
HAL Id: cea-02899078
https://cea.hal.science/cea-02899078

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simple Parameter-Free Bridge Functionals for Molecular
Density Functional Theory. Application to Hydrophobic

Solvation
Daniel Borgis, Sohvi Luukkonen, Luc Belloni, Guillaume Jeanmairet

To cite this version:
Daniel Borgis, Sohvi Luukkonen, Luc Belloni, Guillaume Jeanmairet. Simple Parameter-Free Bridge
Functionals for Molecular Density Functional Theory. Application to Hydrophobic Solvation. Journal
of Physical Chemistry B, 2020, 124, pp.6885-6893. �10.1021/acs.jpcb.0c04496�. �cea-02899078�

https://cea.hal.science/cea-02899078
https://hal.archives-ouvertes.fr


Simple parameter-free bridge functionals for

molecular density functional theory.

Application to hydrophobic solvation

Daniel Borgis,∗,†,‡ Sohvi Luukkonen,† Luc Belloni,¶ and Guillaume Jeanmairet∗,§,‖

†Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191

Gif-sur-Yvette, France

‡PASTEUR, Département de Chimie, École Normale Supérieure, PSL University,

Sorbonne Université, CNRS, 75005 Paris, France

¶LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

§Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes

Interfaciaux, PHENIX, F-75005 Paris, France.

‖Réseau sur le Stockage Électrochimique de l’Énergie, CNRS FR3459, 33 rue Saint Leu,

80039 Amiens Cedex, France

E-mail: daniel.borgis@ens.psl.eu.fr; guillaume.jeanmairet@sorbonne-universite.fr

1



Abstract

Computer simulations have been substantial in understanding the fine details of

hydrophobic solvation and hydrophobic interactions. Alternative approaches based on

liquid-state theories have been proposed, but are not yet at the same degree of com-

pleteness and accuracy. In this vein, a classical, molecular density functional theory

approach to hydrophobic solvation is introduced. The lowest, second-order approxi-

mation of the theory, equivalent to the hypernetted chain approximation in integral

equations, fails in describing correctly cavitation free-energies. It is corrected here by

two simple, angular-independent, so-called bridge functionals; they are parameter-free

in the sense that all variables can be fixed unambiguously from the water bulk prop-

erties, including pressure, isothermal compressibility, and liquid-gas surface tension. A

hard-sphere bridge functional, based on the known functional of a reference hard fluid

system, turns out to face strong limitations for water. A simpler weighted density ap-

proximation is shown to properly reproduce the solvation free energy of hydrophobes

of various sizes, from microscopic ones to the nanoscale, and predicting the solvation

free-energy of a dataset of more than 600 model hydrophobic molecules having a vari-

ety of shapes and sizes with an accuracy of a quarter of kBT compared to Monte-Carlo

simulations values. It constitutes an excellent starting point for a general functional de-

scribing accurately both hydrophobic and hydrophilic solvation, and making it possible

to study non-idealized hydrophobic interactions.
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1 Introduction

Much of the physical chemistry of hydrophobic solvation has been understood from early

statistical mechanics theories such as scaled-particle theory, and from the advent of molec-

ular simulations in the 1980’s1–3, and its subsequent developments4–10. In particular, those

simulations have contributed to show that for small hydrophobic solutes, hydration is char-

acterized by a clathrate-like geometry for the solvent, driven by the large enthalpic penalties

which would follow from a less ordered solvation layer2. The molecular structure of liquid

water around larger, nanoscale hydrophobic entities appears governed by the same principle

that determines the hydration structure of small hydrophobic solutes, namely the optimiza-

tion of hydrogen bonding interactions. Substantial structural reorganization occurs at the

surface, where the sacrifice of possible H-bonds is required to maximize the total interaction.

