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YEARLY REVIEW 

STRUCTURE AND FUNCTION OF THE 
COUPLING-FACTOR OF PHOTOPHOSPHORYLATION 

This topic deals with the catalytic part of the ATP- 
synthase present in the thylakoids from higher 
plants. green algae, photosynthetic bacteria and 
cyanobacteria. We also refer to some specific results 
obtained with proton-ATPase from Escherichia coli, 
thermophilic bacterium PS3 and mitochondria. The 
most important change in this field is the very fast 
development of our knowledge of the primary struc- 
ture of the constituents of the ATP-synthase. 

Molecular weight and subunit stoichiometry of the 
coupling-factor 

In higher plants, ATP-synthase is mostly present in 
stroma lamellae (Faludi-Daniel et al., 1983). The 
enzyme is formed of the coupling-factor, CFI or FI,  
localized in the outer part of the thylakoids and of the 
CFo or Fo, hydrophobic part, buried in the 
membrane. The F1 is composed of 5 subunits, 
a-p -y -S -~ ,  and FO of 3, 1-11-111 (Alt et al., 1983). 
Chloroplast genes coding for the subunits a, p, and 
111 are photogenes (de Heij et al., 1984; Rodermel 
and Bogorad, 1985). A similar FI has been also 
extracted and purified from cyanobacteria, Syne- 
chococcus (Lubberdings et al., 1983; Van Walraven 
et al., 1984) and Mastigocladus laminosus (Frei et al., 
1984) and photosynthetic bacteria, Rhodospirillum 
rubrum (Khananshvili and Gromet-Elhanan, 1982) 
and Rhodopseudomonas sphaeroides (Miiller et al., 
1983). 

p Subunits from F1 of different organisms present a 
high homology (Nelson and Cidon, 1984) and 
generally have a molecular weight lower than that of 
the corresponding subunit a (Merchant and Selman, 
1983). However, in Dunaliella order of migration of 
subunits a and p in polyacrylamide gel electro- 
phoresis, is inversed (Selman-Reimer et al., 1984). 
The recent determinations give a molecular weight of 
400 kD, instead of 325 kD, for CF, in spinach 
(Moroney et al . ,  1983) and Chlamydomonas  
reinhardii (Merchant et al., 1983). These results are 
consistent with a stoichiometry a3 p3 y S E which is 
in accord with the analyses of uniformly labelled 
[14C]CF, (Merchant e t  a l . ,  1983; Suss and 
Manteuffel, 1983). The subunit 6 is easily lost during 
CF, purification (Moase and Green, 1981; Fine1 et 
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al., 1984) and Berzborn et al. (1984) propose that the 
true stoichiometry is 3 6 per CFI.  Electron 
microscopy of negative stained CF1 exhibits a 
six-fold symmetry (Moase and Green, 1981; Akey et 
af . ,  1983) or a three-fold symmetry when a subunits 
have bound a monoclonal specific antibody (Tiedge 
et al., 1984), indicating a stoichiometry a&. 

Primary structure and organization o f  the 
coupling-factor 

Determination of the primary structure of the 
ATP-synthase begins with the analysis of the DNA 
sequence of the genes coding for the different 
subunits in the following organisms. Subunits a, p 
and e are sequenced in tobacco (Deno et al., 1983; 
Den0 and Sugiura, 1984; Shinozaki et a/ . ,  1983), 
subunits p and e in maize (Krebbers et al., 1982), 
subunits p and e in spinach (Zurawski et al., 1982), 
subunits p and E in barley (Zurawski and Clegg, 
1984). Genes for the subunits a, p and E are located in 
pea and will be soon sequenced (Huttly and Gray, 
1984). Subunit a has been partially sequenced in 
Chlamydomonas reinhardii (Hallick, 1984) and 
genes coding for subunits a ,  p and E have been 
localized (Woessner et al., 1984). The five subunits of 
F1 are sequenced in Rhodopseudomonas blastica 
(Tybulewicz et al., 1984). 

