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Abstract

In this paper we present a set of multispectral images cov-
ering the visible and near-infrared spectral range (400 nm to
1050 nm). This dataset intends to provide spectral reflectance im-
ages containing daily life objects, usable for silicon image sensor
simulations. All images were taken with our acquisition bench
and a particular attention was brought to processings in order
to provide calibrated reflectance data. ReDFISh (Reflectance
Dataset For Image sensor Simulation) is available at: http:

// dx. doi. org/ 10. 18709/ perscido. 2020. 01. ds289 .

Introduction

Spectral imaging covers all acquisition techniques producing
a three dimensional datacube of the photographed scene. Outputs
are described by I(x,y,λ ), where x,y are spatial dimensions and λ

refers to spectral dimension. Thus each pixel of the image won’t
contain luminance information as in monochrome image or RGB
data as in color imaging, but a spectral information such as re-
flectance of a scene. This technique is used as scientific purpose
in several fields such as remote sensing, agriculture, medicine or
cultural heritage. Aside these applications, reflectance multispec-
tral images are also very useful for new image sensors design.
It serves to simulate raw image acquisitions of realistic pictures
with chosen spectral responses of the simulated sensor (and their
spatial arrangement), tuned illumination and exposure conditions.
Once raw acquisition is simulated, the user can also test image
processings such as color correction, denoising or demosaicking.

Most of image sensors produced around the world are de-
signed for color application, they are usually based on CMOS
technology using silicon as photodetection material. Spectrally,
the silicon absorption range covers visible and a part of near-
infrared (VIS-NIR) domains, between 400 nm and 1100 nm. For
photography purpose, the unwanted near infrared part of the spec-
trum is filtered out. However, this last part of the electromag-
netic spectrum is used in various applications like de-hazing and
low light imaging, or depth measurement with active illumina-
tion[1]. Multispectral image dataset covering both the visible and
the NIR ranges are then very useful during the development phase
of such image sensors. The main motivation of the present work
is to publish a new set of multispectral images to supplement the
few ones already available [2][3][4] over the VIS-NIR spectrum.
This paper is structured as follow: first we present the acquisi-
tion setup. In the next section, we detail the data acquisition, im-
age pre-processing and extraction of scene reflectance procedures.
Then, before summarizing our work, the structure of the dataset
is described including file format and some sample images.

Model and material
Image acquisition model

The setup we designed to acquire multispectral images is
based on the analysis of the image acquisition model. It guided
the choice of spectral filtering and hardware. In the following we
assume that we take pictures of a scene that contains only objects
illuminated by external illuminant (no emitted light in the pho-
tographed scene). Then, for any pixel of coordinates (i, j) in the
recorded image, its signal can be written:

Si, j =
CV F.a2

pix.τint

4. f #2 .
∫ +∞

0
I(λ ).Rx,y(λ ).T (λ ).QE(λ ).dλ +ε (1)

with CV F the conversion factor from electrons to arbitrary digital
unit (in ADU/e−), apix the pixel pitch (in m), τint the integra-
tion time (in s), f# the aperture of the objective lens, I(λ ) the
illuminant spectral distribution (in photons.s−1.sr−1.m−2.m−1),
Rx,y(λ ) the reflectance spectral distribution of the object, at co-
ordinates (x,y), seen by the pixel (i, j), T (λ ) the transmission
of the optics, QE(λ ) the quantum efficiency of the pixel (in
e−/photons) and ε the noise term (in ADU) that includes all
sources (shot noise, readout noise, dark signal, etc). Obviously
the integral in equation 1 is bounded as the transmittance of the
optics and the quantum efficiency are non-zero only over a limited
spectral range.

Many solutions were developed to perform multi- or hyper-
spectral imaging, with their own advantages and drawbacks[5].
The easiest method to implement with standard components is
light filtering[6, 7] in front of the camera, using narrow band fil-
ters set.

Now we can rewrite the equation by splitting the transmit-
tance T (λ ) in two components: the filter transmittance itself
(T f

λc
(λ )) and the transmittance of the objective placed in front of

the sensor (T ob j(λ )):

Si, j
λc

=
CV F.a2

pix.τint

4. f #2 .
∫ +∞

0
I(λ ).Rx,y(λ )

×T f
λc
(λ ).T ob j(λ ).QE(λ ).dλ + ε

(2)

Hardware
Our bench is schematically described in the figures 1 and 2.