The resulting orientational structure is inverted from that found for small solutes and the

solvation free energy is dominated by enthalpic rather than entropic effects.1 It was shown

further that the structure and free energy of hydrophobic hydration is strongly influenced

by the detailed topography of the biomolecule surfaces that contain convex patches, deep or

shallow concave grooves and roughly planar area.4,5 Indeed, it has been thought for long that

the hydrophobic effect plays a key role in the stability of protein structures, in the protein

folding process, or in the aggregation of self-assemblies. The proteins contain hydrophobic

regions which associate due to the favorable solvent-mediated free energy of aggregation of

nonpolar moieties in an aqueous environment. This globally accepted picture has neverthe-

less given rise to hot debates at the turn of the 21st century and during its first decade as to

ascertain the details of the process. Be it a concerted scenario in which water is gradually

reduced between the associating regions when the moieties approach each other, or a sequen-

tial one where a thermodynamic liquid-gas phase transition occurs in the interstitial region,

leading to instantaneous hydrophobic collapse to contact11. Simulations of water next or

in between realistic hydrophobic surfaces patched with hydrophilic sites were substantial to

show that the conditions for an ideal dewetting transition scenario is hard to achieve in real
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systems and that water density next to nanoscale hydrophobic patches can be influenced

substantially by nearby hydrophilic motifs.6–8

On the theoretical side, the Gaussian field theory of hydrophobicity initiated by the 1999

paper of Lum, Weeks and Chandler12, and further developed in subsequent articles11,13–15,

has driven the view that nanoscale hydrophobic attraction is induced by a local gas-liquid

phase transition. This theory is based on the fluctuations of the density field n(r) and, to our

knowledge, was never fully developed to include its coupling to the electrostatic polarisation

field16. A unified field theoretical approach of this sort would be able to describe both hy-

drophobic and hydrophilic interactions and could be applied to the hydrophobic/hydrophilic

patchy surfaces described above.

Another possible theoretical approach is 3D-RISM, a method that has emerged from a

consistent formulation of integral equation theory for molecular liquids and solutions17–21.

That approach is gaining nowadays considerable momentum to describe the solvation prop-

erties of complex molecular entities at a numerical cost far below that of molecular simu-

lations, giving access to properties that are as hardly accessible by direct simulations21–29.

The method, however, was shown recently to face strong limitations when describing the

hydration properties of nanosized hydrophobic solutes30.

The purpose of this work is to propose an alternative approach to either 3D-RISM21–29,

or Gaussian field theory, namely classical density functional theory in its molecular version,

MDFT31–36. Shortly, MDFT allows to compute the solvation free-energy and the equilibrium

solvent structure around a given solute by minimizing a functional of the solvent density

ρ(r, ω). In the most general case, the solvent density depends on the space coordinates

r and on the orientational ones ω. In this paper, we consider only pure hydrophobes,

described by Lennard-Jones potentials and no partial charges, so that it is possible to stay

at the level of the current Lum-Weeks-Chandler theory and its extensions and consider

the orientationally averaged density field n(r) =
∫
dω ρ(r, ω). We know how to extend the

theory to the polarisation field, and in fact to the whole orientational density field ρ(r, ω) in
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a numerically efficient way35, but this will be put in a future work.

The question raised here is how to go beyond the so-called HNC approximation which

we have studied thoroughly in a recent article36. The weaknesses of the HNC approximation

have been known for long37: it suffers from the original sin of being a quadratic theory around

the liquid bulk density. The homogeneous free energy as a function of density presents a

single instead of a double well; it cannot accommodate for the liquid-gas transition and con-

sequently it largely overestimates the cost of creation of an empty cavity (a gas bubble in

the bulk). This has to be cured by pushing the theory beyond second order and introducing

the so-called bridge functional which, by definition, starts at cubic order in density pertur-

bation38–41. We will explore here what we refer to as parameter-free approaches, in the sense

that all the parameters appearing in the expression of the bridge functional are determined

unambiguously from the properties of the bulk solvent (pressure, isothermal compressibility,

liquid-gas surface tension). The resulting functional is approximate but universal, that is

independent of the solute; no parameter has to be subsequently fitted on the dataset or part

of the dataset that is studied.

The outline of the paper is as follows. Section 2 exposes the theoretical background.