The secondary structure of each subunit of the 
ATP-synthase from Escherichia coli has been 
inferred from the amino acid sequence. Organization 
of the peptidic chains in the membrane has also been 
proposed from the calculated hydropathy of the 
amino acid sequences (Hoppe and Sebald, 1984, 
Walker et al., 1984). Comparison of the sequences in 
ATP-synthase from Escherichia coli and photo- 
synthetic organisms allow the prediction of 
arrangements of the peptidic chains for the last 
organisms. Sixty-six amino acid residues (Deno and 
Sugiura, 1984) are identical along the a and p 
subunits from tobacco and are positioned in 
sequences which participate in the binding of 
nucleotides in other nucleotide-binding enzymes 
(Kanazawa et a l . ,  1982). The percentage of 
homologous amino acid residues of the different 
subunits p is around 90% (Shinozaki et al., 1983), 
corresponding to a conservation of their secondary 
structure throughout the different organisms. 

Organization of the subunits has been investigated 
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by chemical cross-linking (Rott and Nelson, 1984) 
and accessibility to the specific antibodies (Klein- 
Hitpass and Berzborn, 1984). Subunits a and f3 must 
be arranged alternately in an hexameric figure which 
is stabilized by the subunit y forming the core of the 
complex. Subunits I and I1 are in contact with 
subunits 6 and E, suggesting their role in the 
attachment of F1 to Fo. 

Physical methods have been used for studying the 
general organization of the ATP-synthase. Small 
angle X-ray scattering has been applied in thermo- 
philic bacterium PS3 (Furuno et al.,  1983) and 
mitochondria (Amzel et al., 1982). Neutron small 
angle scattering has been used with the Fl-Fo 
complex from Rhodospirillum rubrum (Nawroth et 
al., 1983) and with the F1 from Escherichia coli (Satre 
and Zaccai, 1979). Circular dichroism gives some 
information on the conformation changes of spinach 
CF, by fixation of the substrates (Younis ec al.,  1983). 
Fluorescent probes have been widely used (Pick and 
Finel, 1983) and allow determinations of the 
distances between the different sites on CFI (Cerione 
et al., 1983, Snyder and Hammes, 1984). 

Properties of the different subunits 

In the FI part, subunits ci and p bind the 
nucleotides (Deno and Sugiura, 1984; Kanazawa et 
al., 1982). Subunit p is thought to bear the catalytic 
sites. Some specific sites of this subunit have been 
mapped. DCCD binding-sites in thermophilic 
bacterium PS3 and in Escherichia coli or mito- 
chondria correspond respectively to the glutamic 
acid 204 and 215 in the subunit p from the spinach 
chloroplast ATP-synthase (Yoshida and Allison, 
1983). The photo-affinity probe, 8-azido ATP, binds 
on 3 amino acid residues of the subunit p in 
mitochondria (Hollemans et at., 1983) corresponding 
to the lysine 317, isoleucine 321 and tyrosine 328 of 
the homologous subunit in spinach, in a part of the 
peptidic chain called Rossmann fold, which is 
essential for the catalytic activity (Kanazawa et al., 
1983-a). In photosynthetic organisms the photo- 
affinity analogues of the nucleotides label subunits a 
and p or p only following the favored conformation 
“syn” or “anti“ of the probe (Czarnecki et al., 1982, 
Czarnecki e: al., 1983, Abbott et al., 1984). The 
conformation “anti” is required for nucleotides to be 
a good substrate (Czarnecki, 1984). 

Subunit y is necessary for the reconstituted a-p 
complex to elicit an ATP-ase activity in Escherichia 
coli (Kanazawa et al., 1983b) and Thermophilic 
bacterium PS3 (Kagawa et al., 1984). In photosynth- 
etic organisms such a reconstitution from isolated 
subunits is not achieved. In chromatophores of 
Rhodospirillum rubrum the subunit y is necessary 
for photophosphorylation (Khananshvili and 
Gromet-Elhanan. 1982). In CF, from spinach sub- 
unit y bears a disulfide bond SI-S2 and two sulfhyd- 
ryl residues Si. S4 (Nalin and McCarty, 1984, 
Moroney et al . ,  1984, Ketcham et al. ,  1984). SR and 

