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Zeros of some bi-orthogonal polynomials

Ercolani and McLaughlin have recently shown that the zeros of the biorthogonal polynomials with the weight w(x, y) = exp[-(V 1 (x) +V 2 (y) +2cxy)/2], relevant to a model of two coupled hermitian matrices, are real and simple. We show that their argument applies to the more general case of the weight (w 1 * w 2 * ... * w j )(x, y), a convolution of several weights of the same form. This general case is relevant to a model of several hermitian matrices coupled in a chain. Their argument also works for the weight W (x, y) = e -x-y /(x + y), 0 ≤ x, y < ∞, and for a convolution of several such weights.

1. Introduction. For a weight function w(x, y) such that all the moments M i,j := w(x, y)x i y j dxdy (1.1)

exist and

D n := det[M i,j ] i,j=0,1,...,n = 0 (

for all n ≥ 0, unique monic polynomials p n (x) and q n (x) of degree n exist satisfying the bi-orthogonality relations (a polynomial is called monic when the coefficient of the highest degree is one)

w(x, y)p n (x)q m (y)dxdy = h n δ mn .

(1.3)

Just like the orthogonal polynomials they can be expressed as determinants, e.g.

p n (x) = 1 D n-1 det     M 0,0 ... M 0,n-1 1 M 1,0 ... M 1,n-1 x . . . . . . . . . . . . M n,0 ... M n,n-1 x n     (1.4)
and have integral representations, e.g.

p n (x) ∝ ∆ n (x)∆ n (y) n j=1
(x -x j )w(x j , y j )dx j dy j (1.5)

∆ n (x) := 1≤i<j≤n (x j -x i ), ∆ n (y) := 1≤i<j≤n (y j -y i ).

(1.6) * E-mail: mehta@spht.saclay.cea.fr

From limited numerical evidence for the weights (i) w(x, y) = sin(πxy), 0 ≤ x, y ≤ 1; (ii) w(x, y) = |x -y|, -1 ≤ x, y ≤ 1; (iii) w(x, y) = [1/(x + y)] exp[-x -y], 0 ≤ x, y < ∞; (iv) w(x, y) = exp(-x 2 -y 2 -cxy), -∞ < x, y < ∞, 0 < c < 2; one might think that the zeros of the bi-orthogonal polynomials are real, simple, lie respectively in the x or y-support of w(x, y), interlace for successive n, ... Alas, this is not true in general as seen by the following example due to P. Deligne. If one takes w(x, y) = u(x, y) + v(x, y),

(1.7)

u(x, y) = δ(x -y), -1 ≤ x, y ≤ 1, 0, otherwise, (1.8) v(x, y) = 1 8 [δ(x -1)δ(y + 2) + δ(x + 1)δ(y -2)].
(1.9)

Then the zeros of p 3 (x) and q 3 (x) are complex. However, N.M. Ercolani and K.T.-R. Mclaughlin have recently [START_REF] Ercolani | Asymptotic and integrable structures for biorthogonal polynomials associated to a random two matrix model[END_REF] shown that with the weight function

w 1 (x, y) = exp - 1 2 V 1 (x) - 1 2 V 2 (y) -c 1 xy (1.10) (-∞ < x, y < ∞), V 1 
and V 2 polynomials of positive even degree, c a small non-zero real constant, all the zeros of the bi-orthogonal polynomials p n (x) and q n (x) are real and simple.

In this brief note we will show that their argument works for the following general case encountered for random hermitian matrices coupled in a linear chain. Let V j (x), 1 ≤ j ≤ p, be polynomials of positive even degree and c j , 1 ≤ j < p, be small real constants, none of them being zero ("small" so that all the moments M i,j defined below, eq.(1.13), exist.) Further let

w k (x, y) := exp - 1 2 V k (x) - 1 2 V k+1 (y) -c k xy (1.11) (w i 1 * w i 2 * ... * w i k )(ξ 1 , ξ k+1 ) := w i 1 (ξ 1 , ξ 2 )w i 2 (ξ 2 , ξ 3 )...w i k (ξ k , ξ k+1 )dξ 2 ...dξ k (1.12)
Moreover, assume that for all i, j ≥ 0 M i,j := x i (w 1 * w 2 * ... * w p-1 )(x, y)y j dxdy (1.13) exist.