The main components are the illumination, the optical filters, the
camera including the sensor and the objective and obviously the
scene. Each element will be detailed in following subsections.

Illumination
The illuminant I(λ ) must cover the whole spectrum of inter-

est, 400− 1050nm in our case. Thus, we use two outdoor light



Figure 1: Scheme of the multispectral acquisition bench

Figure 2: Overall view of our multispectral image acquisition
bench: sensor and light sources (left), scene seen from sensor
point of view (right)

spots that include 400W (plug power) quartz tungsten halogen
(QTH) lamp with reflector, they deliver an illumination with a
spectral content close to blackbody at 2900K. This spectral prop-
erty is interesting for two main reasons, on one hand, its high
intensity in NIR domain compensates the decrease of the quan-
tum efficiency of the camera (see figure 4). On the other hand,
and compared to vapor based lightning (arc lamps or fluorescent
tube), it does not own spectral lines that could be a source of error
when computing reflectance data from raw acquisition. Two spots
are used to ensure a uniform illumination over the scene and high
irradiance: spectral transmittance of filters being narrow, the input
flux in the camera may be too low leading to noisy acquisitions.
A warm up of 20 minutes is applied before acquiring images in
order to ensure the stability of the illumination.

Spectral filtering
The spectral filtering is done using Thorlabs bandpass fil-

ter set with a FWHM of 10nm. Central wavelengths span from
400nm to 1050nm with a step of 50nm for freely available mul-
tispectral images. This first set was completed with additional
wavelengths, every 20nm. Each filter was measured with a cali-
brated spectrophotometer (Agilent Cary 7000) to get its transmit-
tance spectrum (see figure 3).

Camera
Images are acquired using a monochrome camera

DCC3240N from Thorlabs. It is based on a global shutter sensor
optimized for the NIR from Teledyne-E2V (EV76C661ABT).
Image contains 1280×1024 pixels with values coded on 10 bits.
Integration time can be adjusted from 10ms to 2s. Quantum
efficiency is depicted in figure 4.

To take images, a 25mm lens (Navitar MVL25M1) is
mounted in front of the sensor making focus and aperture tun-
able. The spectral transmittance, provided by the manufacturer is
shown in figure 5.

Figure 3: Measured transmittance of filters: for freely available
multispectral images in red and complementary wavelengths in
blue

Figure 4: Spectral response of DCC3240N camera (from
datasheet[8])

Figure 5: Spectral transmittance of MVL25M1 lens

Scene setup
The scene is placed 1.5m away from the light sources. The

usable depth of the scene is limited to 15cm (all objects in the
scene must be inside the depth of field of the camera). To fill
the view field of the camera with objects, we built a three-step
platform with black foam core cardboard being weakly reflective
over the considered wavelengths range.

For reliability purpose, in each image we include the same
X-Rite ColorChecker Passport Photo[9] at the bottom center part
of the scene (shown later in figure 7a).

In addition, for flat-field correction, the platform is removed
and we placed a white cardboard in the same plane.



Fourier analysis and sampling performance vali-
dation

The sampling performance of the experimental setup can be
evaluated thanks to a Fourier analysis. The goal of our acquisi-
tion setup is to sample the reflectance spectrum at each pixel lo-
cation of the image using the narrow band filters. To analyse the
performance of the sampling setup, we can compare measuring
functions to reflectance data in terms of variation spectra. For this
approach, we used normalized power spectral densities computed
thanks to Fourier transforms.

Thereby, we can consider that the target signals are contin-
uous reflectances (denoted R) whereas each measuring function
(denoted M) is given by the multiplication of the camera spec-
tral response (figure 4) and respectively each narrow band filter
(figure 3). In this analysis, as the illuminant is supposed to be
smooth (and fixed), we do not take it in consideration. In a simple
form, the sampling of reflectance data (denoted R̃) and its corre-
sponding Fourier transform can be written as in equation 3 (∗ is a
convolution), F denotes the fast Fourier transform operator. So
measuring function acts like a low pass filter in terms of variation
frequencies, we perform a pre-study over known reflectance data
to verify if the frequency content of potential target reflectances
will be cut or not.

