
HAL Id: cea-02889406
https://cea.hal.science/cea-02889406

Submitted on 3 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational SRAM Design Automation using
Pushed-Rule Bitcells for Energy-Efficient Vector

Processing
J.-P Noel, Valentin Egloff, M. Kooli, R. Gauchi, J.-M. Portal, H.-P Charles, P.

Vivet, B. Giraud

To cite this version:
J.-P Noel, Valentin Egloff, M. Kooli, R. Gauchi, J.-M. Portal, et al.. Computational SRAM Design
Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing. 2020 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), Mar 2020, Grenoble, France. pp.1187-1192,
�10.23919/DATE48585.2020.9116506�. �cea-02889406�

https://cea.hal.science/cea-02889406
https://hal.archives-ouvertes.fr

Computational SRAM Design Automation using
Pushed-Rule Bitcells for Energy-Efficient Vector

Processing
J.-P. Noel, V. Egloff, M. Kooli, R. Gauchi, J.-M. Portal2, H.-P. Charles1, P. Vivet, B. Giraud

Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble
1Univ. Grenoble Alpes, CEA, LIST, F-38000 Grenoble

2Aix-Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France
jean-philippe.noel@cea.fr

Abstract—This paper presents a new methodology for

automating the Computational SRAM (C-SRAM) design based on
off-the-shelf memory compilers and a configurable RTL IP. The
main goal is to drastically reduce the development effort compared
to a full-custom design, while offering a flexibility of use and a
high-yield production. The proposed C-SRAM architecture has
been developed to process energy-efficient vector data coupled
with a scalar processor, while limiting the data transfer on the
system bus. The results obtained by post P&R simulations show
that 2RW and 4RW C-SRAM configurations using the double
pumping technique achieved the highest performance to process
vectorized MAC operations compared to the others
configurations. Moreover, it has been shown that the impact of the
digital wrapper decoding and executing the instructions can be
mitigated by increasing the memory cut size to represent less than
10% in area and 20% in power consumption.

I. INTRODUCTION

For edge AI applications processing a large amount of vector
data, parallel computing is the straight forward solution.
However, due to the transfer of large vector data (up to 512 bits)
through the system bus, current commercial vector processors
(e.g. SIMD) are no longer enough efficient to perform low-
energy operations. Indeed, it has been shown that the cost of data
transfer between the memories and processing elements is much
higher than the operation itself in high-performance computer
architectures for advanced technology nodes [1-2]. In this
context, In- and Near-Memory Computing (IMC/NMC)
architectures defined by a limited data transfer on the system bus
seem to be particularly well suited. In the recent literature,
several Computational SRAM (C-SRAM) architectures, in
which the computing is performed in the bitcell matrix (IMC)
and/or at peripheral circuit level (NMC), have been proposed.
Most of them, based on silicon results, are full-custom solutions,
proposing specific peripheral circuits and/or bitcells complying
with logic design rules. This has the advantage of maximizing
the energy efficiency of computation, up to several tens of
TOPS/W [3-5]. Nevertheless, this design methodology presents
two major drawbacks: difficult silicon qualification and low
adaptability to specific applications requirements. First, to
qualify with a high-yield production a custom-designed C-
SRAM IP, specific test circuits (e.g. BIST) need to be
developed, resulting in major changes to the well-established
validation flow. Then, to expand the operating range, several
memory sizes need to be qualified, which also requires a major
development effort. Finally, to meet EDA tool compatibility
requirements in a time-limited design phase, automated

generation of C-SRAM views (HDL, physics, timing and
power...) need also to be developed. Finally, it is necessary to
easily manage a large number of configurations (capacity, form
factor, operations...), while guarantying a high-yield production.

In this paper, we propose a new methodology for automating the
C-SRAM design based on off-the-shelf SRAM compilers for the
storage part and a configurable digital wrapper (RTL IP) for the
computing part. The main contributions of the paper are:

 To evaluate the impact, for each selected memory type,
the energy efficiency of a Multiply-Accumulate
(MAC) operation performed in the digital wrapper.

 To quantify the additional area and energy cost of the
computing part (RTL IP).

