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Moments of the characteristic polynomial in the three ensembles of random matrices

Moments of the characteristic polynomial of a random matrix taken from any of the three ensembles, orthogonal, unitary or symplectic, are given either as a determinant or a pfaffian or as a sum of determinants. For gaussian ensembles comparing the two expressions of the same moment one gets two remarkable identities, one between an n × n determinant and an m × m determinant and another between the pfaffian of a 2n × 2n anti-symmetric matrix and a sum of m × m determinants.

Introduction

Three ensembles of random matrices A have been extensively investigated, namely when A is real symmetric, complex hermitian or quaternion self-dual. Recently the behaviour of their characteristic polynomial det(xI -A) has been of interest and we study here its integer moments. The same method can be adapted to compute the crossed averages m j=1 det(x j I -A) .

Consider a non-negative function w(x) with all its moments finite,

x m w(x)dx < ∞ m = 0, 1, ... .

With this weight function w(x) let us define three scalar products, one symmetric and two anti-symmetric, as [START_REF] Mehta | See for example, Matrix theory[END_REF] f, g 2 := f (x)g(x)w(x)dx = g, f 2 (1.2) f, g 4 := [f (x)g ′ (x) -f ′ (x)g(x)]w(x)dx = -g, f 4

(1.3) f, g 1 := f (x)g(y)sign(y -x) w(x)w(y)dxdy = -g, f 1 (1.4) and introduce polynomials C n , Q n and R n of degree n, satisfying the orthogonality relations

C n , C m 2 = c n δ n,m (1.5) 
Q 2n , Q 2m 4 = Q 2n+1 , Q 2m+1 4 = 0 Q 2n , Q 2m+1 4 = q n δ n,m (1.6) R 2n , R 2m 1 = R 2n+1 , R 2m+1 1 = 0 R 2n , R 2m+1 1 = r n δ n,m .
(1.7)

We will take these polynomials to be monic, i.e. the coefficient of the highest power will be taken to be one. The above conditions determine completely the C n (x), Q 2n (x) and R 2n (x), while Q 2n+1 (x) can be replaced by Q 2n+1 (x)+aQ 2n (x) with an arbitrary constant a. Similarly, R 2n+1 (x) can be replaced by R 2n+1 (x) + aR 2n (x) with arbitrary a. We will choose these constants so that the coefficient of x 2n in Q 2n+1 (x) and in R 2n+1 (x) is zero, thus fixing them also completely.

The subscript β = 1, 2 or 4 is used to remind that it was convenient to use these polynomials to express the correlation functions of the eigenvalues of real symmetric, complex hermitian and quaternion self-dual random matrices respectively [START_REF] Mahoux | A method of integration over matrix variables IV[END_REF]. The polynomials C j (x) are said to be orthogonal while the polynomials Q j (x) and R j (x) are said to be skew-orthogonal.

In what follows n and m are non-negative integers. It can be checked that all the given formulas remain valid on replacing a non-existing sum by 0, a non-existing product, integral or determinant by 1 and forgetting non-existing rows or columns in a matrix.

It has long been known that the orthogonal polynomial C n (x) can be expressed as a multiple integral [START_REF]See for example, Higher transcendental functions[END_REF] C 

n (x) ∝ ... ∆ 2 n (y) n j=1 [(x -y j )w(y j )dy j ] (1.8) 
Q 2n (x) ∝ ... ∆ 4 n (y) n j=1 [(x -y j ) 2 w(y j )dy j ] (1.11) Q 2n+1 (x) ∝ ... ∆ 4 n (y)   x + 2 n j=1 y j   n j=1 [(x -y j ) 2 w(y j )dy j ] (1.12) R 2n (x) ∝ ... |∆ 2n (y)| 2n j=1 [(x -y j ) w(y j )dy j ] (1.13) R 2n+1 (x) ∝ ... |∆ 2n (y)|   x + n j=1 y j   2n j=1 [(x -y j ) w(y j )dy j ]. (1.14)
It is also known [START_REF] Brézin | Characteristic polynomials of random matrices[END_REF] that

I 2 (n, m; x) := ... ∆ 2 n (y) n j=1
[(x -y j ) m w(y j )dy j ] (1.15) can be expressed as an m × m determinant. We report here that similar integrals 

I β (n, m; x) := ... |∆ n (y)| β n j=1 (x -y j ) m [w(y j )] 1/(1+δ
(y)| β n j=1 [w(y j )] 1/(1+δ β,1
) . The special case w(y) = e -ay 2 arises when the probability density of the random matrix is invariant under any change of basis and the algebraically independent parameters specifying the matrix elements are also statistically independent.

