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Abstract—This paper presents a new methodology for 

automating the Computational SRAM (C-SRAM) design based on 
off-the-shelf memory compilers and a configurable RTL IP. The 
main goal is to drastically reduce the development effort compared 
to a full-custom design, while offering a flexibility of use and a 
high-yield production. The proposed C-SRAM architecture has 
been developed to process energy-efficient vector data coupled 
with a scalar processor, while limiting the data transfer on the 
system bus. The results obtained by post P&R simulations show 
that 2RW and 4RW C-SRAM configurations using the double 
pumping technique achieved the highest performance to process 
vectorized MAC operations compared to the others 
configurations. Moreover, it has been shown that the impact of the 
digital wrapper decoding and executing the instructions can be 
mitigated by increasing the memory cut size to represent less than 
10% in area and 20% in power consumption. 

I. INTRODUCTION 

For edge AI applications processing a large amount of vector 
data, parallel computing is the straight forward solution. 
However, due to the transfer of large vector data (up to 512 bits) 
through the system bus, current commercial vector processors 
(e.g. SIMD) are no longer enough efficient to perform low-
energy operations. Indeed, it has been shown that the cost of data 
transfer between the memories and processing elements is much 
higher than the operation itself in high-performance computer 
architectures for advanced technology nodes [1-2]. In this 
context, In- and Near-Memory Computing (IMC/NMC) 
architectures defined by a limited data transfer on the system bus 
seem to be particularly well suited. In the recent literature, 
several Computational SRAM (C-SRAM) architectures, in 
which the computing is performed in the bitcell matrix (IMC) 
and/or at peripheral circuit level (NMC), have been proposed. 
Most of them, based on silicon results, are full-custom solutions, 
proposing specific peripheral circuits and/or bitcells complying 
with logic design rules. This has the advantage of maximizing 
the energy efficiency of computation, up to several tens of 
TOPS/W [3-5]. Nevertheless, this design methodology presents 
two major drawbacks: difficult silicon qualification and low 
adaptability to specific applications requirements. First, to 
qualify with a high-yield production a custom-designed C-
SRAM IP, specific test circuits (e.g. BIST) need to be 
developed, resulting in major changes to the well-established 
validation flow. Then, to expand the operating range, several 
memory sizes need to be qualified, which also requires a major 
development effort. Finally, to meet EDA tool compatibility 
requirements in a time-limited design phase, automated 

generation of C-SRAM views (HDL, physics, timing and 
power...) need also to be developed. Finally, it is necessary to 
easily manage a large number of configurations (capacity, form 
factor, operations...), while guarantying a high-yield production. 

In this paper, we propose a new methodology for automating the 
C-SRAM design based on off-the-shelf SRAM compilers for the 
storage part and a configurable digital wrapper (RTL IP) for the 
computing part. The main contributions of the paper are: 

 To evaluate the impact, for each selected memory type, 
the energy efficiency of a Multiply-Accumulate 
(MAC) operation performed in the digital wrapper.  

 To quantify the additional area and energy cost of the 
computing part (RTL IP).  

This work prefigures the algorithm that could be implemented 
in the automated decision-making system (ADMS) to select the 
optimal memory type according to the user’s constraints (e.g. 
memory capacity, instruction frequency, required operations ...). 
In order to take full advantage of the parallel computing based 
on the use of C-SRAM as a vector processing accelerator, the 
code compiler must also be optimized to execute as many 
vector-based kernels as possible of a given algorithm. This part 
is out of the scope of this paper. 

The remainder of the paper is organized as follow: Section II 
demonstrates the benefits of using a C-SRAM as an energy-
efficient vector processing accelerator over conventional SIMD 
processors. Section III describes the proposed methodology for 
automating the C-SRAM design based on off-the-shelf SRAM 
compilers and a configurable RTL IP. Section IV presents the 
simulation results (post P&R) highlighting the correlation 
between the optimum energy efficiency to perform MAC 
operations and the number of ports in the selected memory. 
Finally, Section V summarizes the paper and presents the 
perspectives of applications. 