This work prefigures the algorithm that could be implemented
in the automated decision-making system (ADMS) to select the
optimal memory type according to the user’s constraints (e.g.
memory capacity, instruction frequency, required operations ...).
In order to take full advantage of the parallel computing based
on the use of C-SRAM as a vector processing accelerator, the
code compiler must also be optimized to execute as many
vector-based kernels as possible of a given algorithm. This part
is out of the scope of this paper.

The remainder of the paper is organized as follow: Section II
demonstrates the benefits of using a C-SRAM as an energy-
efficient vector processing accelerator over conventional SIMD
processors. Section III describes the proposed methodology for
automating the C-SRAM design based on off-the-shelf SRAM
compilers and a configurable RTL IP. Section IV presents the
simulation results (post P&R) highlighting the correlation
between the optimum energy efficiency to perform MAC
operations and the number of ports in the selected memory.
Finally, Section V summarizes the paper and presents the
perspectives of applications.

II. COMPUTATIONAL SRAM: AN ENERGY-EFFICIENT VECTOR

PROCESSING ACCELERATOR

The C-SRAM architecture presented in this paper is designed to
be implemented with a scalar CPU as an energy-efficient vector
processing accelerator thanks to the reduced transfer of vector
data on the system bus [6]. To highlight this assumption, Figure
1 provides a comparison between scalar, vector (e.g. a SIMD
processor) and scalar/vector (based on C-SRAM). Compared to
the scalar architecture, the vector architecture proposes parallel

computations on vector data (up to 512-bit for a commercial
SIMD processor).

However, it requires data transfers over the system bus towards
the registers of the processor. This drawback can be solved by
the scalar/vector architecture based on C-SRAM by limiting the
data transfer, while keeping parallel computation on vector data.
Most of vector operations could be thus directly performed in
the C-SRAM (containing the data to be processed) after
receiving the instructions from the CPU (up to 64-bit) instead of
transferring the data vectors (128-bit or more) to the CPU
registers [7]. As for conventional vector processors, the size of
C-SRAM operators can be adjusted according to the element
length (8-bit, 16-bit, 32-bit ...) of the vector data. The size of the
latter are used to define the length of C-SRAM words (128-bit,
256-bit ...).

III. PROPOSED C-SRAM DESIGN METHODOLOGY

 SRAM compiler re-use & digital wrapper

To take advantage of the configurability (size, form factor,
power management, ECC ...) and the reliability (silicon
qualification) of existing SRAM compilers, while limiting the
development efforts, we propose to use a digital wrapper based
on a configurable RTL IP (Fig. 2). The wrapper has to decode
and execute the C-SRAM instructions sent by the CPU without
transferring vector data through the system bus. In addition, this

wrapper also enables the data vectorization coming from the
system bus (up to 64-bit) to the C-SRAM (from 128-bit), and
vice-versa. The customizable parameters are the size of the input
(depending on the system bus) and the vector data (depending
on the application). Then, several operations can be selected
from a pre-defined list of a specific Instruction Set Architecture
(not described in this paper). Finally, the management of the
wrapper pipeline depends on the timing constraints imposed by
the frequency difference between the instructions sent by the
CPU and the memory accesses.

Another advantage to use existing SRAM compilers and wrap
the generated instances with a glue logic is to enable a full
flexibility in terms of memory partionning. Due to performance
constraints (frequency, power, ...), the memory word length can
be limited above the targeted data vector length (e.g. 512-bit). In
this case, several memory instances with a limited word length

Figure 3 128-bit SRAM cut partitioning constrained by the physical limitations: a) word & bit number < physical limits, b) word number > physical limits, c)
bit number > physical limits and d) word & bit number > physical limits.

Figure 1 Illustration of scalar (left), vector (middle) and scalar/vector
(right) computing architectures. C-SRAM (right case) enables to
drastically reduce the data transfer on the system bus (leading to significant
energy savings) based on near-memory computing.

Figure 2 Proposed design methodology to automate the C-SRAM macro
generation w.r.t. full custom design solutions. Automation simplifies the
design phase but makes it more difficult to implement analog or pre-
computing functions.