In section 2.1 we start by a general consideration about MDFT and the properties of the

bridge functional which need to be fulfilled. In section 2.2, we examine a hard-sphere bridge

(HSB) functional that has been proposed as a "universal" bridge functional in the past. In

section 2.3, inspired by our previous works, we propose a simple bridge functional based on

a weighted density approximation (WDA) which appears more flexible than HSB or than

a previous WDA version of ours39. In section 3, as application, we depart from idealized

spherical solutes and we compute the hydration free energies of a database of 642 hydrophobic

molecules of arbitrary shape using the WDA bridge.
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2 Theory

2.1 General considerations

We recall briefly the well-established results of molecular density functional theory: the free

energy of solvation of a molecule can be written as

∆Gsolv = min (Fid[ρ] + Fext[ρ] + Fexc[ρ]) , (1)

where Fid,Fext, and Fexc are the ideal, external and excess functionals of the solvent position

and orientation density, ρ(r, ω). The notation ω stands for the three Euler angles that

describe the orientation of a rigid body in three dimensions. The whole MDFT procedure

can be summerized as how to find the spatial and angular density that minimizes the sum of

the three contributions. Knowing the functionals, the density at minimum, by virtue of the

theorems derived by Mermin42 and Evans43, is also the thermodynamic equilibrium density

of the solvent around the solute ρ(r, ω). As far as the various contributions are concerned,

we have (i) the ideal contribution, that is known exactly, (ii) the external contribution that

is the direct cost of the interaction of the solute with the solvent density. The interaction

energy φ (r, ω) is typically given by classical force fields like SPC/E water for the solvent

and, e.g., OPLS for the solute. (iii) the excess contribution which, as usual in liquid state

theories, is known analytically as an infinite diagrammatic resummation of virial diagrams,

but is not tractable numerically. It can be approximated by a Taylor expansion around the

homogeneous bulk solvent density, ρb ≡ nb/8π
2 with nb the number density. Truncation

at second order in ∆ρ(r, ω) = ρ(r, ω) − ρb yields the so-called hyper-netted chain (HNC)

approximation and higher orders are gently put into the so-called bridge functional, FB.

More explicitly:

Fid[ρ] = kBT
∫

drdω

[
ρ (r, ω) log

(
ρ (r, ω)

ρ0

)
− ρ (r, ω) + ρ0

]
, (2)
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Fext[ρ] =
∫

drdωρ (r, ω)φ (r, ω) , (3)

Fexc[ρ] = FHNC [ρ] + FB[ρ] (4)

= −kBT
2

∫
drdω∆ρ (r, ω)

∫
dr′dω′c (|r − r′|, ω, ω′) ∆ρ (r′, ω′) + FB[ρ], (5)

where kB is the Boltzmann constant, T is the temperature. c is the direct correlation function

of the bulk solvent, which depends upon the relative position of two solvent molecules and

their respective orientations. It is an input of the theory that needs to be calculated once per

solvent and thermodynamic condition. We use the ones obtained by Belloni for either the

transferable intermolecular potential 3-points (TIP3P) or the extended simple point charge

(SPC/E44) models of water, using a mixture of MC calculations and integral equations

to invert the simulation data and make the asymptotic behaviours well-defined.45 Even in

its simplest HNC form, the efficient calculation of the excess term is a numerical challenge

because of the spatial and angular convolution. For this we use expansions of both the density

and the direct correlation function onto generalized spherical harmonics; all technicalities are

described in Ref.35 FB[ρ] involves by definition terms of order ∆ρ3 and higher.

The purpose of this paper is to explore the simplest, conceivable approximations for the

bridge functional, which amount to neglect the angular dependence and suppose that FB

depends only on the number density n(r) =
∫
dω ρ(r, ω), that is to say FB[ρ] = FB[n].

Various bridge functionals of this sort have been proposed in the past, built in particular

from the fundamental measure theory of hard-sphere fluids46–49 The criteria that make it

challenging to build a bridge functional for molecular fluids are: (i) to predict correct sol-

vation free energies and structures, and (ii) to remain thermodynamically consistent, i.e.,

describe correctly the solvation thermodynamic properties of the solvent, in particular its

pressure acting on solutes, its compressibility, and its liquid-gas surface tension. As of today,

no bridge functional designed for water, including ours38–41, has proved to fulfil thoroughly

and convincingly those two criteria.

We will focus in this paper on hydrophobic solutes described as a distribution of atomic
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sites with no partial charges, so that for water models such as TIP3P or SPC/E, built with a

single Lennard-Jones center on oxygen, the angular dependence of Fext in eqn. 3 disappears.