Theorem. Then monic polynomials p j (x) and q j (x) can be uniquely defined by p j (x)(w 1 * w 2 * ... * w p-1 )(x, y)q k (y)dxdy = h j δ jk (1.14) and all the zeros of p j (x) and of q j (x) are real and simple. The same argument works for any weight W (x, y) such that det[W (x i , y j )] i,j=1,...,n > 0 for x 1 < x 2 < ... < x n , y 1 < y 2 < ... < y n and moments M i,j = W (x, y)x i y j dxdy exist for all i, j ≥ 0. For example, if W (x, y) = [1/(x + y)] exp[-x -y], 0 ≤ x, y < ∞, then monic polynomials p j (x) can be uniquely defined by ∞ 0 p j (x)W (x, y)p k (y)dxdy = h j δ jk (1.15) (here W (x, y) is symmetric in x and y so that p j (x) = q j (x)) and all the zeros of p j (x) are real, simple and non-negative.

Results and proofs.

Here we essentially follow section 3 of reference [START_REF] Ercolani | Asymptotic and integrable structures for biorthogonal polynomials associated to a random two matrix model[END_REF]. With any monic polynomials p j (x) and q j (x) of degree j, let us write

P 1,j (x) := p j (x)
(2.1)

P i,j (x) := p j (ξ)(w 1 * w 2 * ... * w i-1 )(ξ, x)dξ := p j (ξ)U Li (ξ, x)dξ, 1 < i ≤ p (2.2) Q p,j (x) := q j (x) (2.3) 
Q i,j (x) := (w i * w i+1 * ... * w p-1 )(x, ξ)q j (ξ)dξ := U Ri (x, ξ)q j (ξ)dξ 1 ≤ i < p (2.4) Lemma 1. For x 1 < x 2 < ... < x n , y 1 < y 2 < ... < y n , det [w i (x j , y k )] j,k=1,...,n > 0. (2.5)
This is essentially eq. (40) of reference [START_REF] Ercolani | Asymptotic and integrable structures for biorthogonal polynomials associated to a random two matrix model[END_REF]. This can also be seen as follows. Let X = [x i δ ij ] and Y = [y i δ ij ] be two n×n diagonal matrices with diagonal elements x 1 , ..., x n and y 1 , ...,

y n respectively. Then the integral of exp[-c tr U XU -1 Y ] over the n × n unitary matrices U is given by [2] K det [exp(-c x i y j )] i,j=1,...,n ∆ n (x)∆ n (y) (2.6)
where K is a positive constant depending on c and n. Hence

exp   - 1 2 n j=1 (V i (x j ) + V i+1 (y j ))   dU e -c i tr UXU -1 Y = K det [w i (x j , y k )] j,k=1,...,n ∆ n (x)∆ n (y) (2.7)
The left hand side is evidently positive while on the right hand side the denominator is positive since x 1 < x 2 < ... < x n and y 1 < y 2 < ... < y n . From this eq. (2.5) follows.

Lemma 2. For x 1 < x 2 < ... < x n , y 1 < y 2 < ... < y n , det [(w i 1 * w i 2 * ... * w i ℓ )(x j , y k )] j,k=1,...,n > 0 (2.8)
Proof. Binet-Cauchy formula tells us that [START_REF] Mehta | Matrix theory[END_REF] det [(w i 1 * w i 2 )(x j , y k )] j,k=1,...,n is equal to

ξ1<ξ 2 <...<ξ n det [w i 1 (x j , ξ k )] j,k=1,...,n . det [w i 2 (ξ j , y k )] j,k=1,...,n dξ 1 ...dξ n (2.9)
By lemma 1 the integrand is every where positive, so lemma 2 is proved for the case ℓ = 2.

The proof is now completed by induction on ℓ, using again the Binet-Cauchy formula.

Lemma 3. For any monic polynomial p j (x) of degree j, P i,j (x), 1 ≤ i ≤ p, has at most j distinct real zeros. Similarly, for any monic polynomial q j (x) of degree j, Q i,j (x), 1 ≤ i ≤ p, has at most j distinct real zeros.