(e.g. 32- or 64-bit) can be used to reach the targeted data vector
length, while sharing the same digital wrapper to limit area and
leakage power penalties [8]. A similar partionning can be done
to overcome the limitation of the number of words per SRAM
instance, as shown in Fig. 3.

To simplify the development, we propose to divide the C-SRAM
design in two parts: storage and computing (Fig. 4). The storage
part is based on the use of SRAM compilers to generate the
memory cuts. The computing part is based on the use of a
configurable RTL IP to implement the digital wrapper. To select
the appropriate memory type according to the computing
features coming from the user’s requests, we propose to use an
ADMS. It is based on rules from the results presented in section
IV. The algorithm on which it is based is not detailed in this
paper.

The outputs of the proposed C-SRAM design flow enable the
placement and routing of the digital wrapper with the
conventional EDA tools (step 2 in Fig. 4). Nevertheless, the
development of this design flow could be pushed one step
further to generate an assembled hardware macro with all the
EDA views necessary for its implementation (step 3 in Fig. 4).

 Multi-port SRAM compiler possibilities based
on pushed-rule foundry bitcells

Three types of SRAM bitcells are systematically density-
optimized by the founders: Single-Port (SP), Dual-Port (DP) and
Two-Port (TP). These pushed-rule bitcells are optimally
designed then qualified on silicon to meet the performance

requirements of the process technology. Next, several SRAM
compiler types are usually developed, each of them for a specific
use. These compilers can be classified by the number of access
ports, and more specifically by the number of read / write
accesses in a same clock cycle. For example, a 1RW SRAM
compiler means one memory access in one clock cycle, either to
write or read a data at a specific address.

To increase the number of synchronous memory accesses, the
use of DP or TP bitcells has been generalized. Typically, DP
bitcells are used for video processing where multi-access
memories (e.g. 2RW) optimize the data-parallel processing [9].
While TP bitcells are commonly used as register files where
simultaneous read and write accesses (e.g. 1R1W) are needed for
high-speed computing [10]. In any case, the use of this type of
bitcells results in a significant area and leakage overhead
(compared to SP-based SRAM). Moreover, to increase the
number of ports beyond 2, specific multi-port bitcells are
required, further exacerbating this issue. To develop multi-port
SRAM compilers without designing specific bitcells or limiting
the area and leakage overhead, a circuit design technique, called
double pumping, has been adopted by most of the SRAM
compiler vendors in advanced technology nodes. This technique
consists in artificially duplicating the number of ports by
generating a second internal memory clock to start a consecutive
memory access without waiting for the end of the first clock.

This is made possible by modifiying decoding and IO circuitry
in order to add intermediate sequences of dynamic logic, while
reducing the operating frequency (up to ~40%) [11-15].
Nowadays, most of founders and IP vendors propose 2-Port
SRAM compilers based on SP bitcells that use this technique to
improve both memory density and leakage power consumption
at the expense of operating frequency compared to the reference
solution (Fig. 5). The more the double pumping technique is
optimized, the lower the frequency loss. This technique can also
be advantagously used with DP and TP bitcells to achieve up to
4-Port SRAM compilers enabling 4RW, 2R2W or 2R2RW
memory accesses [16].

Figure 6 exposes the range of possibilities of SRAM compiler
types based on the conventional pushed-rule bitcells (SP, DP
and TP) and the use of the double pumping technique for
duplicating the number of ports. We will see in the next section

Figure 4 Proposed C-SRAM design flow based on off-the-shelf SRAM
compilers and a configurable RTL IP dedicated to decode and execute
specific instructions coming from the CPU.

Figure 5 Basic concept of the double pumping technique enabling the port
number duplication, while keeping a clock frequency ratio ≥ 0.6 w.r.t. the
reference solution.

the benefits of use 4-Port SRAM compilers, notably those
developed from the double pumping technique.

IV. SIMULATION RESULTS

In this section, we quantify the impact of several SRAM types
on the energy efficiency of vector processing. Furthermore, we
also quantify the additional area and energy cost of the digital
wrapper for several sizes of C-SRAM.