We will furthermore neglect the orientational couplings in the excess functional and consider

a simplified angular-independent functional

F [n] = kBT
∫
dr

[
n(r) log

(
n(r)

nb

)
− n(r) + nb

]
+
∫
drΦLJ(r)n(r)

− kBT

2

∫
drdr′∆n(r) cs(|r− r′|)∆n(r′) + FB[n(r)], (6)

where cs(r) is the spherically-symmetric direct correlation function. We define that function

from the bulk water-water isotropic pair-correlation function, hs(r), or equivalently from the

density-density structure factor χs(r) by the following relation in Fourier space:

1− nbĉs(q) = (1 + nbĥs(q))
−1 = χ̂s(q)

−1. (7)

For an homogeneous fluid of volume V with no external constraints, this functional becomes

a function of the bulk density n which can be written, per molecule, as

βF (n)/N = f(x) = fHNC(x) + fB(x) (8)

= x log x− x+ 1− 1

2
nbĉs(0)∆x2 + fB(x), (9)

with x = n/nb and ĉs(0) the zeroth-order spherical Hankel transform of cs(r) taken at q = 0.

fB(x) is now a dimensionless bridge function of order at least ∆x3. As we noted several

times, this simple expression already imposes strong restrictions on the possible forms of fB.

Indeed for an empty macroscopic volume V , n = x = 0, one should have F [n] = P V , P the

pressure of the fluid, 1 atm at ambient conditions, i.e., virtually P = 0 for since PV ' 0

for volumes below micrometer sizes. The HNC approximation, corresponding to a f(x) that

is an almost quadratic function centered at x = 1 as depicted in Fig. 1-a, yields a largely
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overestimated value at x = 0, related to the pressure

βPHNC/nb = fHNC(0) = 1− 1

2
nbĉs(0). (10)

This overestimation is largely responsible for the deficiencies of HNC in predicting solvation

free energies, and lead to the definition of so-called a posteriori pressure corrections28,50,51.

This deficiency has to be compensated by the bridge term, through the condition

fB(0) = −fHNC(0) = −1 +
1

2
nbĉs(0). (11)

This leads to an overall function f(x) depicted in Fig. 1-a and presenting a double-well, with

equal minima at x = 0 and x = 1. Such picture is indeed at the heart of the Gaussian Field

theory of hydrophobicity developed along the years by Chandler and collaborators12,13,15.

Note that the condition above can be related to the value of bulk liquid isothermal com-

pressibility χT . Using nbkBTχT = 1/(1− nbĉs(0))52, we get

fB(0) = −1

2
(1 + 1/nbkBTχT ) . (12)

With these conditions in hand, we turn now to the examination of several suggestions

reported in the literature for approximating FB[∆n], including our own proposals. The dif-

ferent approximations will be tested below for three systems for which reference simulation

results are available: 1) The solvation of a hydrophobic sphere of increasing radius going from

microscopic to macroscopic dimensions; this is the paradigmatic system for either the stan-

dard scaled particle theory53,54 or the more recent advances in the theory of hydrophobicity

and hydrophobic interactions55,56. 2) The solvation of a spherical Lennard-Jones particle of

increasing diameter up to nanoscale sizes. 3) The hydration free energies of a dataset of

more than 600 realistic although virtual hydrophobic molecules of various shapes and sizes,

going up to 40 atomic sites.
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Figure 1: a) Free-energy per particle for the homogeneous solvent, f(x) = βF (n)/N , as
function of the dimensionless density x = n/nb, in the second-order HNC approximation
or with a bridge function correcting the pressure and restoring the near coexistence of gas
and liquid according to eqn 11. (b) The function f(x) obtained for SPC/E water using the
hard-sphere bridge functional of eqn. 13 with rhs = 1.4576Å, or using the WDA expression
of eqn. 19 with different values of the barrier control parameter b.