Instead of the real symmetric, complex hermitian and quaternion self-dual matrices some authors considered the corresponding ensembles of unitary matrices [START_REF] Keating | Random matrix theory and ζ(1/2 + it)[END_REF]. The m-th moment of the characteristic polynomial in x = exp(iα) is a constant independent of α which was evaluated using Selberg's integral [START_REF] Keating | Random matrix theory and ζ(1/2 + it)[END_REF]. In the limit of large n with fixed m, this constant has a close relation with the moments of the absolute values of the Riemann zeta function ζ(z) or of the L-functions on the critical line Re z = 1/2. Similarly, the moments of the derivative with respect to x of the characteristic polynomial are related to the moments of the absolute values of the derivative ζ ′ (z) on the critical line [START_REF] Keating | Random matrix theory and ζ(1/2 + it)[END_REF].

In case of the real symmetric, complex hermitian and quaternion self-dual matrices, which are the only ones we consider here, the m-th moment of the characteristic polynomial is a polynomial of order mn, and we do not know whether their zeros are related with the Riemann zeta function.

Calculation of I β (n, m; x)

The case β = 2 is the simplest involving the better known determinants, while the other two cases β = 1 and 4 are similar involving the less familiar pfaffians.

The I β (n, m; x) can be expressed in two different forms: (i) a determinant or a pfaffian of a matrix of size which depends on n; i.e. -an n × n determinant in case β = 2; -a pfaffian of a 2n × 2n anti-symmetric matrix in case β = 4; -a pfaffian of a n × n (resp. (n + 1) × (n + 1)) anti-symmetric matrix in case β = 1 for n even (resp. odd); (ii) a sum of determinants of matrices of size which depends on m; i.e.

-an m × m determinant in case β = 2; -a sum of m × m determinants in case β = 4 for m even; -a sum of m × m (resp. (m + 1) × (m + 1)) determinants in case β = 1 for n even (resp. odd).

The usefulness of the expressions above, depending on the form of the weight function w(x), may be limited. When the weight is gaussian, two of the forms supplying alternate expressions for I 2 (n, m; x) as n × n and m × m determinants lead us to an interesting known identity. Similarly, the two expressions of I 4 (n, m; x) lead us to an identity between a pfaffian of an 2n × 2n anti-symmetric matrix and a sum of m × m determinants.

2.1 I β (n, m; x) as a determinant or a pfaffian of a matrix of size depending on n Choose P j (x) and π j (x) any monic polynomials of degree j.

The case β = 2

Write ∆ n (y) as an n × n Vandermonde determinant ∆ n (y) = det y k-1 j j,k=1,...,n = det [P k-1 (y j )] j,k=1,...,n = det [π k-1 (y j )] j,k=1,...,n .

(2.1.1)

Then ... ∆ 2 n (y) n j=1 [f (y j )dy j ] = ... det [P k-1 (y j )] det [π k-1 (y j )] n j=1 [f (y j )dy j ] = n! ... det [π k-1 (y j )] n j=1 [P j-1 (y j )f (y j )dy j ] = n! ... det [P j-1 (y j )π k-1 (y j )f (y j )] n j=1 dy j = n! det [φ 2;j,k ] j,k=0,...,n-1 (2.1.2)
where φ 2;j,k := P j (y)π k (y)f (y)dy.

(2.1.3)

In the first three lines of the above equation the indices j, k take the values from 1 to n.

In the second line we have replaced the first determinant by a single term which is allowed by the symmetry of the integrand in the y j ; while the last line is obtained by integrating over the y j each of them occuring only in one column. Setting f (y) = (x -y) m w(y), we get a first form of

I 2 (n, m; x) in terms of an n × n determinant I 2 (n, m; x) = n! det [φ 2;j,k (x)] j,k=0,...,n-1 (2.1.4)
where where φ 4;j,k := P j (y)P ′ k (y) -P ′ j (y)P k (y) f (y)dy = -φ 4;k,j .