S4, oxidized to a disulfide bond or cross-linked, 
induce a proton leak through the chloroplast mem- 
brane indicating the subuit y behaves Like a proton 
gate. Sulfhydryl group S3 is essential for ATP- 
synthase activity and is the only SH group found in 
all the subunits y from the different organisms, 
especially from Rhodopseudornonas blastica 
(Tybulewicz et a/.,  1984) and corresponds to the 
cystein 88 in Escherichia coli y subunits. Reduction 
of the disulfide bond SI-S2 induces ATP-ase activity 
and is not found in the subunit y from mitochondria 
or Escherichia coli, where there is no regulation of 
the ATPase activity. Subunit y forms the core of the 
a p complex and regulates its activity by induced- 
changes of its conformation. 

Subunit 6 has been proposed for a long time as the 
anchorage point between F1 and Fo. This proposal 
has been challenged by Berzborn et al. (1984) and 
Patrie and McCarty (1984). Subunit 6 seems to be 
mostly necessary to prevent non-productive leak of 
protons through CF, and not to be required for 
photophosphorylation itself. 

Subunit E is an ATPase inhibitor but for the 
isolated CF, only (Finel et al.,  1984; Richter et al., 
1984). This CF1 without subunit E is a permanently 
Ca2+ ATPase, inhibited by subunit E addition, 
which does not recouple CFI depleted thylakoids 
unless subunit E is added (Richter et al.,  1984). 
Subunit E is not required for binding CF, to the 
membrane, but its presence prevents, as subunit 6 
does, ineffective leak of protons through CF,. 

Coupling-factor activation 

In soluble CF1, subunit E is the internal inhibitor of 
the ATPase activity. The physical treatments which 
induce the ATPase activity (Anthon and Jagendorf, 
1983,1984) release the subunit E from the core of the 
enzyme. Heat treatment displaces subunit E without 
changing the state of the disulfide bridge (Patrie and 
McCarty, 1984), as does ethanol treatment (Richter 
et al., 1984) and anion-exchange HPLC (Finel et al., 
1984). The chemical treatments which induce 
ATPase activity do not release subunit E. Thiol 
activation correlates with the reduction of the 
disulfide bridge, S1-S2, in subunit y and protease 
activation with the cleavage of subunit a (Nalin and 
McCarty, 1984; Ketcham et al., 1984). 

With CF1-CFo in the membrane we observe a dual 
action: the build-up of a AljLH across the membrane 
induces a conformational change in the CFI part of 
the ATPase demasking the thiol residue S3 and 
making the disulfide bridge S1-S2 accessible to the 
second action, reductive breakage of this S1-S2 bond. 
Conversely these thiol groups S1, S2 are protected 
against oxidative reagents in the presence of the 
APH and become exposed when APH is cancelled 
(Shahak, 1985). These two processes induce the 
ATPase activation. This is reminiscent of the dual 
action of the heat and disulfide reducing agents on 
the activation of the ATPase activity in isolated CF1 



Yearly Review 709 

(Nalin and McCarty, 1984). In chloroplasts the 
disulfide reducing agent is a thioredoxin (Mills and 
Mitchell, 1984). Graber et al. (1984), Rumberg and 
Becher (1984) and Mills and Mitchell (1984) propose 
that the activation of the ATPase is caused by the 
protonation and deprotonation of the parts of the 
ATPase respectively, turned to the outside and the 
inside of the thylakoids. With CFl-CFo reconstituted 
in liposomes, the ATPase as well as the ATP- 
synthase activities depend on the nature of the 
phospholipids used (Pick et al., 1984). In photo- 
synthetic bacteria, activation of the ATPase seems to 
present a different mechanism (Casadio and 
Melandri, 1984). The common point is that 
activation of the enzyme is valuable as well for dark 
ATP hydrolysis as for light-dependent ATP synthesis 
(Vallejos et al . ,  1983). 

ATP synthesis and proton flux 

It is clear that ATP synthesis is coupled to a proton 
flux from inside to outside of the thylakoids and 
depends on the value of the A&H across the 
membrane. 