R̃x,y = Rx,y ∗M

F (R̃x,y) = F (Rx,y).F (M)
(3)

Numerous examples of reflectance data that have been ac-
quired using high resolution spectrophotometers are provided by
the U.S Geological Survey [10]. This spectral dataset includes
various materials such as vegetations, soils, minerals, artificial
materials, etc... Additionally, we measured reflectance spectra of
the X-Rite ColorChecker Passport with a high resolution spec-
trophotometer Agilent cary 7000 (see figure 7a).

Figure 6: Bundle of normalized power spectral densities of mea-
surement functions, USGS reflectances, X-Rite ColorChecker re-
flectances. Nyquist frequencies are displayed for the two sam-
pling steps, respectively 50 nm and 20 nm.

In figure 6, we displayed the bundle of the normalized
spectral densities of measuring functions and many different re-
flectance data. Frequencies of target reflectances are significantly
lower than measuring functions ones, moreover, frequency con-
tent of targets at both Nyquist frequencies are very low especially

for the X-Rite ColorChecker Passport. These results show that
our acquisition setup owns good sampling properties to ensure
accurate reconstruction of reflectance data.

Image acquisition and processing
In this section we detail the image acquisition procedure and

the associated processings. At first, the camera is set to deliver
raw uncorrected images. This is done by turning off all auto-
corrections in the camera software (ThorCam): like auto-gain and
gamma, dark level and bad pixel corrections, etc. As shown in
equation 2, any image contains a noise parts, denoted ε . This
generic term covers all sources of unwanted signal and can be
split in two part: either temporal noise, or biases like dark signal.
To reduce temporal noise, we averaged several images taken in
the same conditions. To suppress the biases, specific images are
needed: dark images, taken with the same setting than image of
interest but without light, and flat field images where we capture a
uniform scene. So the acquisition procedure of light image is the
following:

1. For each filter, we start adjusting the integration time such
that image histogram covers the 10 bits of the camera, with-
out saturation.

2. Take several images of the scene, typically 4 to 10.
3. Take several dark images by placing a cap over the objective

lens, with the same settings.

This is done for each scene, but also for flat field image which are
taken every day as we check that illumination unevenness remains
stable.

Standard image corrections
We apply some classical corrections to get a signal value that

matches with the acquisition model given in equation 1.
To summarize corrections, lets denote:

• Iλc
a given raw image of interest, acquired with the narrow

band filter centered at λc and with an integration time τλc

• ID,λc
the dark frame with same integration time τλc

• IFF,λc
the flat field frame, for which the exposure is tuned

by adjusting the integration time τFF
λc

• IDFF ,λc
the dark frame with integration time τFF

λc

Note that flat field correction is performed for all spectral filters
to overcome chromatic aberrations issues. In each case, several
images are taken and averaged to reduce the temporal noise. Lets
denote Î the averaged image. The corrected image Sλc

is then
given equation 4.

Sλc
=

Îλc
− ÎD,λc

ÎFF,λc
− ÎDFF ,λc

.max(ÎFF,λc
− ÎDFF ,λc

) (4)

One must notice that flat field correction is a relative correction,
as explicitly written equation 4 it is usual to normalize flat frames
by there maximum intensity values.

Additionally to these different correction steps, we per-
formed a post-processing alignment. In all multispectral images,
landmarks have been placed (top left). We extract a ROI of
50 × 50 pixels around the mark and the potential displacement
is estimated by computing the cross-correlation between the ROI



of the current frame and the ROI of a reference frame (we choose
λ = 550nm as reference). The location of the maximum of the
cross-correlation gives the displacement amount and the image is
registred by applying the translation vector.

Reflectance extraction
To extract the reflectance values from a corrected image Sλc

,
we work with the equation 2. The Fourier analysis showed that
reflectance spectra have smooth variation as they contain low
frequencies compared to measuring function. Consequently, re-
flectance can be considered to be constant over the transmittance
range of a single narrow band filter. As the illuminant is consti-
tuted of halogen lamps and won’t vary during the acquisitions,
we suppose it varies smoothly compared to measuring function.
Thus, we approximate them by their value at the central wave-
length of the filter. Under this hypothesis, we can rewrite equation
2 by taking out of the integral I(λc) and Rx,y(λc):

Si, j
λc

=
CV F.a2

pix.Tint

4. f #2 .I(λc).Rx,y(λc)

×
∫ +∞

0
Tf ,λc

(λ ).Tlens(λ ).QE(λ ).dλ + ε

(5)

