (2-12)

For completeness we give here a derivation of the splitting of the laplacian of
a matrix in terms of its eigenvalues and the “angle variables”.

We first recall some well known results of the general tensor analysis on a
riemannian manifold. The line element ds in terms of the nondegenerate positive
definite metric tensor g = [g;x] is

ds? := Zgjk dz; dxy,.
ij

Then the volume element or measure du(x) and the laplacian V2 read as follows
(see [Gouyons 1963, p. 91, § 103], for example):

du(z) = \/det g [ [ dz;, (A-1)

J
1 0 0

V2= ————1/det B A-2

JZ; derg oz, V€ 9(g );kaxk (A-2)

As in (2-6), an n X n real symmetric, complex hermitian or quaternion self-
dual matrix A can be diagonalized:

A=UXU1, (A-3)

with X real diagonal and U in Gg, for B =1, 2 or 4 respectively. These matrices
A depend on the n real diagonal elements A;; and the 8 real components of
each nondiagonal element A for j < k. These later parameters, a total of
Bn(n—1)/2, will be denoted by A, in what follows. The latin indices j, k, ...
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will vary from 1 to n, while the greek indices p, v, ... will vary from 1 to
Bn(n—1)/2. The line element is

ds® = tr dA? (A-4)

where dA denotes the variation of a matrix A in the corresponding set of matrices
according as 8 = 1, 2 or 4. In terms of the variables A;;, A,, the line element
reads

ds? = dA%; +2) dA%. (A-5)
J W

Thus the metric tensor is diagonal and it follows from (A-1) and (A—2) that the
measure and the laplacian are respectively

du(A) = 28nn-1)/4 (H dAjj) <H dAu> (A-6)
J u
and , ,
9 0 1 0
V2 = EJ: o4z, +3 ZH: o7
Notice that the measure du(A) considered in (2-4) was denoted by dA for brief-
ness (it must not be confused with dA in (A—4)), and furthermore the normal-
ization is different.
Now to specify any matrix A of the corresponding set according as 3 =1, 2 or
4, we take the n real eigenvalues z; and On(n—1)/2 additional real parameters
Dy, i.e., the “angle variables” entering the definition of U in (A-3). Notice that
these matrices U, according as 8 = 1, 2 or 4, actually depend on n(n—1)/2, n?
or n(2n—1) real parameters respectively. Thus, for 3 = 2 or 4—that is, for the
unitary or symplectic group—U depends on n more real parameters than the
collection of the variables p,. These n parameters correspond to the possibility

of multiplying each column k of U by a phase factor exp(i¢) without changing
Ain (A-3). From (A-3) the variation of the matrix A reads

dA=U(dX + (U "dU)X - X(U'dU)) U~ ".

Then, using the cyclic invariance of the trace and the diagonal character of X
and dX, the line element (A—4) is

ds® =Y da? +tr((U~1dU)X — X (U1dU)).

Notice that

dp, for 8 =1,

dU =
oUu oUu
Ldpu+ Y 2ddy for =2 or 4,
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where for the unitary and symplectic groups, the dependence of the matrix el-
ement Uj; on the parameter ¢ is through the phase factor exp(i¢y) already
mentioned. It follows that

ou
— =1iU;;6,
(20), -

and then, a straightforward calculation shows that the variations d¢y do not
contribute, as expected, to (U 1dU)X — X (U~ 'dU). Finally, in terms of the
variables z; and p,, the metric tensor has the block diagonal structure

9ik = Gk,
9ip = 9guj = 0,
U U U U
,=tr| (U'1=—X -XU 1= )(Ul —X-XU1— ))
o < < 8p# apu Opy Op,

:—Z P — Tk) <U16U) (Ula—U> .
apu Op, kj

1

Consequently, the inverse matrix g~ ' of g, occuring in (A-2), also has a block

diagonal structure

(gil)jk = Ojk,
(gil)j“ = (gil)m =0 (A-T7)

(g_l)w = a complicated expression not needed here.

We now show that the determinant of the metric tensor, which is positive from
(A-5), satisfies

Vdet g = |A(x)|" f(p), (A-8)

where f depends only on the p,, denoted collectively p. Indeed, one shows that

‘he measure d’LL(A), (A76), iS gi\/en by
( J> < )
y2

auta) = | P )
(see [Mehta 1991, Chapter 3]), where the absolute value of the jacobian is

x;,pu

At o)l o s o),

8(-’% , p,u)

Using (A-1) this ends the proof of (A-8). Finally, from (A-2), (A-7), and
(A-8) one gets the expression (2-12) for the laplacian assuming we restrict our
attention to one of the sectors where A(z) > 0 (the absolute value of A(x) no
longer occurs).
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B. The Schrédinger Equation with the Singular Calogero
Potential

We consider the time independent Schrédinger equation (4-3), with Calogero’s
hamiltonian H defined in (1-2), interpreted as describing a system of n one-
dimensional particles. Our aim is to investigate the validity of the assertion that
two such particles cannot cross each other. For that, it is sufficient to study the
simple case n = 2.

