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FOURIER TRANSFORMS
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Using the basis of Hermite–Fourier functions (i.e. the quantum oscilla-
tor eigenstates) and the Sturm theorem, we derive constraints for a func-
tion and its Fourier transform to be both real and positive. We propose a
constructive method based on the algebra of Hermite polynomials. Appli-
cations are extended to the 2-dimensional case (i.e. Fourier–Bessel trans-
forms and the algebra of Laguerre polynomials) and to adding constraints
on derivatives, such as monotonicity or convexity.

PACS numbers: 02.30.Gp, 02.30.Mv, 02.30.Nw, 12.38.–t

1. Introduction

Positivity conditions for the Fourier transform of a function occur in
various domains of physics. One often asks:

• What are the constraints for a real function ψ(r) ensuring that its
Fourier transform

ϕ(s) =
1√
2π

+∞
∫

−∞

dr eisr ψ(r) (1)

be real and positive?

• Conversely, what are the properties of ϕ if ψ is real and positive?

• Finally, what are the constraints on Fourier partners such that both ψ
and ϕ be real and positive?
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Physicists often need to work with concrete constructions. The practical
construction of a basis of functions satisfying the above mentioned positivity
properties remains, up to our knowledge, an open problem. Such questions
are quite relevant in Physics. As practical examples, let us quote two well-
known cases. A Fourier transform relates [1] two quantities, namely the
cross section and the profile of a nucleus, which both ought to be positive.
In particle physics, a 2-d Fourier-Bessel transform relates the color dipole
distribution in transverse position space (derived from Quantum Chromody-
namics) and the transverse momentum distribution of gluons probed during
a deep-inelastic collision [2]. Such questions occur also in probability cal-
culus, for the relation between probability distributions and characteristic
functions [3], in crystallography and in condensed matter physics, e.g. for
the interpretation of patterns, etc. . . . .

The problem is simplified if related to another one, that concerning the
functions which are invariant [4] up to a phase factor1 by Fourier transforms.
Indeed, the most familiar examples of positive self-dual functions or distri-
butions, thus trivially verifying the double positivity condition, which are at
most scaled under Fourier transformation (FT), are the Gaussian and the
Dirac comb.

Many special cases can be found, where positivity is conserved, such as,
for instance, the continuous family of functions exp(−rν), where 0 < ν ≤ 2.
Various sufficient conditions for positivity can be found in the literature,
such as the convexity of ψ [7] but, up to our knowledge, no general con-
structive method has been presented.

The present note attempts to give general positivity criteria, in a con-
structive way, by taking advantage of a representation under which the FT
is essentially “transparent”. Our method combines the advantages of self-
duality properties with those allowed by an algebra of polynomials, where
positivity means absence of real roots, hence reasonably simple conditions
for the polynomial coefficients. For this sake, in the 1-d case, we select a ba-
sis made of convenient eigenstates of the FT, the Hermite–Fourier functions,
i.e. the harmonic oscillator eigenstates. The method extends to the 2-d case,
or Fourier–Bessel transform, by replacing Hermite by Laguerre polynomials.

There are general theorems about the characterization of Fourier trans-
forms of positive functions [9]. Let us quote in the first place the Bochner
theorem and its generalizations [10] which state that the Fourier transform
of a positive function is positive-definite. But positive definiteness in the
sense of such theorems does not imply plain positivity2. Hence our problem

1 They are called “self-Fourier” in [5] if the phase factor is 1 and “generalized self-
Fourier” [6] (or “dual”) for other phases.

2 Positive definiteness means that for any real numbers x1, . . . xk and complex numbers
ξ1, . . . ξk, one has

P

k,j
ϕ(xk−xj) ξ̄jξk ≥ 0.
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actually could be rephrased [11] as “build positive-definite functions that are
positive”.

Our formalism is the subject of Section 2. Numerical, illustrative exam-
ples are given in Section 3. Then Section 4 extends our algorithms to the
2-d problem. Hermite polynomials are replaced by Laguerre polynomials,
but the algebra remains essentially the same. A brief discussion, conclusion
and outlook are offered in Section 5.