φ 2;j,k (x) := P j (y)π k (y)(x -y) m w(y)dy. ( 2 
(2.1.9)

In equation (2.1.7) the sum is over all permutations 0 1 ... 2n -1 j 1 j 2 ... j 2n of the 2n indices (0, 1, ..., 2n -1) with j 1 < j 2 , ..., j 2n-1 < j 2n , the sign being plus or minus according as this permutation is even or odd. In equation (2.1.8) pf means the pfaffian. Setting f (y) = (x -y) m w(y) as before, we get a first form of I 4 (n, m; x) in terms of the pfaffian of a 2n × 2n anti-symmetric matrix

I 4 (n, m; x) = n! pf [φ 4;j,k (x)] j,k=0,...,2n-1 (2.1.10)
where φ 4;j,k (x) := P j (y)P ′ k (y) -P ′ j (y)P k (y) (x -y) m w(y)dy.

(2.1.11)

The case β = 1

The difficulty of the absolute value of ∆ n (y) can be overcome by ordering the variables. Writing

∆ n (y) n j=1 f (y j ) = det [P k-1 (y j )f (y j )] j,k=1,...,n (2.1.12)
with f (y) = (x -y) m w(y) and using a result of de Bruijn [START_REF] De Bruijn | On some multiple integrals involving determinants[END_REF], one gets a first form of I 1 (n, m; x) in terms of the pfaffian of an n × n (resp. (n + 1) × (n + 1)) anti-symmetric matrix for n even (resp. odd)

I 1 (n, m; x) =    n! pf [φ 1;j,k (x)] j,k=0,...,n-1 n even n! pf φ 1;j,k (x) α j (x) -α k (x) 0 j,k=0,...,n-1 n odd (2.1.13)
where

φ 1;j,k (x) := P j (z)P k (y)(x -z) m (x -y) m w(z)w(y)sign(y -z)dzdy (2.1.14)
and α j (x) := P j (y)(x -y) m w(y)dy.

(2.1.15)

Another way to get the same result is [START_REF]See for example, Random matrices[END_REF] to order the variables, integrate over the alternate ones, remove the ordering over the remaining alternate variables and observe that the result is given by equations (2.1.13)-(2.1.15).

An alternative of the expressions above for β = 1, 2 and 4

If one replaces the monic polynomials P j (y) and π j (y) by P j (y -x) and π j (y -x), equations (2.1.4), (2.1.10) and (2.1.13) become I 2 (n, m; x) = (-1) mn n! det [ϕ 2;j,k (x)] j,k=0,...,n-1

(2.1.16)

I 4 (n, m; x) = (-1) mn n! pf [ϕ 4;j,k (x) 
] j,k=0,...,2n-1 (2.1.17)

I 1 (n, m; x) =    n! pf [ϕ 1;j,k (x)] j,k=0,...,n-1 n even (-1) m n! pf ϕ 1;j,k (x) θ j (x) -θ k (x) 0 j,k=0,...,n-1 n odd (2.1.18)
where This result appears in reference [START_REF] Brézin | Characteristic polynomials of random matrices[END_REF] as equation (15) apart from a sign which seems to be wrong.

ϕ 2;j,k (x) := P j (y -x)π k (y -x)(y -x) m w(y)dy (2.1.19) ϕ 4;j,k (x) := P j (y -x)P ′ k (y -x) -P ′ j (y -x)P k (y -x) (y -x) m w(y)dy (2.1.20) ϕ 1;j,k (x) := P j (z -x)P k (y -x)[(z -x)(y -x)] m w(z)

The case β = 4

This method applies only for even moments. For I 4 (n, 2m; x), equation ( is even or odd. If we choose the polynomials P j (x) to be the skew-orthogonal polynomials Q j (x), equation (1.6), then all the a s,j except a 2s,2s+1 = q s will be zero and we get a second form of I 4 (n, 2m; x) in terms of a sum of m × m determinants

I 4 (n, 2m; x) = b n! (s) q s 1 ...q s n det Q (l-1) j k (x) k,l=1,...,m (2.2.11)
where the sum is over all choices of s 1 < ... < s n such that 2s 1 , 2s 1 + 1, ..., 2s n , 2s n + 1, j 1 , ..., j m are all the indices from 0 to 2n + m -1 and moreover j 1 < ... < j m .