Separating the center of mass motion and using the notations of section 5, we
write the wave function ¢(x) solution of (4-3) as

where u(z) satisfies the equation

() + (47? + E) u(z) = 0 (B-1)
and v = 3(2 — 8). When 8 = 2, the singular potential disappears (v = 0); when
B =1, it is attractive (v = 1), and when 8 = 4, it is repulsive (v = —8). In the
following, 7 is allowed to take any real value.

We are interested in the neighbourhood of the singularity at x = 0, so in
(B—1) we drop the energy term E u(z), negligible in comparison to the potential
term. Furthermore, following Landau [1958, § 35, p. 118], we regularize (B-1) by
replacing the potential /42 by the constant «/4x? in a small interval [—x, To]
around the origin:

u'(x) + . u(z) =0, for |z| > o,

:?u(x) =0, for|z| < zo.
0

Ultimately, we will let z¢ go to zero.
In the outer region |z| > xg, when v # 1, we define two linearly independent
solutions u4 (z) by setting

uy(z) = |z|** and w_(z):=%|z|>~ if £z > =, (B-3)

where the indices si are equal to (1 ++/1—v)/2 or (1 £4/v—1)/2, according to
whether v < 1 or v > 1. When v = 1, the two indices coincide, and we choose
the following two linearly independent solutions

uy(z):=|z|Y? and u_(z):= +|z|"?log|z| if £z > w0, (B4)

(the signs + in (B-3) and (B—4) ensure that the wronskian W (u,u_) takes on
the same value for z > z¢ and = < —xy).
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In the inner region |z| < zo, when v # 0, we define two linearly independent
solutions vy (z)

Vv=7/2 ify <0,

. pErz/z0 _
vi(z) :=e , Where Kk =
+(z) {iﬁ/Q if v > 0.

The general solution of (B-2) reads
Ajuy(z)+A_u_(z) for z > xo,
u(z) =< Byvy(z)+B_v_(z) for —zo <z < xp,
Ciuy(z)+C_u_(z) forxz < —mo.
The constants Ay, By and C4 are related by the continuity conditions of u(x)

and u'(z) at both points zg and —zo. The only relations of interest are the two
connecting A4 to Cy, which we write

()= (%) ®-9

Here, M is a 2 X 2 unimodular matrix which depends on xy. Straightforward
calculations lead to the following expression, valid when « # 0 and 1:

s_fs_,_
a bx
_ 0
M = S4—5_ )
cz, a

where a, b and ¢ do not depend on z:

a b\ 1 S_+Kk S_—kK e2r 0 —854—K —S_—K
c a) 2k(s;—s5.) \s4+K si—k 0 e Sy—k S_——kK )’
(B-6)

Equation (B-5) can be rewritten conveniently as

() e

The zo dependence is now contained in a global factor z5" °~. Indeed, a simple
dimensional argument leads directly to this result.

When v = 1, similar calculations lead to the following formula (we have
dropped terms which are negligible when zq — 0)

<A_) (—1/logx0 1/(log zo)? cosl) <A+> (B-3)
c.) 1/logzo —1/(logzo)? cosl cy )

We now let zy go to zero.

When « < 1, the difference s, — s_ = /1 — y is positive, and the right-hand
side of (B—7) goes to zero with xy. Similarly, the right-hand side of (B-8) vanishes
in the same limit. Thus, when v < 1, the constants A_ and C_ vanish with g,
and A, and C, are the two arbitrary integration constants of the problem.

Consequently, two particular linearly independent solutions are, in this limit,
0(z)uy (z) and O(—z)u, (), which are localised respectively in the sectors z > 0
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and x < 0. This proves that when the singular interaction v/(z1 — x2)? between
two one-dimensional particles is either repulsive or weakly attractive (v < 1),
the particles cannot cross each other.

When v > 1, the difference s, —s_ =44/ — 1 is pure imaginary, and the right-
hand side of (B-7) has no limit when zo — 0: it oscillates indefinitely. Indeed,
in that case, namely when the interaction y/(x1 — x2)? is strongly attractive, the
two particles collapse. The argument is exactly the one developed in reference
[Landau and Lifshitz 1958], for a three-dimensional particle in a central potential
const/r?, and it will not be reproduced here.

As a final remark, we raise the question of the independence of these results
with respect to the regularization process. We just note that if, choosing a
different regularization, we replace in the small interval [—xg, zo] the potential
v/4x? by a constant 72 independent of xo (which induces discontinuities in the
potential), (B—6) and (B—7) are still valid once  has been replaced by 7zq. The
quantities a, b and ¢ now depend on xg, but they have a finite limit when zqg — 0,
and nothing is changed in the above conclusions.
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