2. Basic formalism

Consider the harmonic oscillator Hamiltonian, 1
2(p2 + r2), and its eigen-

wavefunctions
un(r) = π−1/4 e−1/2r2

Hn(r) . (2)

Here, we set Hn to be a square normalized Hermite polynomial,

(−)ner
2

dn/drne−r2

/
√

2nn!, with a positive coefficient for its highest power
term. For the sake of clarity, we list the first polynomials as, H0 = 1, H1 =√

2 r, H2 = (2r2 − 1)/
√

2, H3 = (2r3 − 3r)/
√

3 and their recursion relation

an+1Hn+1 = 2r anHn − 2n an−1Hn−1 , (3)

where an =
√

2nn! . It is known that the FT of such states brings only a
phase

1√
2π

∞
∫

−∞

dr eisr un(r) = in un(s) , (4)

and thus such states give generalized self-dual functions with phase in. Let
one expand ψ in the oscillator basis, ψ(r) =

∑N
n=0 ψn un(r), with a trun-

cation at some degree N. Then all odd components ψ2p+1 must vanish if ϕ
must be real, and the even rest splits, under FT, into an invariant part and
a part with its sign reversed, namely

ϕ(s) = π−1/4e−1/2 s2

[P+(s) − P−(s)] ,

P+(s) =

[N/4]
∑

p=0

ψ4pH4p(s) ,

P−(s) =

[(N−2)/4]
∑

p=0

ψ4p+2H4p+2(s) , (5)

where the usual symbols [N/4] and [(N−2)/4] mean, respectively, the entire
parts of N/4 and (N − 2)/4.
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Notice that, when all components ψn vanish except ψ0, then both ψ
and ϕ are positive, because H0 = 1. Hence, one may, starting from this
special point in the functional space of functions, investigate those domains
of parameters ψn where the polynomials P = P+ + P− and Q = P+ − P−

have no real root. Notice that only even powers of r and s are involved. It
will therefore be convenient to use auxiliary variables ρ = r2 and σ = s2, and
the domain of interest for the parameters ψn will correspond to the absence
of real positive roots for both ρ and σ.

The second ingredient of our approach is the well-known Sturm theorem
[12] which gives a way to characterize and localize the real roots of any given
polynomial. The Sturm criterion can be expressed as follows:

“Given a polynomial P(x), its Sturm sequence S(x)≡{S1,S2, . . .Sm, . . .Sj≤N}
is the set of polynomials

S1 = P, S2 =
dP
dx

, . . . Sm = −Sm−2 +

[Sm−2

Sm−1

]

Sm−1 . . . , (6)

where [ ] designates the polynomial quotient3. To know the number of
distinct roots between x = a and x = b, count the number N (a) of sign
changes in S(a) and, similarly, count N (b). Then the number of roots is
|N (b) −N (a)| .”
The domain borders where the root number, |N (+∞) −N (0)| , changes
have to do with cancellations of the resultant R between P and dP/dx. The
cancellation of R corresponds to collisions between conjugate complex roots
becoming real roots and conversely. Because of the demanded positivity of
ρ and σ, the borders have also to do with sign changes of P(0) and Q(0),
meaning real roots ρ and σ going through 0. All such technicalities are taken
care of by the Sturm criterion, which furthermore allows the labeling of each
domain by its precise number of real roots.

This will be implemented here in an explicit way, analytically as much
as possible, then numerically and graphically, for a few cases of a general
illustrative value. For this, we will plot the shapes of domains labeled by
the values of the Sturm criterion. Hence the combination of the self-dual
properties of the quantum oscillator basis and of the Sturm theorem allows
a constructive method for a systematic investigation of positivity conditions
for a 1-d Fourier transform. This basis has the potential to represent any
function in the Hilbert space L2, but the present study concerns a finite set
of components. An extension to infinite series of components may deserve
other tools.