II. COMPUTATIONAL SRAM: AN ENERGY-EFFICIENT VECTOR 

PROCESSING ACCELERATOR 

The C-SRAM architecture presented in this paper is designed to 
be implemented with a scalar CPU as an energy-efficient vector 
processing accelerator thanks to the reduced transfer of vector 
data on the system bus [6]. To highlight this assumption, Figure 
1 provides a comparison between scalar, vector (e.g. a SIMD 
processor) and scalar/vector (based on C-SRAM). Compared to 
the scalar architecture, the vector architecture proposes parallel 



 

computations on vector data (up to 512-bit for a commercial 
SIMD processor). 

However, it requires data transfers over the system bus towards 
the registers of the processor. This drawback can be solved by 
the scalar/vector architecture based on C-SRAM by limiting the 
data transfer, while keeping parallel computation on vector data. 
Most of vector operations could be thus directly performed in 
the C-SRAM (containing the data to be processed) after 
receiving the instructions from the CPU (up to 64-bit) instead of 
transferring the data vectors (128-bit or more) to the CPU 
registers [7]. As for conventional vector processors, the size of 
C-SRAM operators can be adjusted according to the element 
length (8-bit, 16-bit, 32-bit ...) of the vector data. The size of the 
latter are used to define the length of C-SRAM words (128-bit, 
256-bit ...). 

III. PROPOSED C-SRAM DESIGN METHODOLOGY 

 SRAM compiler re-use & digital wrapper 

To take advantage of the configurability (size, form factor, 
power management, ECC ...) and the reliability (silicon 
qualification) of existing SRAM compilers, while limiting the 
development efforts, we propose to use a digital wrapper based 
on a configurable RTL IP (Fig. 2). The wrapper has to decode 
and execute the C-SRAM instructions sent by the CPU without 
transferring vector data through the system bus. In addition, this 

wrapper also enables the data vectorization coming from the 
system bus (up to 64-bit) to the C-SRAM (from 128-bit), and 
vice-versa. The customizable parameters are the size of the input 
(depending on the system bus) and the vector data (depending 
on the application). Then, several operations can be selected 
from a pre-defined list of a specific Instruction Set Architecture 
(not described in this paper). Finally, the management of the 
wrapper pipeline depends on the timing constraints imposed by 
the frequency difference between the instructions sent by the 
CPU and the memory accesses. 

Another advantage to use existing SRAM compilers and wrap 
the generated instances with a glue logic is to enable a full 
flexibility in terms of memory partionning. Due to performance 
constraints (frequency, power, ...), the memory word length can 
be limited above the targeted data vector length (e.g. 512-bit). In 
this case, several memory instances with a limited word length 

 
Figure 3 128-bit SRAM cut partitioning constrained by the physical limitations: a) word & bit number < physical limits, b) word number > physical limits, c) 
bit number > physical limits and d) word & bit number > physical limits. 

 
Figure 1 Illustration of scalar (left), vector (middle) and scalar/vector 
(right) computing architectures. C-SRAM (right case) enables to 
drastically reduce the data transfer on the system bus (leading to significant 
energy savings) based on near-memory computing. 

 
Figure 2 Proposed design methodology to automate the C-SRAM macro 
generation w.r.t. full custom design solutions. Automation simplifies the 
design phase but makes it more difficult to implement analog or pre-
computing functions. 



 

(e.g. 32- or 64-bit) can be used to reach the targeted data vector 
length, while sharing the same digital wrapper to limit area and 
leakage power penalties [8]. A similar partionning can be done 
to overcome the limitation of the number of words per SRAM 
instance, as shown in Fig. 3. 

To simplify the development, we propose to divide the C-SRAM 
design in two parts: storage and computing (Fig. 4). The storage 
part is based on the use of SRAM compilers to generate the 
memory cuts. The computing part is based on the use of a 
configurable RTL IP to implement the digital wrapper. To select 
the appropriate memory type according to the computing 
features coming from the user’s requests, we propose to use an 
ADMS. It is based on rules from the results presented in section 
IV. The algorithm on which it is based is not detailed in this 
paper. 