2.2 Hard-sphere bridge functional

Following the recommendation of Rosenfeld that the fundamental measure theory of hard-

sphere fluids should provide a "universal" hard-sphere bridge (HSB) functional applicable

for general fluids57–59, Wu and collaborators60–64, and later ourselves38, proposed to use such

bridge functional for water. It has the form

FB[n] = FHS
exc [n]−FHS

exc [nb]− µHS
exc(nb)

∫
dr∆n(r)

+
kBT

2

∫
drdr′∆n(r) ∆n(r′) cHS

s (|r− r′|;nb). (13)

The first two term correspond to the fundamental measure theory (FMT) hard sphere

functional taken at the inhomogeneous density n(r) and homogeneous density nb, respec-

tively. We considered the scalar version of FMT derived by Kierlik and Rosinberg47, which

was shown to be equivalent to the earlier vectorial version of Rosenfeld46,65, but presents

supplementary numerical advantages38. We use it in either its Percus-Yevick (PY) or

Carnahan-Starling (CS) formulation, relying on the PY or CS hard-sphere equation of state.
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Other authors use the modified FMT version48, or the white-bear versions49. µHS
exc(nb) and

cHS
s (|r− r′|;nb) represent the corresponding chemical potential and direct correlation func-

tions of the HS fluid at the homogeneous density nb, by definition minus the first and second

derivative of FHS
exc [n(r)] at n(r) = nb. This expression amounts to substract from the exact

hard-sphere functional all terms of order 0, 1, 2 in the expansion in ∆n(r) around n(r) = nb,

leaving only terms of order ∆n(r)3 and higher. The unknown bridge is thus mimicked by

that of an equivalent hard-sphere system at the same density. There is one single adjustable

parameter to play with: the hard-sphere radius rhs. According to our discussion above, it

has to be determined by the condition in eq.11, which leads, according to our criteria, to a

parameter-free theory.

Writing the equivalent of eq. 13 for the homogeneous fluid, and using the textbook

results52

fHS
exc (x) = log(1− η) +

3η

1− η
+

3η2

2(1− η)2
(PY) (14)

=
η(4− 3η)

(1− η)2
(CS) (15)

for fHS
exc (x) = βFHS

exc (n)/N in either the PY or CS approximation (here η = ηbx and ηb =

4πr3hsnb/3), it is a matter of simple algebra to derive the expression of fHS
B (x) from eqn. 13,

and get the resulting f(x), eq. 9. One can then plot the dimensionless pressure βP/nb = f(0)

as a function of the reference hard-sphere fluid radius in order to identify the value of rhs

for which the pressure vanishes. This is represented in Fig. 2 for SPC/E water for which

our data give nbĉs(0) = −14.65 (corresponding to a dimensionless isothermal compressibility

nbkBTχT = 0.064 instead of 0.063 in Ref.66). We find rhs = 1.4576Å for the PY equation

of state, and rhs = 1.4695Å for the CS one, which leads to a rather high packing fractions

ηb = 0.43 and 0.44, respectively. It is seen that the variation of pressure is very steep around

those values: a small variation of hard-sphere radius involves large variation in pressure. It

is satisfactory to find values falling close to 1.4Å, a value that can be guessed from the first
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peak position of the oxygen-oxygen pair distribution function. Nevertheless, playing around

that magic value turns out to have great consequences.

0.6 0.8 1.0 1.2 1.4
rhs (Å)

0.2

0.0

0.2

0.4

0.6

0.8

P/
n b

PY
CS
1 atm

Figure 2: Dimensionless pressure as a function of reference hard-sphere fluid radius rhs taken
in the hard-sphere functional of eqn 11, either in the Percus-Yevick or Carnahan-Starling
approiximation. The red line indicates a pressure of 1 atm, virtually 0 at the scale that
matters in the figure.

We computed the solvation free-energy of hard-spheres of different radius R using the

HS bridge functional. For microscopic spheres, of radii up to ≈ 5Å, results are compared

to MC simulations obtained by Hummer et al when they tested their information theory

of hydrophobicity67 as displayed in Figure 3. In Figure 4, results are compared to MD

simulations of Huang and Chandler55 for spheres up to R = 14Å, reaching the nanoscale.

For the value rhs = 1.4576Å that yields correct pressure, the hydrophobic solvation free-

energy appears considerably underestimated on the whole microscopic to nanoscopic range.