3 The sequence, made of polynomial remainders of the division of Sn−1 by Sn−2, with
(−) signs, clearly stops at some j ≤ N.
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3. Positivity domains

In this section we will apply our method to the case of a basis formed with
3 or 4 Hermite–Fourier functions. In Sec. 3.1 we consider the basis ψ0, ψ4, ψ8,
then in 3.2 the basis ψ0, ψ4, ψ8, ψ12, which both lie in the subspace with
eigenvalue 1, and in 3.3 the basis ψ0, ψ2, ψ4 where ψ2 is in the subspace with
eigenvalue −1, furthermore, in 3.4 the influence of an additional constraint
motivated by Physics, that of monotony for ϕ, and finally in 3.5 a comparison
with the convexity constraint for ψ. Many other illustrations are possible,
but these, Sec. 3.1–3.5, demonstrate the flexibility of our approach.

3.1. Mixture of three polynomials in the subspace with eigenvalue 1

Here we assume that ψ has only components ψ0, ψ4 and ψ8, hence P
reduces to P+ in (5) and we can study

P = ψ0+
ψ4

2
√

6
(4ρ2−12ρ+3)+

ψ8

24
√

70
(16ρ4−224ρ3+840ρ2−840ρ+105), (7)

where ρ = r2. One maintains ψ8 > 0 and one reads P+(0) = ψ0 +3ψ4/(2
√

6)
+ 105ψ8/(24

√
70).

The resultant R between P and dP/dρ is

R ∝ 2100ψ0 ψ
4
4 − 1050

√
6ψ5

4 − 240
√

70ψ2
0 ψ

2
4 ψ8 + 400

√
105ψ0 ψ

3
4 ψ8

−165
√

70ψ4
4 ψ8 + 480ψ3

0 ψ
2
8 + 4560

√
6ψ2

0 ψ4 ψ
2
8

−13320ψ0 ψ
2
4 ψ

2
8 − 1600

√
6ψ3

4 ψ
2
8 − 792

√
70ψ2

0 ψ
3
8

+1728
√

105ψ0 ψ4 ψ
3
8 − 612

√
70ψ2

4 ψ
3
8 − 10080ψ0 ψ

4
8

−2520
√

6ψ4 ψ
4
8 + 1260

√
70ψ5

8 . (8)

Because of the free scaling of P we normalize the polynomial so that its
coefficients lie on a half sphere of unit radius

ψ0 = cosα cos β ,

ψ4 = sinα cos β ,

ψ8 = sin β, −π < α ≤ π, 0 < β ≤ π/2 . (9)

We thus show in figure 1 the domains where the number of roots increases
from 0 to 4. The no root domain is the white triangle above α = β = 0 and
slightly right from this point. In this domain, ψ (≡ ϕ) is self-Fourier and
positive.
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Fig. 1. Mixture of H0, H4 and H8. White, no real positive ρ root; black, 4 roots;
darkening grays, increasing root number.

3.2. Mixture of four polynomials in the subspace with eigenvalue 1

Now we add to ψ a component ψ12, hence

P = ψ0 +
ψ4

2
√

6
(4ρ2 − 12ρ+ 3)

+
ψ8

24
√

70
(16ρ4 − 224ρ3 + 840ρ2 − 840ρ + 105)

+
ψ12

1440
√

231
(64ρ6 − 2112ρ5 + 23760ρ4

−110880ρ3 + 207900ρ2 − 124740ρ + 10395). (10)

While borders corresponding to P+(0) = 0 obtain easily, the resultant R
to be considered for other borders is unwieldy and is skipped here. Taking
advantage of scaling we set:

ψ0 = cosα cos β cos γ ,

ψ4 = sinα cos β cos γ ,

ψ8 = sin β cos γ ,

ψ12 = sin γ , |α| ≤ π

2
, |β| ≤ π , 0 ≤ γ ≤ π

2
. (11)

This choice of spherical coordinates was designed to ensure the positivity of
ψ12, obviously, but also a dominance of ψ0 near α=β=γ=0. The dominance
is clearly useful for the positivity of P. Then this S3 sphere can be explored
by various cuts according to fixed values of γ. The results are shown in
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Fig. 2. Mixture of H0, H4, H8 and H12. Root number maps. Color code: 0 root,
red; 1, yellow; 2, yellowish green; 3, bluish green; 4, blue; 5, dark purple; 6, pink.
Left: cut of the parameter sphere S3 when γ = π/106. Right: cut for γ = π/15

(uncolored edition: the 0 root domain is the dark triangle-like domain near the
center).