The ratio H+ to ATP has been reported equal to 
3, during ATP synthesis in chloroplasts (Davenport 
and McCarty, 1984; Graber et al., 1984; Rumberg 
and Becher, 1984) and with CFI-CFo reconstituted in 
liposomes (Dewey and Hammes, 1981), but ratios 
between 2 and 8, following the nature of the lipids 
used, have been found in liposomes where bacterio- 
rhodopsin and yeast mitochondria ATP-synthase 
have been reconstituted (Van der Bend et al.,  1984). 
Moreover, during flash-induced ATP synthesis in 
pea chloroplasts, we found a ratio H+/ATP of 
between 2 and 4, following the state of the chloro- 
plasts (Lemaire et al . ,  1984). 

Several arguments have been given in favor of a 
localized AFH (Haraux and de Kouchkovsky, 
1983). Double inhibitor titrations experiments 
(Hitchens and Kell, 1983) argue for a localized AGH 
and based on these experiments Westerhoff et al. 
( 1  984) propose a “mosaic coupling” in chromato- 
phores. Yet we have to remark that not only some 
results must be artefactual (Cotton and Jackson, 
1983) but also the principle of the double inhibitor 
titration is criticizable (O’Shea and Thelen, 1984). 
All the protons moving in thylakoids do not have the 
same efficiency for ATP synthesis (Hangarter and 
Good, 1984; Flores and Ort, 1984), but Davenport 
and McCarty (1984) do not find any differences for 
protons generated by the two photosystems 
excitation. Nevertheless many experimental results 
are interpreted by the existence of certain domains in 
the thylakoids, where the protons are out of 
equilibrium with the bulk phase (Dilley and 
Schreiber, 1984; Laszlo et al . ,  1984; Hong and Junge, 
1984; Junge et al., 1984; Schreiber, 1984a,b). 

The relation between ATP synthesis and proton 
flux is an open question, which would be settled only 
by experiments on a molecular basis. In this line 

Kagawa (1984) presents a model for the proton 
motive ATP synthesis based on an acid-base cluster 
hypothesis. 

Nucleoiide binding-sitesfenzymatic mechanism and 
A TP synthesis 

The CF, contains two categories of nucleotide 
binding-sites: “tight sites” with a KD of lo-’ M or 
less and “loose sites” with a higher K D  (Strotmann, 
1985). With the membrane bound CFI, affinities are 
modified by interaction of the enzyme with the 
membrane of the thylakoids and by energization by 
light and the resulting proton motive force. It results 
that a so called “tight site” on isolated CF, can 
become a “loose site” on membrane bound CF, and 
activation of the ATP-synthase in the thylakoids is 
well reported by its ability to exchange its bound 
nucleotides with the nucleotides free in the medium. 

Three nucleotide binding-sites are most often 
found with isolated CF, (Strotrnann, 1985). Six 
binding-sites for ATP, two per purified p subunit, 
(Gromet-Elhanan and Khananshvili, 1984) or ADP 
(Khananshvili and Gromet-Elhanan, 1984c) are 
characterized on the p subunits removed from the 
Rhodospirillum rubrum membrane bound ATP- 
synthase. The intrinsic content of purified CF,, even 
after treatment to remove residual ADP, is still 0.5 to 
1.0 ADP per CF, (Girault et al.,  1982). CF1-CFo 
contains at least 1 ADP and 1 ATP per mol (Cerione 
and Hammes, 1981). Illuminated thylakoids, in the 
presence of [14C]ADP bind 0.85 (Schumann, 1984) 
to 1.3 mol [I4C]ADP (Bickel-Sandkotter, 1983) per 
mol of CFI under steady-state conditions. Beside 
those radioactive nucleotides, some non-exchange- 
able and non-radioactive nucleotides should be 
present. 

Part of the bound nucleotides in the chloroplast- 
ATPase can be exchanged while the other part is not. 
At high medium ADP concentration, in the light, 
about 35% of the total enzyme molecules contain a 
loosely bound ADP and 65% a tightly bound ADP, 
while almost none of the enzyme molecules are free 
from ADP (Schumann, 1984). On the isolated CFI, 
one ADP is difficult to exchange and two ADP or 
ATP are more easily exchangeable (Girault et al., 
1982). The magnesium is necessary for binding of one 
of the two ATP (Bruist and Hammes, 1981) or for the 
two (Girault et al., 1982). 