The case β = 1

For I 1 (n, m; x), equation (1.16), the absolute value sign of ∆ n (y) is the main difficulty.

Ordering the variables and using the same method as in section 2.2.2 above [7], one has

I 1 (n, m; x) = ... |∆ n (y)| n j=1
(x -y j ) m w(y j )dy j = n! ... In case n is odd, one more column of the numbers g k := P k (y) w(y)dy appears in the determinant just after the column of P k (y n-1 ). The present situation is exactly as in the case β = 4 with each variable occuring in two columns. Expanding the determinant one sees that the result contains the expressions [G j (y)P k (y) -G k (y)P j (y)] w(y)dy = P j (x)P k (y)sign(y -x) w(x)w(y)dxdy

= P j , P k 1 .
(2.2.15)

If we choose P j (x) = R j (x), equation (1.7), then writing the result separately for even and odd n for clarity, one has

I 1 (2n, m; x) = b (2n)! (s) r s 1 ...r s n det R (l-1) j k (x) k,l=1,...,m (2.2.16) 
where the sum is taken over all choices of s 1 < ... < s n such that 2s 1 , 2s 1 + 1, ..., 2s n , 2s n + 1, j 1 , ..., j m are all the indices from 0 to 2n + m -1 and moreover j 1 < ... < j m and

I 1 (2n + 1, m; x) = b (2n + 1)! (s) r s 1 ...r s n det g j k , R (l-1) j k (x) k=1,...,m+1; l=1,...,m (2.2.17) 
where now the sum is taken over all choices of s 1 < ... < s n such that 2s 1 , 2s 1 + 1, ..., 2s n , 2s n + 1, j 1 , ..., j m , j m+1 are all the indices from 0 to 2n + m and moreover j 1 < ... < j m+1 .

Note that equations (1.8), (1.11) and (1.13) are particular cases (m = 1) of equations (2.2.5), (2.2.11) and (2.2.16) respectively. If we shift the index of the last row in the right hand side of equation (2.2.7) for m = 1 from n to n + 1, i.e. replace the last row

[P n (y j ), P ′ n (y j ), P n (x)]
by the row [P n+1 (y j ), P ′ n+1 (y j ), P n+1 (x)] we get the integrand of equation (1.12). Following the procedure which leads to equation (2.2.11) we get equation (1.12). Similarly, if we shift the index of the last row from n to n + 1 in the right hand side of equation (2.2.12) for m = 1 and follow the procedure leading to equation (2.2.16) we get equation (1.14).

Special case of the gaussian weight

These formulas for I β (n, m; x) will have little use if one does not know the polynomials C n (x), Q n (x) or R n (x). Fortunately one knows them for almost all classical weights. As an example we give them here for the gaussian weight w(x) = e -x 2 over [-∞, ∞] in terms of Hermite polynomials H n (x) := e x 2 (-d/dx) n e -x 2 . Their verification is straightforward. One has

C n (x) = 2 -n H n (x) (3.1) c n = 2 -n n! √ π (3.2) Q 2n (x) = n j=0 2 -2j n! j! H 2j (x) Q 2n+1 (x) = 2 -2n-1 H 2n+1 (x) (3.3) q n = 2 -2n (2n + 1)! √ π (3.4) R 2n (x) = 2 -2n H 2n (x) R 2n+1 (x) = 2 -2n [xH 2n (x) -H ′ 2n (x)] (3.5) r n = 2 1-2n (2n)! √ π. (3.6) 
In this case some results can be given other forms. In particular, using the recurrence relation

2xH n (x) = H n+1 (x) + H ′ n (x) (3.7) or xC n (x) = C n+1 (x) + 1 2 C ′ n (x) (3.8) one can replace the C (l)
n+k in the determinant (2.2.5) by C n+k+l (x) so that