In Fig. 4 it can be seen that the solvation free energy per surface area, ∆Gsolv/4πR
2, correctly

reaches a plateau for large R’s, giving a value for the liquid-vapor surface tension γ (since

∆Gsolv = γA+PV in the macroscopic limit, the volumetric term being negligible for P = 1

atm and volumes of nanoscale sizes). The measured value is around 22.5mJ/m2, thus far

below the value of 63.6mJ/m2 quoted for SPC/E water68. One can indeed fit the correct

solvation free energy at small R by taking a slightly smaller parameter rhs = 1.42Å; see
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Fig. 3. But doing so one gets a considerable overestimation at larger radii above 5Å, and,

as can be seen in Fig. 4, the solvation free energy per surface area does not reach a plateau,

as it should. It behaves asymptotically as P R/3 with a pressure that is already far from 0,

as can be estimated from Fig. 2.
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HSB, rhs = 1.4576
HSB, rhs = 1.42
Hummer et al.

Figure 3: Hydration free-energy of a hard-sphere solute as a function of its radius R. The
bullets points are the simulation results of Hummer et al67. The MDFT results concerns the
hard-sphere bridge functional of eqn. 13 in its parameter-free version with rhs = 1.4576Å,
or with a slightly smaller radius rhs = 1.42Å that matches the simulation results at small
R, or the parameter-free WDA bridge functional of eqn. 16 adjusted on pressure, isothermal
compressibility, and liquid-gas surface tension of the bulk solvent.

This deficiency observed for hard cavities extends to solute presenting attractive forces. In

Fig. 5, we compare the MDFT-HSB results to the simulation results obtained by Fujita et al30

for a Lennard-Jones sphere of diameter σ increasing up to σ = 18Å (ε is constant and taken

equal to 0.5 kJ/mol). Again the hard-sphere parameter rhs that yields the correct pressure

leads to a strong underestimation over the whole range of σ, whereas the smaller parameter

rhs = 1.42Å determined above does improve the results for small spheres, but leads to

a diverging curve afterwards. Beside the fact that playing with the hard-sphere radius rhs

contradicts the parameter-free strategy announced in the title, we found no convincing results

when trying to fix rhs between the two preceding bounds.

We conclude that section by the ascertainment that a hard-sphere bridge functional,
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Figure 4: Same as Fig. 3 for the hydration free-energy per unit area, ∆Gsolv/4πR
2, as a

function of the hard-sphere radius radius R . Here the bullet points are the simulation
results of Huang and Chandler55.

although being quite appropriate in the case of Lennard-Jones fluids, has limitations when

extended to water. This is at least the case in our MDFT approach, here limited to an

angular independent functional, and where the second order is fixed by the exact direct

correlation function of the bulk fluid, yielding the correct isothermal compressibility. We

thus have to turn to another approach.

2.3 Weighted density bridge functional

The well-founded fundamental measure theory of hard-sphere fluids is rooted in the so-

called weighted density approximations (WDA) that go back to the foundations of classical

DFT69–71. In a recent contribution41, we have proposed to use a more empirical, but more

flexible version of WDA than FMT that is able to fulfil more physical conditions than only

equation 11. and we have introduced a bridge functional in the form

FB[n] = kBTnb

∫
drfB(n̄(r)/nb), (16)
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Figure 5: Same as Fig. 3 for the hydration free energy of a Lennard-Jones solute of increasing
diameter σ and constant well-depth ε = 0.5 kJ/mol. The bullet points are the simulation
results of Fujita et al30. Both the simulation and MD results have been corrected by the
1/r6 long-range contributions beyond cut-off distance.

where n̄(r) is a weighted density using a Gaussian weighting function

n̄(r) =
∫
dr′w(|r− r′|)n(r′) (17)

w(r) = (2πσ2
w)−3/2 exp

(
−r2/2σ2

w

)
. (18)

The bridge function fB is defined again as a function of x = n/nb and ∆x = x− 1

fB(x) = a∆x3 + b x2∆x4 0 < x < 1

= a∆x3 x > 1, (19)

where the second condition prevents spurious behaviours of the function at large x. Note that

the preceding formulas are riminescent of those employed by Chandler and collaborators in

their Gaussian field approach of hydrophobicity. They are also of similar essence as a WDA

approach that we proposed previously, based on a more complex, three-body expression of

FB[n]40. The approach here has the merit of simplicity. In the expression of fB(x), the value

of a is fixed by the condition of eqn. 11 at x = 0, yielding a = 1 − 1
2
nbĉs(0). The role of
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the parameter b is to control the height of the double-well barrier of the total free energy

function f(x) (eq. 9) without altering the well-depth equality condition. This is depicted in

Fig. 1-b. There are thus two parameters to be fixed, the coarse-graining length σw and b.