Fig. 3. Left: Same as Fig. 2, with γ = 2π/15. Right: γ = π/6. See how the no root
triangle shrinks.

figures 2–5, with γ = π/106, π/15, 2π/15, π/6, π/5, 7π/30, 4π/15, 3π/10 ,
respectively. The color code for the number of roots is: 0 root, red; 1, yellow;
2, yellowish green; 3, bluish green; 4, blue; 5, dark purple; 6, pink (in the
uncolored edition, the no root domain, if it exists, is that dark, small or
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Fig. 4. Left: γ = π/5; Right: γ = 7π/30. Absence of no root domain.

Fig. 5. Left: γ = 4π/15; Right: γ = 3π/10. Progressive dominance of H12 with 6 ρ
roots.

tiny triangle slightly right of the map center). The red domain shrinks at
first very slowly when γ increases, then faster when γ ≃ π/6. Beyond such
an order of magnitude for γ, there is no red domain and the map becomes
invaded by bigger and bigger pink patches, representing the dominance of
the 6 positive, real roots of H12.
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3.3. Two polynomials from subspace “1” mixed with one polynomial

from subspace “−1”

If we consider a mixture of H0, H2 and H4, the FT connects the two
polynomials

P(ρ) = ψ0 + ψ2
2ρ− 1√

2
+ ψ4

4ρ2 − 12ρ+ 3

2
√

6
,

Q(σ) = ψ0 − ψ2
2σ − 1√

2
+ ψ4

4σ2 − 12σ + 3

2
√

6
. (12)

We study the positivity of each polynomial separately, then of both. Notice
that the parametrization

ψ0 = cosα cosβ ,

ψ2 = sinα cos β ,

ψ4 = sin β , −π < α ≤ π, 0 < β ≤ π/2 , (13)

reverses only the sign of ψ2 if α becomes −α. This parity operation is seen
in figure 6, the white domains of which correspond to the positivity of P and
Q, respectively. The domain of simultaneous positivity for both is the white
intersection domain in the left part of figure 7, with the expected symmetry.

It is actually easy here to analyze analytically the resultants of interest
for P and Q

R ∝
√

6ψ2
2 − 4ψ0 ψ4 ∓ 4

√
2ψ2 ψ4 + 2

√
6ψ2

4 (14)

Fig. 6. Mixture of H0, H2 and H4. White domain, 0 root. Grey, 1 root; black, 2

roots. Left: results for P ; Right: Q.
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together with signatures for the signs of roots, such as P(0), etc. This can be
done also in the “spherical representation”. The white domains of figures 6,
7 are recovered.

Fig. 7. Positivity domains for the parity mixed case. Left: for both P and Q.
Right: P , Q and monotony of ϕ.

3.4. Positivity with monotony

For some problems [2], it may be useful to request either ψ and/or ϕ to
be monotonous functions in an interval such as [0,∞]. We illustrate this in
the case of an H0,H2,H4 mixture, with the additional constraint

dϕ

dσ
∝ −12 cosα cos β+6

√
2 cos β sinα(2σ−5)−sin β

√
6(4σ2−28σ+27) < 0 .

(15)
The result appears in the right part of figure 7. The white domain, cor-
responding to such three simultaneous conditions of positivity and mono-
tonicity, is a severe restriction of the white domain seen in the left part of
figure 7.

3.5. Positivity from convexity

A practical condition for the positivity of ϕ is the convexity of ψ [7]. This
has been useful in particular for the derivation of baryon mass inequalities in
QCD [8]. Convexity is a sufficient, but not necessary condition. Indeed, ϕ ∼
∫ ∞

0 dr [1 − cos(sr)]/s2 d2ψ/dr2 > 0. We illustrate this convexity condition
for a mixture of H0,H4,H8.
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Fig. 8. H0, H4, H8 mixture. Left: zoom of the positivity domain. Right: convexity
domain for r > rc = 1.