The outputs of the proposed C-SRAM design flow enable the 
placement and routing of the digital wrapper with the 
conventional EDA tools (step 2 in Fig. 4). Nevertheless, the 
development of this design flow could be pushed one step 
further to generate an assembled hardware macro with all the 
EDA views necessary for its implementation (step 3 in Fig. 4). 

 Multi-port SRAM compiler possibilities based 
on pushed-rule foundry bitcells 

Three types of SRAM bitcells are systematically density-
optimized by the founders: Single-Port (SP), Dual-Port (DP) and 
Two-Port (TP). These pushed-rule bitcells are optimally 
designed then qualified on silicon to meet the performance 

requirements of the process technology. Next, several SRAM 
compiler types are usually developed, each of them for a specific 
use. These compilers can be classified by the number of access 
ports, and more specifically by the number of read / write 
accesses in a same clock cycle. For example, a 1RW SRAM 
compiler means one memory access in one clock cycle, either to 
write or read a data at a specific address. 

To increase the number of synchronous memory accesses, the 
use of DP or TP bitcells has been generalized. Typically, DP 
bitcells are used for video processing where multi-access 
memories (e.g. 2RW) optimize the data-parallel processing [9]. 
While TP bitcells are commonly used as register files where 
simultaneous read and write accesses (e.g. 1R1W) are needed for 
high-speed computing [10]. In any case, the use of this type of 
bitcells results in a significant area and leakage overhead 
(compared to SP-based SRAM). Moreover, to increase the 
number of ports beyond 2, specific multi-port bitcells are 
required, further exacerbating this issue. To develop multi-port 
SRAM compilers without designing specific bitcells or limiting 
the area and leakage overhead, a circuit design technique, called 
double pumping, has been adopted by most of the SRAM 
compiler vendors in advanced technology nodes. This technique 
consists in artificially duplicating the number of ports by 
generating a second internal memory clock to start a consecutive 
memory access without waiting for the end of the first clock. 

This is made possible by modifiying decoding and IO circuitry 
in order to add intermediate sequences of dynamic logic, while 
reducing the operating frequency (up to ~40%) [11-15]. 
Nowadays, most of founders and IP vendors propose 2-Port 
SRAM compilers based on SP bitcells that use this technique to 
improve both memory density and leakage power consumption 
at the expense of operating frequency compared to the reference 
solution (Fig. 5). The more the double pumping technique is 
optimized, the lower the frequency loss. This technique can also 
be advantagously used with DP and TP bitcells to achieve up to 
4-Port SRAM compilers enabling 4RW, 2R2W or 2R2RW 
memory accesses [16]. 

Figure 6 exposes the range of possibilities of SRAM compiler 
types based on the conventional pushed-rule bitcells (SP, DP 
and TP) and the use of the double pumping technique for 
duplicating the number of ports. We will see in the next section 

 
Figure 4 Proposed C-SRAM design flow based on off-the-shelf SRAM 
compilers and a configurable RTL IP dedicated to decode and execute 
specific instructions coming from the CPU. 

 
Figure 5 Basic concept of the double pumping technique enabling the port 
number duplication, while keeping a clock frequency ratio ≥ 0.6 w.r.t. the 
reference solution. 



 

the benefits of use 4-Port SRAM compilers, notably those 
developed from the double pumping technique. 

IV. SIMULATION RESULTS 

In this section, we quantify the impact of several SRAM types 
on the energy efficiency of vector processing. Furthermore, we 
also quantify the additional area and energy cost of the digital 
wrapper for several sizes of C-SRAM. 