In regard to the hard-sphere bridge parametrisation above, σw should roughly correspond to

a coarse-graining over the size of a water molecule, with an associated radius rhs ' 1.4Å.

Equating Gaussian and hard sphere volumes leads to σw ' (2/3
√

2π)1/3rhs = 0.9Å. The

second parameter b can then be determined to yield the correct liquid-vapor surface tension

for the selected water model. This is done by adjusting the asymptotic value obtained for

the solvation free energy per surface area of a hard sphere to the correct surface tension, i.e.

γ =63.6mJ/m2 for SPC/E water, and γ =52.3mJ/m2 for TIP3P; see Fig. 4. This lead us to

σw = 0.91Å and b = 25 and b = 12 for SPC/E and TIP3P respectively; those models differ

by the value of the compressibility and surface tension, hence requiring different parameter

adjustments.

Note that we have 2 parameters, b and σw to reproduce a sole physical property, the

surface tension γ. This leaves some flexibility that somehow contradicts the parameter-

free claim of the title. Actually, we find that varying σw around the above value while

readjusting b to reproduce the correct surface tension has very little effect on the computed

solvent structure and only small consequences on the hydration free energies. It cannot be

denied, however, that even with this procedure, σw remains as a fine adjustment cursor.

As seen in Figs. 3 and 4 for SPC/E, not only the asymptotic, macroscopic behaviour

of the HS solvation is reproduced properly this way, but also the whole microscopic to

nanoscopic range where the ’exact’ simulation results of Hummer et al67 and Huang and

Chandler55 apply. This excellent and almost miraculous agreement extends to the solvation

of the Lennard-Jones sphere of microscopic to nanoscopic size in Fig. 5. Other important

features of hydrophobic solvation have been shown to be correctly reproduced, be it with

our previous WDA version in Ref.40 or with the present one in Ref.41 This applies to the

solvent pair-distribution function around spherical hydrophobic solutes or to the decreasing
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contact values of the pair distribution function around hydrophobic spheres as a function of

sphere radius, leading to depletion at very large R. For those two cases, the present weighted

density bridge functional yields equivalently good results and does considerably improve the

HNC ones.

3 Results
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Figure 6: Comparison of the hydrophobic hydration free energies obtained by Monte-Carlo or
MDFT (in kJ/mol) for the whole Mobley’s dataset of drug-like molecules (all charges set to
zero). (a) Angular-independent free-energy functional of eqn. 6 (mmax = 0), complemented
by the parameters-free WDA functional defined in the text. (b) Same using the full angular-
dependent functional of eqs. 2-5 with 84 orientations per spatial grid point (mmax = 3). (c)
Same in the HNC approximation with an a-posteriori pressure correction; Results taken from
Ref.36 The mean absolute error is 0.35, 0.25, and 0.7 kBT in panels (a) to (c), respectively.

We depart here from idealized spherical entities and turn to a more realistic problem: the

hydration properties of hydrophobic solutes of arbitrary 3D-shapes. As a model to this, we

consider the calculation of the non-electrostatic contribution to the hydration free-energy of

drug-like molecules, a quantity that is systematically computed in free-energy perturbation

methods (growing slowly the Lennard-Jones potential before introducing the charges), and

that is a main source of error when using MDFT-HNC. We refer to the Mobley’s dataset,

containing 642 drug-like molecules for which the experimental solvation free-energies, and

18



more importantly here, the solvation free-energies computed by simulation and decomposed

into their non-electrostatic and electrostatic contributions, are available72,73. We have gen-

erated ourselves our own reference data with the same force-field parameters as in Mobley’s

FEP calculations but with fixed solute geometries in order to compare directly with MDFT.