 Methodology

This study is based on the 22nm FD-SOI (22FDX) design
platform developed by Globalfoundries. 8-Track standard cell
libraries are used (in order to minimize the area overhead) to
design the digital wrapper and a set of representative SRAM
compilers (all using pushed-rule bitcells described in the
previous section) are selected for the storage part of the C-
SRAM macros (1RW, 2RW, 2RW-DP and 4RW-DP).
Simulation results are obtained from post P&R gate-level
netlists close to typical conditions (TT/0.8V/85°C).

 Testcase: Multiply-Accumulate Operation

To make the study relevant to edge AI applications, we have
decided to base our testcase on a vectorized (16-element of 8-
bit) MAC operation. This instruction is executed by pipelining
the breakdown operations performed either in the memory (read
& write) or in the digital wrapper (multiply & addition). Figure
7 describes the chronogram of the vectorized MAC operation
for different memory types of C-SRAM macros. The
breakdown operations of this instruction are made of 4 memory
accesses (RD A, RD B, RD C, WR Z), 1 instruction decoding,
1 multiplication (A x B) and 1 addition (A x B + C). In this
testcase, the operations performed in the digital wrapper are
parallelized as much as possible with the memory access
clocked at the same frequency (fC-SRAM). The duration of the
MAC instruction (latency) can vary between 5 to 6 clock
cycles. This variation corresponds to the ability to get A and B
operands in the same clock cycle or not, which is the case for
2RW and 1R1RW memories (5 clock cycles) but not for 1RW
and 1R1W memories (6 clock cycles). This figure also describes
the chronogram corresponding to the use of a pipeline in the

Figure 7 Chronogram of the multiply-accumulate operation (Z = A * B + C) performed with various C-SRAM configurations. These configurations depend on the
selected SRAM type (1RW, 1R1W ...), the frequency ratio between C-SRAM and instruction flow and the way the instructions are performed in the digital wrapper
(pipeline enabled or not).

Figure 6 Possible types of SRAM compilers developed from the 3 main
pushed-rule foundry bitcells (Single-Port, Dual-Port and Two-Port) and
the use of the double pumping technique for duplicating the number of
port.

digital wrapper, introducing the use of the 4RW memory. This
technique enables to execute successive instructions without
waiting for the end of the previous one. Therefore, it is possible
to reduce the instruction throughput from 5 cycles to only one.
Table 1 describes the different configurations (memory size,
maximum operating frequency …) of the C-SRAM macros
selected for this study. Note that he results obtained in this
section for 2RW-DP and 4RW-DP C-SRAM configurations
have been extrapolated from simulation of 1RW and 2RW C-
SRAM configurations based on [11-16]. The maximum
operating frequency varies between 1.5GHz to 2.2GHz for
4RW-DP and 2RW cuts of 128-word (minimum size) of 128-
bit, respectively. The frequency decrease down to 25% for the
maximum size of cut (16k-word for 1RW and 4k-word for 2RW
and 4RW). Based on these data, it is possible to get the
maximum number of vectorized MAC operations performed by
a C-SRAM macro, knowing that 16 MAC operations of 8-bit
are performed in parallel (Fig. 8). Duplicating the number of
ports of the 1RW memory and pipelining the instruction
execution in the digital wrapper increase the performance up to
2.7x. Furthermore, applying the double pumping technique to
the 2RW memory to get the 4RW C-SRAM configuration

enables to achieve a speedup up to 3.6x. Nevertheless, the use
of bigger (128- to 16k-words) and slower macro reduce these
performance down to 22%. Figure 9 shows in detail the
computing part (included in the digital wrapper) of C-SRAM
macros in terms of area and power ratio. As expected, the
biggest ratio is achieved for the smallest memories (area: 45%
and power: 37%), in particular for those designed with the
double pumping technique (area: 51% and power: 37%). The
computing part can be reduced by using bigger memory size
down to 10% and 20% in area and power ratio, respectively.
The physical implementation and the memory/computing
partitioning are illustrated in Figure 10 for the 1RW and 2RW
C-SRAM macros representing the smallest and the biggest size
allowed by the memory compilers. Figure 11 shows the relative
area cost of 2RW, 2RW-DP or 4RW-DP memories compared to
a 1RW memory. As expected, the 2RW and 4RW using the

Table 1 Features of selected C-SRAM macros in terms of size (word length
and number) and speed (max. operating frequency and throughput/latency
of instructions).