However, at this point, reflectance extraction is still not ac-
curate since several uncertainties are remaining. First, CVF is not
precisely given by the manufacturer of the camera, despite an ex-
perimental evaluation, the value remains an approximation of the
real one. Then, aperture factor f# is not perfectly known since
the lens aperture setup is not notched. Moreover, spectral trans-
mittance Tlens(λ ) of the lens is given by the manufacturer but it
can vary according to the aperture value or even between manu-
factured lot. Next, the spectral repartition of the illuminant has
not been measured precisely (lamp manufacturers only give color
temperature). Finally there is a multiplying factor resulting from
the flat field correction which is arbitrary based on the maximum
value of each flat field frame. To compensates all these inaccura-
cies, we use a pre-calibration to estimate an experimental effective
illuminant we call Î(λc).

(a)

(b)

Figure 7: Example of reflectance spectra measured with Agilent
Cary 7000 spectrophotometer on X-Rite ColorChecker Passeport
(patches are surrounded with red square

To remove these uncertainties, we measured spectral re-
flectance of X-Rite ColorChecker chart in a spectrophotometer

figure 7a. For each patch, we know Rx,y(λc) and we can extract
Î(λc) using equation 5. We expect to get the same evaluation of
Î(λc) for each color patch. To evaluate small modifications of this
illuminant along the time, an X-Rite ColorChekcer Passeport has
been placed in all multispectral images.

We observed negligible differences of the effective illumi-
nant value from an image to another, so we used the same one
for all the images. The mean of these effective illuminants is dis-
played in figure 8.

Figure 8: Measured effective illuminant (black crosses), fit with a
black body spectral repartition at 2970K (red dash line)

Once the effective illuminant is fixed, the reflectance of a
given scene can be extracted directly from equation 5, then we can
compare reflectance data from multispectral images to those mea-
sured with the spectrophotometer. Figure 9 shows this compari-
son for random pixels selected in the middle of the color patches
in a randomly chosen image (here it is ”LeatherFace”).

Figure 9: Comparison of reflectance spectra from multispec-
tral image (crosses) versus spectrophotometer measurement (solid
line)

Results and dataset
We built up the dataset using the procedure described above,

each multispectral image is composed of a data cube (size 1280×
1024× 14) containing reflectance on the third dimension. The
dataset is constituted of indoor images that mainly contain com-
mon life objects with different colors and textures. It is freely
available as a single zip file on PerSCiDO platform: http://

dx.doi.org/10.18709/perscido.2020.01.ds289. This file
contains 22 datacubes in hdf5 format (structure described below)
and 22 images in png format to facilitate the image identification.



File format
To store the reflectance datacube, the wavelength and an

RGB image, we choose the hierarchical file format hdf5 [11],
which can be easily read with scientific language like Python or
Matlab. It simply contains 3 fields (see figure 10):

• Hymage: the reflectance data cube, size is 1280× 1024×
14 and is encoded on uint16, so reflectance is R =
Hymage/(216 −1)

• Wavelength: the wavelength, in nm, of each plane and en-
coded in double

• ColorImage: sRGB (gamma = 2.2) image, size is
1280x1024x3, generated from the reflectance data cube, hu-
man visual system color matching function and CIE E illu-
minant.

Figure 10: File format description

Samples
The figure below shows some of the scenes we shot: plants

and flowers (11a), fruits and vegetables (11b), make-up mate-
rial (11c), woods of different species (11f), tained leather patches
(11d), and pastel pencils (11e).

Summary
We presented in this paper a dataset of multispectral re-

flectance images covering the visible and a part of the near-
infrared spectrum corresponding to the absorption range of the
silicon. This set intends to supplement the already available
datasets and was generated to provide useful images for sensor
simulation (daily life objects). We included in all images an X-
Rite ColorChecker chart for color correction implementation and
we took a great care to image acquisition and pre-processing to
limit the noise and uncertainties in the data. The dataset (called
ReDFISh) with spectral sampling every 50nm between 400nm
and 1050nm is freely available for download at http://dx.

(a) (b)

(c) (d)

(e) (f)

Figure 11: Image samples

doi.org/10.18709/perscido.2020.01.ds289, and comple-
mentary data with 20nm may be available on request (contact us
at e-mail address displayed in authors biography section).
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