Proof. Let, if possible, z 1 < z 2 < ... < z m , m > j, be the distinct real zeros of P i,j (x). Since for any n ≥ 0.

P i,j (x) = j k=0 a k T i,k (x), (2.10) 
with T i,k (x) := ξ k U Li (ξ, x)dξ, (2.11) 
P i,j (z ℓ ) = 0, ℓ = 1, 2, ..., m, m > j (2.12) implies that 0 = det   T i,0 (z 1 ) T i,1 (z 1 ) ... T i,j (z 1 ) ... ... ... ... T i,0 (z j+1 ) T i,1 (z j+1 ) ... T i,j (z j+1 )   = det   U Li (ξ 1 , z 1 ) ξ 2 U Li (ξ 2 , z 1 ) ... ξ j j+1 U Li (ξ j+1 , z 1 ) ... ... ... ... U Li (ξ 1 , z j+1 ) ξ 2 U Li (ξ 2 , z j+1 ) ... ξ j j+1 U Li (ξ j+1 , z j+1 )   dξ 1 ...dξ j+1 = ξ 2 ξ 2 3 ...ξ j j+1 det [U Li (ξ k , z ℓ )] k,ℓ=1,...,
Proof. Let, if possible, D n = 0 for some n. Then n j=0 M i,j q j = 0, q j not all zero, and

x i U Lp (x, y) n j=0 q j y j dxdy = 0, i = 0, 1, ..., n (2.17) 
or

p i (x)U Lp (x, y) n j=0
q j y j dxdy = 0 (2.18) for any polynomial p i (x) of degree i ≤ n. But

U Lp (x, y) n j=0 q j y j dy (2.19)
has at most n distinct real zeros (lemma 3). So one can choose p i (x) such that

p i (x) U Lp (x, y) n j=0
q j y j dy > 0 (2.20) in contradiction to eq. (2.18). So D n = 0 and bi-orthogonal polynomials p j (x), q j (x) exist, see eqs. (1.4), (1.5).

Lemma 5. Let p j (x), q j (x) be the bi-orthogonal polynomials, eq. (1.14); or with the definitions (2.1)-(2.4)

P i,j (x)Q i,k (x)dx = h j δ jk , 1 ≤ i ≤ p (2.

21)

Then P i,j (x) has at least j real distinct zeros of odd multiplicity. So does have Q i,j (x).

Proof. Let, if possible, z 1 < z 2 < ... < z m , m < j, be the only real zeros of P i,j (x) of odd multiplicity. Set

R(x) = det     Q i,0 (x) Q i,1 (x) ... Q i,m (x) Q i,0 (z 1 ) Q i,1 (z 1 ) ... Q i,m (z 1 ) . . . . . . . . . Q i,0 (z m ) Q i,1 (z m ) ... Q i,m (z m )     (2.22) = U Ri (x, ξ) m k=0 α k ξ k dξ (2.23)
with some constants α k depending on z 1 , ..., z m . Since m < j, the bi-orthogonality gives P i,j (x)R(x)dx = 0.