Localization of the nucleotides binding sites. After 
tight binding of 2-a~ido[~~P]ADP,  1.4 nmol/mg of 
chlorophyll, (Czarnecki et al.,  1983) or 2-azido 
[?’P]ATP, resulting from phosphorylation of 2-azido 
ADP, the radioactivity covalently bound was 
recovered on identical portions of the p subunit 
polypeptide (Abbot et al., 1984). 

With [‘4C]8-azido ATP (8-N3-ATP) the Q subunits 
of thermophilic bacterium PS3 were preferentially 
labelled (0.84.9 mol 8-N3-ATP/CFI, cdp = 411, 
Schafer et al.,  1984). 

Two binding-sites were characterized on isolated f! 
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subunit of Rhodospirillumm rubrum F1. One 
nucleotide binding-site is a M:+ independent 
“high affinity site” (Ko = 4.4 pM for ATP and 6.7 
p M  for ADP). The second is a Mg2+ dependent 
“low affinity site” ( K D  = 200 p M )  which seems 
t o  c o n t a i n  a l s o  t h e  b i n d i n g - s i t e  f o r  
P i  (Gromet-Elhanan and Khananshvili, 1984; 
Khananshvili and Gromet-Elhanan, 1985). 

3’-0(4-Benzoyl)benzoyl ADP (Bz-ADP) interacts 
with ATP sites of heat-activated CF,. Complete 
inactivation was shown to occur upon binding of 2.45 
mol Bz-ADP/mol CF1. Bz-ADP was bound only on 
subunits p of CFI, with the isolated enzyme, 
(Bar-Zvi and Shavit, 1984) or a and p subunits with 
the membrane bound enzyme (Bar-Zvi et al., 1983). 

Enzymatic mechanism and role of nucleotide 
binding-sites. A recent review of Strotmann (1985) is 
available on this subject. We want to underline some 
outstanding aspects of this open question. 

It is accepted that ATP is formed from ADP and is 
not the result of the direct photophosphorylation of 
AMP by CFI (Homer et al . ,  1983). Yet the 
elucidation of partial reactions of photophospho- 
rylation may be complicated by side enzyme 
activities (Feldman and Sigman, 1984). 

The three alternating sites model, developed by 
Boyer (Gresser et a l . ,  1982) explains many 
experiments, especially those concerning the 
increase of water oxygen incorporation in ATP 
released at low ADP concentration (Kohlbrenner 
and Boyer, 1983; Stroop and Boyer, 198.5) and 
increase of the off constant of ADP and P, on one site 
by ATP binding on another site (O’Neal and Boyer, 
1984). The non-energy requirement of the reaction 
ADP + Pi --+ ATP, which has been proposed, seems 
to be confirmed by the synthesis of ATP from the 
bound ADP and medium P, on isolated CFI 
(Feldman and Sigman, 1982) or on a completely 
uncoupled ATP-synthetase (Feldman and Sigman, 
1983). Contrarily, Pi : H20 oxygen exchange could 
indicate that there is an energy requirement for the 
reversible cleavage of the enzyme bound ATP 
(Shermann and Wimmer, 1983). 

The use of adenosine 5’(0-3-thiotriphosphate) 
(ATP yS) with thermophilic bacterium TFI has 
revealed that hydrolysis of ATP yS occurs with inline 
nucleophilic displacement (Kagawa et al., 1984), 
which excludes possible pathways of ATP synthesis 
via a phosphorylated intermediate. 

Several studies have also underlined the 
importance of the stereochemistry to elucidate the 
mechanism of ATP synthesis or hydrolysis, as is the 
case of ATP metal complexes. Experiments of 
Kagawa et al. (1984) show that the true substrate for 
ATP hydrolysis by TF1 is the Apy bidentate ATP-Mg 
complex while Frash and Selman (1982) propose the 
substrate of photophosphorylation catalyzed by CF1 
be the A epimer of the bidentate metal-ADP 
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