 Methodology 

This study is based on the 22nm FD-SOI (22FDX) design 
platform developed by Globalfoundries. 8-Track standard cell 
libraries are used (in order to minimize the area overhead) to 
design the digital wrapper and a set of representative SRAM 
compilers (all using pushed-rule bitcells described in the 
previous section) are selected for the storage part of the C-
SRAM macros (1RW, 2RW, 2RW-DP and 4RW-DP). 
Simulation results are obtained from post P&R gate-level 
netlists close to typical conditions (TT/0.8V/85°C). 

 Testcase: Multiply-Accumulate Operation 

To make the study relevant to edge AI applications, we have 
decided to base our testcase on a vectorized (16-element of 8-
bit) MAC operation. This instruction is executed by pipelining 
the breakdown operations performed either in the memory (read 
& write) or in the digital wrapper (multiply & addition). Figure 
7 describes the chronogram of the vectorized MAC operation 
for different memory types of C-SRAM macros. The 
breakdown operations of this instruction are made of 4 memory 
accesses (RD A, RD B, RD C, WR Z), 1 instruction decoding, 
1 multiplication (A x B) and 1 addition (A x B + C). In this 
testcase, the operations performed in the digital wrapper are 
parallelized as much as possible with the memory access 
clocked at the same frequency (fC-SRAM). The duration of the 
MAC instruction (latency) can vary between 5 to 6 clock 
cycles. This variation corresponds to the ability to get A and B 
operands in the same clock cycle or not, which is the case for 
2RW and 1R1RW memories (5 clock cycles) but not for 1RW 
and 1R1W memories (6 clock cycles). This figure also describes 
the chronogram corresponding to the use of a pipeline in the 

 
Figure 7 Chronogram of the multiply-accumulate operation (Z = A * B + C) performed with various C-SRAM configurations. These configurations depend on the 
selected SRAM type (1RW, 1R1W ...), the frequency ratio between C-SRAM and instruction flow and the way the instructions are performed in the digital wrapper 
(pipeline enabled or not). 

 
Figure 6 Possible types of SRAM compilers developed from the 3 main 
pushed-rule foundry bitcells (Single-Port, Dual-Port and Two-Port) and 
the use of the double pumping technique for duplicating the number of 
port. 



 

digital wrapper, introducing the use of the 4RW memory. This 
technique enables to execute successive instructions without 
waiting for the end of the previous one. Therefore, it is possible 
to reduce the instruction throughput from 5 cycles to only one. 
Table 1 describes the different configurations (memory size, 
maximum operating frequency …) of the C-SRAM macros 
selected for this study. Note that he results obtained in this 
section for 2RW-DP and 4RW-DP C-SRAM configurations 
have been extrapolated from simulation of 1RW and 2RW C-
SRAM configurations based on [11-16]. The maximum 
operating frequency varies between 1.5GHz to 2.2GHz for 
4RW-DP and 2RW cuts of 128-word (minimum size) of 128-
bit, respectively. The frequency decrease down to 25% for the 
maximum size of cut (16k-word for 1RW and 4k-word for 2RW 
and 4RW). Based on these data, it is possible to get the 
maximum number of vectorized MAC operations performed by 
a C-SRAM macro, knowing that 16 MAC operations of 8-bit 
are performed in parallel (Fig. 8). Duplicating the number of 
ports of the 1RW memory and pipelining the instruction 
execution in the digital wrapper increase the performance up to 
2.7x. Furthermore, applying the double pumping technique to 
the 2RW memory to get the 4RW C-SRAM configuration 

enables to achieve a speedup up to 3.6x. Nevertheless, the use 
of bigger (128- to 16k-words) and slower macro reduce these 
performance down to 22%. Figure 9 shows in detail the 
computing part (included in the digital wrapper) of C-SRAM 
macros in terms of area and power ratio. As expected, the 
biggest ratio is achieved for the smallest memories (area: 45% 
and power: 37%), in particular for those designed with the 
double pumping technique (area: 51% and power: 37%). The 
computing part can be reduced by using bigger memory size 
down to 10% and 20% in area and power ratio, respectively. 
The physical implementation and the memory/computing 
partitioning are illustrated in Figure 10 for the 1RW and 2RW 
C-SRAM macros representing the smallest and the biggest size 
allowed by the memory compilers. Figure 11 shows the relative 
area cost of 2RW, 2RW-DP or 4RW-DP memories compared to 
a 1RW memory. As expected, the 2RW and 4RW using the 

 
Table 1 Features of selected C-SRAM macros in terms of size (word length 
and number) and speed (max. operating frequency and throughput/latency 
of instructions). 