(2.24) However, R(x) can also be written as

R(x) = det     U Ri (x, ξ 0 ) U Ri (x, ξ 1 )ξ 1 ... U Ri (x, ξ m )ξ m m U Ri (z 1 , ξ 0 ) U Ri (z 1 , ξ 1 )ξ 1 ... U Ri (z 1 , ξ m )ξ m m . . . . . . U Ri (z m , ξ 0 ) U Ri (z m , ξ 1 )ξ 1 ... U Ri (z m , ξ m )ξ m m     dξ 0 dξ 1 ...dξ m = det     U Ri (x, ξ 0 ) U Ri (x, ξ 1 ) ... U Ri (x, ξ m ) U Ri (z 1 , ξ 0 ) U Ri (z 1 , ξ 1 ) ... U Ri (z 1 , ξ m ) . . . . . . U Ri (z m , ξ 0 ) U Ri (z m , ξ 1 ) ... U Ri (z m , ξ m )     ξ 1 ξ 2 2 ...ξ m m dξ 0 dξ 1 ...dξ m = 1 (m + 1)! det     U Ri (x, ξ 0 ) U Ri (x, ξ 1 ) ... U Ri (x, ξ m ) U Ri (z 1 , ξ 0 ) U Ri (z 1 , ξ 1 ) ... U Ri (z 1 , ξ m ) . . . . . . U Ri (z m , ξ 0 ) U Ri (z m , ξ 1 ) ... U Ri (z m , ξ m )     0≤r<s≤m (ξ s -ξ r )dξ 0 dξ 1 ...dξ m = ξ 0 <ξ 1 <...<ξ m det     U Ri (x, ξ 0 ) U Ri (x, ξ 1 ) ... U Ri (x, ξ m ) U Ri (z 1 , ξ 0 ) U Ri (z 1 , ξ 1 ) ... U Ri (z 1 , ξ m ) . . . . . . U Ri (z m , ξ 0 ) U Ri (z m , ξ 1 ) ... U Ri (z m , ξ m )     0≤r<s≤m (ξ s -ξ r )dξ 0 dξ 1 ...dξ m (2.25)
Thus R(x) is represented as an integral whose integrand has a fixed sign determined by the relative ordering of the numbers x, z 1 , z 2 , ..., z m (lemma 2). It thus follows that R(x) changes sign when x passes through any of the points z k , k = 1, ..., m and at no other value of x. In other words, z 1 , ..., z m are the only real zeros of R(x) having an odd multiplicity. And therefore P i,j (x)R(x) has a constant sign, so that

P i,j (x)R(x)dx = 0 (2.26)
in contradiction to (2.24). The proof for Q i,j (x) is similar.

As a consequence we have the integral representations of P i,j (x) for i > 1 and of Q i,j (x) for i < p involving their respective zeros

P i,j (x) ∝ det     U Li (ξ 0 , x) U Li (ξ 1 , x) ... U Li (ξ j , x) U Li (ξ 0 , z 1 ) U Li (ξ 1 , z 1 ) ... U Li (ξ j , z 1 ) . . . . . . . . . U Li (ξ 0 , z j ) U Li (ξ 1 , z j ) ... U Li (ξ j , z j )     0≤r<s≤j (ξ s -ξ r )dξ 0 dξ 1 ...dξ j (2.27) Q i,j (x) ∝ det     U Ri (x, ξ 0 ) U Ri (x, ξ 1 ) ... U Ri (x, ξ j ) U Ri (z 1 , ξ 0 ) U Ri (z 1 , ξ 1 ) ... U Ri (z 1 , ξ j ) . . . . . . . . . U Ri (z j , ξ 0 ) U Ri (z j , ξ 1 ) ... U Ri (z j , ξ j )     0≤r<s≤j (ξ s -ξ r )dξ 0 dξ 1 ...dξ j
(2.28) Lemmas 3 and 5 tell us that if p j (x) and q j (x) are bi-orthogonal polynomials satisfying eq. (1.14), then P i,j (x) and Q i,j (x) each have exactly j distinct real zeros of odd multiplicity. In particular, the zeros of the bi-orthogonal polynomials p j (x) ≡ P 1,j (x) and q j (x) ≡ Q p,j (x) are real and simple.

With a little more effort one can perhaps show that all the real zeros of P i,j (x) and of Q i,j (x) are simple. Other zeros, if any, must be complex. Whether the zeros of p j (x) (q j (x)) interlace for successive j, remains an open question.

Bi-orthogonal polynomials with another weight.

For the weight W (x, y) = [1/(x+y)] exp[-x-y], 0 ≤ x, y < ∞, one can say as follows.

Lemma 1'. One has [START_REF][END_REF] det[W (x j , y k )] j,k=1,...,n = exp

  - n j=1 (x j + y j )   ∆ n (x)∆ n (y) n j,k=1 (x j + y k ) -1 (3.1)
which is evidently positive for 0 ≤ x 1 < x 2 < ... < x n , 0 ≤ y 1 < y 2 < ... < y n . Lemma 3'. For any monic polynomial p j (x) of degree j, P j (x) := ∞ 0 W (x, y)p j (y)dy has at most j distinct real non-negative zeros.