I 2 (n, m; x) = b n! c 0 ...c n-1 (-2) m(m-1)/2 det [C n+j+k (x)] j,k=0,1,...,m-1 = π n/2 2 -n(n-1)/2 n j=0 j! (-2) -m(m-1)/2 m-1 j=0 j! det [C n+j+k (x)] j,k=0,1,...,m-1 . (3.9) 
Also for any non-negative integer j

[10] ∞ -∞ (y -x) j e -y 2 dy = √ π i j C j (ix) (3.10) 
with i = √ -1. Therefore, choosing P j (y -x) = π j (y -x) = (y -x) j in equations (2.1.19) and (2.1.20), we get

ϕ 2;j,k (x) = √ π i m+j+k C m+j+k (ix) (3.11) 
ϕ 4;j,k (x) = √ π i m+j+k-1 (k -j)C m+j+k-1 (ix) (3.12) 
and equations (2.1.16) and (2.1.17) then give to a sum of m × m determinants.

det [C m+j+k (ix)] j,k=0,...,n-1 = (-i) mn (-2) n(n-1)/2 n-1 j=0 j! (-2) m(m-1)/2 m-1 j=0 j! . ( 3 
Forrester and Witte [START_REF] Forrester | Application of the τ -function theory of Painlevé equations to random matrices: PIV, PII and GUE[END_REF] state that the identity where n j=1 (x -y j ) m is a polynomial in x whose coefficients can be evaluated using the expressions given in [START_REF]See for example[END_REF].

∞ -∞ ... ∞ -∞ |∆ n (y)| 2γ n j=1 (x -y j ) m e -y 2 j dy j ∞ -∞ ... ∞ -∞ |∆ m (y)| 2/γ m j=1 (ix -y j ) n e -y 2 j dy j = const. ( 3 
For any n and m = 1, one has

I(γ, a, n, 1; x) I(γ, a, n, 0; x) = n j=1 (x -y j ) = n j=0 n j (-1) j y 1 ...y j x n-j = [n/2] j=0 n 2j - γ 2a j (2j)! 2 j j! x n-2j = γ 4a n/2 H n x a γ (3.21) 
whereas for n = 1 and any m 

I(γ, a, 1, m; x) I(γ, a, 1, 0; x) = (x -y 1 ) m = m j=0 m j (-1) j y j 1 x m-j = [m/2] j=0 m 2j (2j)! 2 2j j! a -j x m-2j = (4a) -m/2 i -m H m (ix √ a). ( 3 
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  iθ j -e iθ k | β n j=1 |e iα -e iθ j | m dθ j (1.18)

2 For I 2 1 = 1 ( 2 1 ( 2 . 2 . 2 )

 221121222 w(y)sign(y -z)dzdy (2.1.21) θ j (x) := P j (y -x)(y -x) m w(y)dy.(2.1.22) 2.2 I β (n, m; x) as determinants of size depending on m 2.2.1 The case β = (n, m; x), equation (1.15), let us write the integrand as the product of two determinants: ∆ n (y) given in equation (2.1.1) and ∆ n (y) n j=1(x -y j ) m = b det y k-b det P k-1 (y j ), P(l)k-1 (x) j=1,...,n k=1,...,n+m l=0,...,m-P k (x) is any monic polynomial of degree k and P (l) k (x) is its l-th derivative. Expression (2.2.1) is an (m + n) × (m + n) determinant the last m columns of which are P k (x) and its successive derivatives [7]. As the integrand in equation (1.15) is symmetric in the y j , we can replace the first n × n determinant by a single term and multiply the result by n! I 2 (n, m; x) = b n! ... det P k-1 (y j ), P (l) k-1 (x) j=1,...,n k=1,...,n+m l=0,...,m-1 n j=1 [P j-1 (y j )w(y j )dy j ] = b n! ... det P j-1 (y j )P k-1 (y j )w(y j ), P (l) k-1 (x) j=1,...,n k=1,...,n+m l=0,...,m-1 n j=1 dy j .