This was done using an original MC/4D-hydrid method and associated code developed by

one of us74. This amounts to test our approach on a dataset of virtual hydrophobic molecular

solutes with a large variety of shapes and sizes. In Fig. 6-a we compare the MC results ob-

tained for the non-electrostatic contribution to the solvation free-energy (all partial charges

put to zero) to the same quantities obtained with MDFT in its angular-independent version,

eqn. 6, and using the WDA bridge functional defined above. Anticipating future develop-

ments, we have also tested the angular-dependent version, eqs. 2-5, which accounts for the

density/polarisation couplings that exists even for non-polar solutes, even though they are

small. We have used an angular grid of 84 orientations per spatial point, corresponding to a

maximum order mmax = 3 in a generalized spherical harmonics expansion35. A single mini-

mization using a box length of 24Å and a resolution of 0.3Å takes a few seconds on a single

CPU for the angular-independent case, mmax = 0, and a few minutes for mmax = 3. The cor-

relation between simulation and MDFT is already found excellent in the angular-independent

case with a mean slope very close to 1 and an overall mean absolute error (MAE) of 0.35

kBT (Fig. 6-a). The MAE is decreased to 0.25 kBT when using the full angular-dependent

functional (with a slight re-adjustment of the parameter b to stick to the correct value of

the surface tension γ); see Fig. 6-b. This is much better than that was obtained previously

using the HNC approximation and the best so-called pressure corrections to date. As seen

in Fig. 6-c, this lead to a mean slope of 0.55 and an overall MAE of 0.7 kBT , which is

already satisfactory compared to the non-corrected HNC approximation36. The pressure

correction just mentioned amounts to correct the HNC free energies by an optimized term

−0.86PHNC∆V , where PHNC is the pressure defined in eqn. 10 and ∆V is the measured

partial molar volume of the solute. This correction turns out to be very close to the so-called
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parameter-free PC+ correction which we have introduced some time ago for MDFT50 and

3D-RISM51, and which is now used routinely in 3D-RISM free-energy calculations28,75. It

should be noted that such simple correction formula applies only in a limited range of ∆V

values and cannot be true at the nanoscale, where the solvation free energy should go as the

surface and not as the volume36. In any case, it is rewarding to find that, at least in the

hydrophobic case, a parameter-free bridge functional approach bypasses the need for such

a-posteriori corrections while yielding more accurate results.

4 Conclusions

Going further than above, i.e. computing also the electrostatic contribution when the charges

are switched on, will require to consider the angular-dependent functional of eqs. 2-5. This

bypasses the goal of the present paper which was intended to show that even a simpler and

computationally much more efficient angular-independent functional as in eqn. 6, combined

with the proper angular-independent bridge functional FB[n], is able to capture the main

physical features of hydrophobic solvation, at the same time as it provides estimates of hy-

drophobic solvation free energies with chemical accuracy, a fraction of kBT , compared to

state-of-the-art simulation methods. This is made possible using a rather simple weighted

density bridge functional yielding liquid-gas coexistence and built from bulk solvent prop-

erties such as isothermal compressibility and liquid-gas surface tension. We found that the

reputed hard sphere bridge functional proposed by Rosenfeld for general fluids58,59 turns out

to be a dead end in our case. The value of the hard-sphere parameter which matches the

correct pressure and liquid-gas coexistence yields a poor value of the surface tension, and

systematically underestimates the solvation free energy of hydrophobes at all length scales.

Adjusting this value to reproduce the solvation free-energies of microscopic solutes, as we

did in the past38, leads to an overestimated pressure and diverging values of the solvation

free-energy at the nanoscale. The model is thus lacking here some flexibility. It proved per-
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fectly legitimate in other approaches with different formalism and different water properties

requirements60–64

Extending the proposed angular-independent bridge functional to the angular-dependent

functional of eqs. 2-5, in order to ascertain all the results obtained here and systematically

improve the HNC results of Ref.36 by circumventing a-posteriori pressure/surface tension

corrections, will be the subject of a following work. We take our new bridge functional

as an important step towards a general density functional for water, describing accurately

both hydrophobic and hydrophilic interactions, and making it possible to study hydrophobic

interactions in biologically relevant, non-idealized systems, such as those characterized along

the years using statistical theories and simulations.1–10
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