 
Figure 8 Number of vectorized MAC operations performed by a C-SRAM 
macro during 1 second (GOPS) for various memory types and sizes (min. 
and max. macro size). 

1RW 2RW 2RW (pip.) 4RW (pip.)
128-words w/o DP 6.47 8.76 17.52
16k-words w/o DP 5.6 6.8 13.6
128-words w/ DP 5.34 10.67 23.13
16k-words w/ DP 4.6 9.2 18.0

0

5

10

15

20

25

G
O

PS

16-elements of 8-bits @fMAX
OPeration = MAC

-22%

-22%

-14%
-14%

*GOPS = maximum C-SRAM frequency (GHz) / throughput (cycle #) * 16-operations

sequential instructions pipelined instructions

2.7x

3.6x

 
Figure 9 Computing part (area and power ratio) in a C-SRAM macro for 
various memory types and sizes (min. and max. macro size). 
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Figure 10 Floorplanning (post P&R) and computing part (%) of 1RW (left) 
and 2RW (right) C-SRAM macros for the minimum and maximum size 
allowed by the memory compilers selected. 



 

double pumping technique enable to limit this cost below 2x 
(vs. 3x) and 4x, respectively. Figure 12 shows the number of 
operations (TOPS) for different C-SRAM configurations with 
a budget of 1W and 1mm² according to the instruction 
frequency. This illustrates that both the best tradeoff 
(TOPS/W/mm²) and the highest instruction frequency are 
achieved by the 4RW-DP C-SRAM configurations. Regarding 
the configurations executing sequentially the instructions (i.e. 
w/o pipeline), the 1RW remains the best solution, with a loss of 
the instruction frequency of 26% for 2.9x of performance w.r.t. 
2RW solutions. In all cases, the performance are drastically 
reduced (down to 33x) by using the biggest memory size (16k-
words). 

V. CONCLUSION 

This paper proposed a design methodology for building energy-
efficient C-SRAM macros from on-the-shelf memory 
compilers (based on pushed-rule foundry bitcells) and a 
configurable RTL IP. The benefit of this approach is to 
minimize development efforts and production risks using 
proven design techniques (i.e. double pumping) to take 
advantage of multi-port SRAM compilers (up to 4-Port). It was 
demonstrated that this C-SRAM configuration is the most 
energy efficient to perform vectorized MAC operations (16-
element of 8-bit) when the instructions sent by the CPU can be 
pipelined (no data dependencies from one cycle to the next). 
Otherwise, the 1RW C-SRAM configuration remains the best 
choice. It was also demonstrated that increasing the memory 
capacity significantly reduces the energy efficiency of 
vectorized MAC operation per unit area (up to 33x). The good 
tradeoff depends on the user’s constraints in terms of area and 
power budgets as well as system performance (instruction 
frequency…). The next step in this work is to propose an 
ADMS to build custom C-SRAMs that match each specific 
request. This design automation methodology paves the way for 
the integration of energy-efficient vector processing 
accelerators into energy-constrained systems using scalar 
processors (microcontrollers ...). 
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Figure 12 Energy efficiency of vectorized MAC operations per area unit 
(TOPS/W/mm²) performed by a C-SRAM macro according to the 
instruction frequency for various memory types and sizes (128- and 16k-
words). 
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Figure 11 Relative area cost of multi-port memories (2RW, 2RW-DP and 
4RW-DP) to design C-SRAM macro w.r.t. a single-port memory (1RW) 
for various sizes (128- to 16k-words). 
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4k-words 2.47 1.61 3.13
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