Figure 8 Number of vectorized MAC operations performed by a C-SRAM
macro during 1 second (GOPS) for various memory types and sizes (min.
and max. macro size).

1RW 2RW 2RW (pip.) 4RW (pip.)
128-words w/o DP 6.47 8.76 17.52
16k-words w/o DP 5.6 6.8 13.6
128-words w/ DP 5.34 10.67 23.13
16k-words w/ DP 4.6 9.2 18.0

0

5

10

15

20

25

G
O

PS

16-elements of 8-bits @fMAX
OPeration = MAC

-22%

-22%

-14%
-14%

*GOPS = maximum C-SRAM frequency (GHz) / throughput (cycle #) * 16-operations

sequential instructions pipelined instructions

2.7x

3.6x

Figure 9 Computing part (area and power ratio) in a C-SRAM macro for
various memory types and sizes (min. and max. macro size).

0%

10%

20%

30%

40%

50%

60%

1RW 2RW 2RW (pip.) 2RW-DP 2RW-DP
(pip.)

4RW-DP
(pip.)

co
m

pu
tin

g
pa

rt
 in

 C
-S

RA
M

 m
ac

ro

4k-words

4k-words

w/o DP w/ DP

128-words

128-words

16k-words

power ratioarea ratio

Figure 10 Floorplanning (post P&R) and computing part (%) of 1RW (left)
and 2RW (right) C-SRAM macros for the minimum and maximum size
allowed by the memory compilers selected.

double pumping technique enable to limit this cost below 2x
(vs. 3x) and 4x, respectively. Figure 12 shows the number of
operations (TOPS) for different C-SRAM configurations with
a budget of 1W and 1mm² according to the instruction
frequency. This illustrates that both the best tradeoff
(TOPS/W/mm²) and the highest instruction frequency are
achieved by the 4RW-DP C-SRAM configurations. Regarding
the configurations executing sequentially the instructions (i.e.
w/o pipeline), the 1RW remains the best solution, with a loss of
the instruction frequency of 26% for 2.9x of performance w.r.t.
2RW solutions. In all cases, the performance are drastically
reduced (down to 33x) by using the biggest memory size (16k-
words).

V. CONCLUSION

This paper proposed a design methodology for building energy-
efficient C-SRAM macros from on-the-shelf memory
compilers (based on pushed-rule foundry bitcells) and a
configurable RTL IP. The benefit of this approach is to
minimize development efforts and production risks using
proven design techniques (i.e. double pumping) to take
advantage of multi-port SRAM compilers (up to 4-Port). It was
demonstrated that this C-SRAM configuration is the most
energy efficient to perform vectorized MAC operations (16-
element of 8-bit) when the instructions sent by the CPU can be
pipelined (no data dependencies from one cycle to the next).
Otherwise, the 1RW C-SRAM configuration remains the best
choice. It was also demonstrated that increasing the memory
capacity significantly reduces the energy efficiency of
vectorized MAC operation per unit area (up to 33x). The good
tradeoff depends on the user’s constraints in terms of area and
power budgets as well as system performance (instruction
frequency…). The next step in this work is to propose an
ADMS to build custom C-SRAMs that match each specific
request. This design automation methodology paves the way for
the integration of energy-efficient vector processing
accelerators into energy-constrained systems using scalar
processors (microcontrollers ...).

REFERENCES
[1] M. Horowitz, “Computing’s Energy Problem (and what we can do about

it)”, ISSCC, pp. 10-14, 2014.

[2] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A
Quantitative Approach”, 6th edition, 2018

[3] J. Zhang et al., “In-Memory Computation of a Machine-Learning
Classifier in a Standard 6T SRAM Array”, JSSC, Vol. 52, No. 4, pp. 915–
924, 2017.