Fig. 9. Same mixture as Fig. 8. Convexity domains. Left: r2c = .67. Right: r2c = .4.

Clearly, the presence of exp
(

−r2/2
)

in front of a finite order polynomial,
with the even parity of ψ and its derivability, are contradictory with “con-
vexity everywhere”; a smooth, round maximum must occur at the origin.
We thus study partial convexity conditions of the kind, “convexity between
rc and +∞”. A reasonable choice for the order of magnitude of rc is the
position rc = 1 of the inflexion point of exp

(

−r2/2
)

. The second derivative

d2ψ/dr2 belongs to the same algebra. We adjusted its Sturm criterion to
various values of rc. Only small domains are found which ensure zero roots
for d2ψ/dr2, because most mixtures of H0,H4,H8 do oscillate. Figures 8 and
9 show, in white again, with the parametrization by Eqs. (9), the survivor
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domain obtained if rc = 1, right part of figure 8, then r2c = 2/3, left part
of figure 9, and r2c = 2/5, right part of figure 9, respectively. The domain
shrinks in a smooth way when r2c decreases from 1 to 0.4 and disappears
if r2c <∼ 0.4. It does not increase much when rc ≥ O(1). The left part of
figure 8, a zoom of the left part of figure 6, shows that such partial convexity
domains are already included in the positivity domain of ψ.

4. Positivity for the 2-dimensional Fourier transform

The Fourier–Bessel transform in which we are here interested reads,

ϕ(s) =

∞
∫

0

(r dr)J0(s r)ψ(r) . (16)

For the 2-d radial space, a complete basis of states results from substituting
r2 for r into Laguerre polynomials

∞
∫

0

(r dr) 2 e−r2

Lm(r2)Ln(r2) = δmn . (17)

For the sake of clarity, we list here the first four such normalized, “2-d radial”
states,

{v0, v1, v2, v3} =
√

2 e−
1

2
r2

{

1, r2 − 1,
r4 − 4r2 + 2

2
,
r6 − 9r4 + 18r2 − 6

6

}

.

(18)
One can verify that the states vn make eigenstates of the Fourier–Bessel
transform,

∞
∫

0

(r dr)J0(s r) vn(r) = (−1)n vn(s) . (19)

Positivity conditions can again be implemented with the Sturm criterion.
For instance a mixture of v0, v2, from that subspace with eigenvalue 1, and v1,
from that with eigenvalue −1, defines the following two reciprocal partners:

P(ρ) = ψ0 + ψ1 (ρ− 1) + ψ2
ρ2 − 4ρ+ 2

2
,

Q(σ) = ψ0 − ψ1 (σ − 1) + ψ2
σ2 − 4σ + 2

2
. (20)

The left part of figure 10 shows the positivity domain for ϕ and its right
part shows the joint positivity domain for ψ and ϕ. Similarities between
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polynomials involved in the present “mixed parity” case and those of case
C of the previous section create topological similarities with figure 6 (right)
and figure 7 (left) but numerical details do differ.

Fig. 10. Positivity domains for the “radial 2-d”, parity mixed case. Left: ϕ. Right:
both ψ and ϕ.

Fig. 11. Left: Positivity domain for the “radial 2-d”, v0, v2, v4 mixture. Right: third
derivative negativity domain if r2

t
= 1.4.

Interestingly enough, a sufficient condition [7] for the positivity of ϕ in
this 2-d situation is that the third derivative, d3ψ/dr3, be negative. But, as
in the previous section, case E, the presence of a truncated number of basis
terms in our expansion may reduce this negativity condition for d3ψ/dr3 to
a domain r ≥ rt only. We show in figure 11 the result for a mixture of v0,
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v2 and v4 if r2t = 1.4, a demanding situation resulting into the tiny domain
in the right part of figure 11. The domain belongs to the positivity domain
seen in the left part of the same figure.