In the proof of lemma 3, replace eqs. (2.10)-(2.14) by x i W (x, y)y j dxdy, (3.7)

P j (x) = j k=0 a k T k (x), (3.2) 
T k (x) = ∞ 0 ξ k W (ξ, x)dξ (3.3) P j (z ℓ ) = 0, ℓ = 1, 2, ..., m, m > j (3.4) 0 = det   T 0 (z 1 ) T 1 (z 1 ) ... T j (z 1 ) ... ... ... ... T 0 (z j+1 ) T 1 (z j+1 ) ... T j (z j+1 )   = ∞ 0 det   W (ξ 1 , z 1 ) ξ 2 W (ξ 2 , z 1 ) ... ξ j j+1 W (ξ j+1 , z 1 ) ... ... ... ... W (ξ 1 , z j+1 ) ξ 2 W (ξ 2 , z j+1 ) ... ξ j j+1 W (ξ j+1 , z j+1 )   dξ 1 ...dξ j+1 = ξ 2 ξ 2 3 ...ξ j j+1 det [W (ξ k , z ℓ )]
D n := det[M i,j ] i,j=0,1,...,n = 0 (3.8)
for any n ≥ 0.

In the proof of lemma 4 replace everywhere U Lp (x, y)... by ∞ 0 W (x, y).... Lemma 5'. Let p j (x) be the (bi-orthogonal) polynomials satisfying ∞ 0 W (x, y)p j (x)p k (y)dxdy = h j δ jk .

(3.9) Then P j (x) := ∞ 0 W (x, y)p j (y)dy and p j (x) each have at least j distinct real non-negative zeros of odd multiplicity.

Let, if possible, 0 ≤ z 1 < z 2 < ... < z m m < j, be the only real non-negative zeros of P j (x) of odd multiplicity. Set R(x) = m j=1 (x -z j ). Then as m < j, one has ∞ 0 P j (x)R(x)dx = 0 (3.10) But P j (x) and R(x) change sign simultaneously as x passes through the values z 1 , ..., z m and at no other real positive value. So the product P j (x)R(x) never changes sign, in contradiction to (3.10). Therefore P j (x) has at least j distinct real non-negative zeros of odd multiplicity. To prove that p j (x) has at least j distinct real non-negative zeros let if possible, 0 ≤ z 1 < z 2 < ... < z m , m < j, be the only such zeros. Set 

P 1

 1 (x) ... P m (x) P 0 (z 1 ) P 1 (z 1 ) ... P m (z 1 ) . . . . . . . . . P 0 (z m ) P 1 (z m ) ... P m (z m ) α k depending on z 1 , ..., z m . Since m < j, the bi-orthogonality gives ∞ 0 P j (x)R(x)dx = 0.(3.12)

  Lemma 4. Let the real constants c 1 , ..., c p-1 , none of them being zero, be such that M i,j := x i U Lp (x, y)y j dxdy ≡ x i (w 1 * w 2 * ... * w p-1 )(x, y)y j dxdy.

	j+1 dξ 1 ...dξ j+1 det [U (2.15) (2.13) exist for all i, j ≥ 0. Then or D n := det[M i,j ] i,j=1,...,n = 0 (2.16)

Li (ξ k , z ℓ )] k,ℓ=1,...,j+1 . det ξ ℓ-1 k k,ℓ=1,...,j+1 dξ 1 ...dξ j+1 = 0

(2.14) 

in contradiction to lemma 2. Thus m can not be greater than j.

The proof for Q i,j (x) is similar.
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which says that z 1 , ..., z m are the only distinct real non-negative zeros of R(x) and therefore p j (x)R(x) has a constant sign, in contradiction to (3.12).

Conclusion.

We have shown with the arguments of Ercolani and McLaughlin that if the weight w(x, y) is such that det[w(x i , y j )] i,j=1,...,n > 0 for x 1 < x 2 < ... < x n , y 1 < y 2 < ... < y n and moments w(x, y)x i y j dxdy exist for all i, j ≥ 0, then bi-orthogonal polynomials exist and their zeros are real, simple and lie in the respective supports of the weight w(x, y). The same is true for a weight which is a convolution of several such weights.