[4] Y. Zhang et al. “Recryptor: A Reconfigurable Cryptographic Cortex-M0
Processor With In-Memory and Near-Memory Computing for IoT
Security”, JSSC, Vol. 53, No. 4, pp. 995–1005, 2018.

[5] J. Wang et al., “A Compute SRAM with Bit-Serial Integer/Floating-Point
Operations for Programmable In-Memory Vector Acceleration”, ISSCC,
pp. 224–226, 2019.

[6] R. Gauchi et al., “Exploration of a Scalable Vector-based In-Memory
Computing Architecture via a System-on-Chip Evaluation Framework”,
submitted at DAC, 2020.

[7] M. Kooli et al., “Smart Instruction Codes for In-Memory Computing
Architectures Compatible with Standard SRAM Interfaces”, DATE,
2018.

[8] R. Gauchi et al., “Memory Sizing of a Scalable SRAM In-Memory
Computing Tile Based Architecture”, VLSI-SoC, 2019.

[9] K. Nii et al., “2RW Dual-port SRAM Design Challenges in Advanced
Technology Nodes”, IEDM, pp. 269-272, 2015.

[10] J. P. Kulkarni et al., “5.6 Mb/mm2 1R1W 8T SRAM Arrays Operating
Down to 560 mV Utilizing Small-Signal Sensing With Charge Shared
Bitline and Asymmetric Sense Amplifier in 14 nm FinFET CMOS
Technology”, JSSC, Vol. 52, No. 1, pp. 229-239, January 2017.

[11] G. S. Ditlow et al., “A 4R2W Register File for a 2.3GHz Wire-Speed
POWER Processor with Double-Pumped Write Operation”, ISSCC, pp.
256-257, 2011.

[12] C.-W. Wu et al., “A Configurable 2-in-1 SRAM Compiler with Constant-
Negative-Level Write Driver for Low Vmin in 16nm Fin-FET CMOS”,
A-SSCC, pp. 145-148, 2014.

[13] M. Yabuuchi et al., “A 6.05-Mb/mm² 16-nm FinFET Double Pumping
1W1R 2-port SRAM with 313ps Read Access Time”, VLSI Circuits,
2016.

[14] Y. Ishii et al., “A 5.92-Mb/mm² 28-nm Pseudo 2-Read/Write Dual-port
SRAM using Double Pumping Circuitry”, A-SSCC, pp. 17-20, 2016.

[15] V. Nautiyal et al., “An Ultra High Density Pseudo Dual-Port SRAM in
16nm FINFET Process for Graphics Processors”, SOCC, pp. 12-17, 2017.

[16] H. Nguyen et al., “A 7nm Double-Pumped 6R6W Register File for
Machine Learning Memory”, VLSI Circuits, pp. 15-16, 2018.

Figure 12 Energy efficiency of vectorized MAC operations per area unit
(TOPS/W/mm²) performed by a C-SRAM macro according to the
instruction frequency for various memory types and sizes (128- and 16k-
words).

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000

TO
PS

/W
/m

m
²

Instruction Frequency (MHz)

4RW-DP (pip.)
2RW-DP (pip.)
2RW (pip.)
2RW-DP
2RW
1RW

128-words

16k-words

33x

-26%
2.9x

Figure 11 Relative area cost of multi-port memories (2RW, 2RW-DP and
4RW-DP) to design C-SRAM macro w.r.t. a single-port memory (1RW)
for various sizes (128- to 16k-words).

2RW 2RW-DP 4RW-DP
128-words 2.09 1.60 2.79
4k-words 2.47 1.61 3.13
16k-words 3.03 1.98 3.85

1

1.5

2

2.5

3

3.5

4
re

la
tiv

e
ar

ea
 c

os
t (

w
.r.

t.
 1

RW
)

4 x 4k-words memory cut

4k
-w

or
ds

12
8-

w
or

ds

16
k-

w
or

ds

4k
-w

or
ds

12
8-

w
or

ds

16
k-

w
or

ds

4k
-w

or
ds

12
8-

w
or

ds

16
k-

w
or

ds