5. Discussion and conclusion

To summarize our results, we have built a basis of functions verifying
positivity together with their Fourier transform. The method is based upon
algebras of Hermite polynomials (for 1-dimensional FT) or Laguerre poly-
nomials in the variable r2 (for 2-dimensional radial FT).

The Fourier transform has four eigenvalues 1, i,−1,−i, and thus four
highly degenerate eigensubspaces. Two of such subspaces are compatible
with real functions remaining real. To span each subspace, we used a basis
made of Hermite–Fourier (or “Laguerre–Fourier”) states. The orders (in r)
of the polynomials have to be multiples of 4 if the eigenvalue is 1, and
multiples of 4 plus 2 if the eigenvalue is −1. At the cost of a truncation of
such bases to a maximum order N, the conditions for positivity, convexity,
etc. thus reduce to simple manipulations of polynomial coefficients based on
the Sturm theorem. In each truncation case, one can find suitable domains
for the parameters which mix the various basis polynomials. Such domains
have been illustrated by the figures shown in this paper.

Some qualitative considerations may be drawn about the solutions we
found. In the left part of figure 12, we display two typical solutions with
self-Fourier properties. In the right part, we display one solution connecting
two distinct partners ψ and ϕ. Their shapes show distinctive features. One

1 2 3 4 5 6
r

0.2

0.4

0.6

0.8

1

psi

1 2 3 4
r

0.2

0.4

0.6

0.8

psi phi

Fig. 12. Left: two examples of self Fourier states (ϕ = ψ). Right: mixed parity
case (ϕ 6= ψ).
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class of shapes, which are monotonic, seem to remain closer to the bare
Gaussian, the building block of our method; it always belongs to the subsets
we found. The other class, with oscillations, is different. One might ask if
our truncations to a maximum order N limit the flexibility of our method
to the vicinity of the Gaussian. It seems not to be so, as shown for instance
by the very oscillating solution4 in the left part of figure 12, which exhibits
an approximate periodicity in an interval; it is reminiscent of the Dirac
comb, which is, of course, outside the set of functions constructed with
a finite number of polynomials. However, from our numerical experience,
see in particular figures 2 and 3 and Eqs. (10) and (11), we may risk the
conjecture that, when we allow a mixture including H0, H4, . . .H4N and
when the weight of H4N is that maximum allowed by positivity, see the tiny
red triangle in the right part of figure 3, then the corresponding function
ψ = ϕ has a Dirac comb limit when N → ∞. The wavelength of this
limit comb is also conjectured to be 1. Combs with different wavelengths
may be obtained as limits, but they would not be self-Fourier. For each
truncation at a given polynomial order 4N, the locus of such candidates
for comb limits can be defined by projecting the combs into the subspace
spanned by exp(−r2/2)H0, exp(−r2/2)H4, . . . exp(−r2/2)H4N , obviously.

Our bases are flexible enough to reconstruct any function having pos-
itivity properties, but in some cases convergence might be slow. It is not
excluded that other bases exist, which might be more convenient to speed up
the convergence and make easier the search for positivity domains. Another
open problem is that of positivity for periodic functions. Such questions are
beyond the scope of the present paper.

It is a pleasure to thank R. Balian, R. Enberg, R. Lacaze, C. Marquet,
P. Moussa, G. Soyez and A. Voros for stimulating discussions. R.P. thanks
T. Lafforgue, (Lycée Blaise Pascal, Orsay), for his fruitful contributions.
Thanks are also due to E.H. Lieb and K. Scharnhorst for calling our attention
to related works, quoted in the references.

4 Its equation reads

ψ = exp(−r2/2)
h

0.566053 + 0.0488517(3 − 12r2 + 4r4)

+0.0011871(105 − 840r2 + 840r4 − 224r6 + 16r8)

+0.0000164538
“

10395 − 124740r2 + 207900r4 − 110880r6 + 23760r8

−2112r10 + 64r12
”i

.
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