( 2 . 2 . 3 ) 4 )

 2234 As each variable y j occurs only in one column, we can integrate over them independentlyI 2 (n, m; x) = b n! det P j-1 (y)P k-1(y)w(y)dy, P If we choose the polynomials P j (x) to be the orthogonal polynomials C j (x), equation (1.5), then one gets a second form for I 2 (n, m; x) I 2 (n, m; x) = b n! c 0 ...c n-1 det C (l) n+k (x) k,l=0,...,m-1 (2.2.5) an m × m determinant whose first column consists of C n+k (x), k = 0, 1, ..., m -1, and the other m -1 columns are the successive derivatives of the first column. Therefore from equation (1.17) det(xI -A) m = b det C

y 1 ≤

 1 ...≤y n ∆ n (y) n j=1 (x -y j ) m w(y j )dy j = b n! ...

I 2 (

 2 n, m; x) = (-i) mn n! π n/2 (-1) n(n-1)/2 det [C m+j+k (ix)] j,k=0,...,n-1 (3.13)I 4 (n, m; x) = (-i) mn n! π n/2 pf [(k -j)C m+j+k-1 (ix)] j,k=0,...,2n-1 .(3.14) Equations (3.9) and (3.13) give a relation almost symmetric in n and m. Writing them againI 2 (n, m; x) I 2 (m, n; ix) = (-i) mn π n/2 2 -n(n-1)/2 n j=0 j! π m/2 2 -m(m-1)/2 m j=0 j! (3.15)or equivalently det [C n+j+k (x)] j,k=0,...,m-1

e -ay 2 j

 2 .17) is valid for any γ. This is not true for γ = 1 as verified below for {n, m} = {n, 1}, {2, 2} and {3, 2}. For values of a and γ such that the integrals below exist, letting dµ(y)f (y) := dy j f (y) (3.18) f (y) := dµ(y)f (y) ÷ dµ(y) (3.19) I(γ, a, n, m; x) := dµ(y) n j=1 (x -y j ) m = I(γ, a, n, 0; x) n j=1 (x -y j ) m (3.20)

  constant depending on γ, a, n and m. i.e. the gaussians in the numerator and denominator of equation (3.17) should have different variances. In particular, The m-th moment of the characteristic polynomial of an n × n random matrix is expressed as: an n×n, equations (2.1.4 and 2.1.16), or as an m×m, equation (2.2.5), determinant, for the unitary ensemble (β = 2); as a pfaffian of a 2n × 2n anti-symmetric matrix, equations (2.1.10 and 2.1.17), or a sum of m × m determinants in case m is even, equation (2.2.11), for the symplectic ensemble (β = 4); as a pfaffian of an n × n (resp. (n + 1) × (n + 1)) antisymmetric matrix, equations (2.1.13 and 2.1.18), or a sum of m×m (resp. (m+1)×(m+1)) determinants, equation (2.2.16, resp. 2.2.17), for the orthogonal ensemble (β = 1) for n even (resp. odd). In the gaussian case w(y) = e -y 2 this leads to the remarkable identity almost symmetric in m and n, equation (3.15), 2m+j+k (ix)] j,k=0,...,2n-1 , equation (3.14), as a sum of m × m determinants, equation(2.2.11). Also probably the remarkable general identity (3.29) and in particular (3.30) holds.

	I 4 (n, m; x) I 1 (m, n; ix)	= (-i) mn π n/2 2 -n 2 n j=0 (2j)! 2 3m/2 m j=0 Γ(1 + j/2)	.	(3.30)
	4. Conclusion			

.22) Therefore for any γ, γ ′ , a and n, one verifies that

I(γ, a, n, 1; x) I(γ ′ , a/γ, 1, n; ix) = (-i) n I(γ, a, n, 0; x) I(γ ′ , a/γ,

1, 0; ix) (3.23) a I 2 (n, m; x) = const. I 2 (m, n; ix) (4.1) or, equation (3.16), det [H m+j+k (x)] j,k=0,...,n-1 = const. det [H n+j+k (ix)] j,k=0,...,m-1 (4.2) and another identity expressing pf [(k -j)H

is a constant independent of x.

For n = m = 2, one has I(γ, a, 2, 2; x) I(γ, a, 2, 0; x)

For n = 3 and m = 2, one has

whereas for n = 2 and m = 3

Selberg's integral also gives the constant [START_REF]See for example[END_REF] I(γ, a, n, 0; x) = π n/2 2 -γn(n-1)/2 a -γn(n-1)/ We are thankful to the referees for bringing to our attention the references 6 and 9.