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We show how every bound state of a finite system of identical fermions, whether a ground state
or an excited one, defines a density functional. Degeneracies created by a symmetry group can
be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a
resonance into a square integrable state, a DF also exists.

The aim of density functional (DF) theory is to con-
truct a functional that provides the energy expectation
value for a correlated many-body state as a function
of the one-body density, such that minimization of the
DF leads to the exact ground state (GS) density. Since
the existence theorem proven for GSs by Hohenberg and
Kohn (HK) [1], its extension by Mermin [2] to equilib-
rium at finite temperatures, and the further development
by Kohn and Sham (KS) [3] of an equivalent, effective,
independent particle problem, a considerable amount of
work has been dedicated to generalizations such as spin
DFs [4], functionals taking into account the symmetries
of the Hamiltonian [5], calculations of excited state den-
sities [6, 7], treatments of degeneracies or symmetries of
excited states [8, 9] and quasiparticles [10]. For the reader
interested in an even more complete reading about both
basic questions and applications, we refer to [11]-[19].

DFs for resonant states have received much less atten-
tion. We want to study this problem here. First we will
address two related issues, namely that of a unified the-
ory for ground and excited states and that of a theory
for non degenerate and degenerate ones. A generalized
existence theorem can be constructed by modifying the
Hamiltonian in such a way that the spectrum is shuffled
but the eigenstates are left unchanged, and by making
a systematic use of the Legendre transform (LT) for a
detailed analysis of the density.

A reminder of the HK proof is useful here. Consider
a finite number A of identical fermions, with a†~r and a~r
their creation and annihilation operators at position ~r,
and the physical Hamiltonian, H = T + V + U, where
T =

∑A
i=1 ti, V =

∑A
i>j=1 vij and U =

∑A
i=1 ui are

the kinetic, two-body interaction and one-body poten-
tial energies, respectively. For simplicity, we consider
such fermions as spinless and isospinless and work at
zero temperature. Both v and u may be either local
or non local. Next, embed the system into an addi-
tional one-body, external field, W =

∑A
i=1 wi, to observe

its (non linear!) response. The Hamiltonian becomes

K = H+W. It is understood that w is local, 〈~r|w|~r ′〉 =
w(r) δ(~r − ~r ′), although a DF theory with non-local po-
tentials exists [20]. The usual Rayleigh-Ritz variational
principle, where |ψ〉 is just an A-particle, antisymmetric,
square normalized, otherwise unrestricted wave function,
applied to FM = minψ F, with F = 〈ψ|K|ψ〉, generates
ψmin, the exact GS of K, with the exact eigenvalue FM .
The minimum is assumed to be non degenerate, smooth,
reached. Clearly, ψmin and FM are parametrized by
w. An infinitesimal variation δw triggers an infinitesi-
mal displacement δψmin, with δFM = 〈ψmin|δW|ψmin〉.
There is no first order contribution from δψmin. De-
fine the one-body density matrix in coordinate repre-
sentation, n(~r, ~r ′) = 〈ψmin|a

†
~r a~r ′ |ψmin〉. Its diago-

nal, ρ(~r) = n(~r, ~r), is the usual density deduced from
|ψmin|

2 by integrating out all particles but one. Since
δFM =

∫
d~r ρ(~r) δw(~r), then δFM/δw(~r) = ρ(~r). Freeze

t, v and u and consider FM as a functional of w alone.
The HK process then consists in a Legendre transform

of FM , based upon this essential result, δFM/δw = ρ.
This LT involves two steps: i) subtract from FM the
functional product of w and δFM/δw, i.e. the integral∫
d~r w(~r) ρ(~r), leaving FM = 〈ψmin|H|ψmin〉; then ii) set

ρ, the “conjugate variable of w”, as the primary variable
rather than w; hence see FM as a functional of ρ. Step
ii) is made possible by the one-to-one (1 ↔ 1) map be-
tween w and ρ, under precautions such as the exclusion
of trivial variations δw that modify w by a constant only,
see for instance [16] and [19]. The 1 ↔ 1 map is proven
by the usual argument ad absurdum [1]: if distinct poten-
tials w and w′ generated ψmin and ψ ′

min (distinct!) with
the same ρ, then two contradictory, strict inequalities
would occur,

∫
d~r [w(~r) − w′(~r) ] ρ(~r) < FM − F ′

M , and,∫
d~r [w(~r) − w′(~r) ] ρ(~r) > FM − F ′

M . An inverse LT re-
turns from FM to FM , because δFM/δρ = −w. Finally,
the GS eigenvalue E0 of H obtains as E0 = minρ FM [ρ];
the GS wave function ψ0 of H is the wave function ψmin
when w vanishes; that density providing the minimum of
FM is the density of ψ0.
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Consider now any excited bound eigenstate ψn of H,
with its eigenvalue En. Then, trivially, ψn is a GS of
the semipositive definite operator (H − En)

2. Since En
is not known a priori, consider rather an approximate
value Ẽn, obtained by any usual technique (configuration

mixing, generator coordinates, etc.) and assume that Ẽn
is closer to En than to any other eigenvalue Ep. Then

ψn is a GS of (H − Ẽn)
2. The possible degeneracy de-

gree of this GS is the same whether one considers H or
(H − Ẽn)

2. Introduce now K̃ = (H − Ẽn)
2 + W. If

there is no degeneracy of either ψn or its continuation
as a functional of w, then the HK argument holds as
well for K̃ as it does for K. Hence a trivial existence
proof for a DF concerning ψn. But most often, ψn be-
longs to a degenerate multiplet. Degeneracies are almost
always due to an explicitly known symmetry group of
H. Notice however that the external potential w does
not need to show the same symmetry; hence, in general
for K̃, there is no degeneracy of its GS; a unique ψmin
emerges to minimize the expectation value of K̃. How-
ever, for that subset of zero measure in the space of po-
tentials where w shows the symmetry responsible for the
degeneracy, and in particular for the limit w → 0, pre-
cautions are necessary. Consider therefore an (or several)
additional label(s) g sorting out the members ψng of the

multiplet corresponding to that eigenvalue (En − Ẽn)
2

of (H− Ẽn)
2. There is always an operator G related to

the symmetry group, or a chain of operators Gj in the
reduction of the group by a chain of subgroups, which
commute with H and can be chosen to define g. For sim-
plicity, assume that one needs to consider one G only.
Then define g as an eigenvalue of G and assume, obvi-
ously, that the spectrum of G is not degenerate, to avoid
a reduction chain of subgroups. It is obvious that, given
some positive constant C, and given any chosen γ among
the values of g, there is no degeneracy for the GS of
(H− Ẽn)

2+C (G−γ)2. Nor is there a degeneracy of the

GS ofK = (H−Ẽn)
2+C (G−γ)2+W = K̃+C (G−γ)2,

even if w has the symmetry. When several labels be-
come necessary with a subgroup chain reduction, it is
trivial to use a sum

∑
j Cj (Gj − γj)

2 of “pusher” terms.
Finally a DF results, now from the HK argument with
K. We stress here that pusher terms, because they com-
mute with H, do not change the eigenstates of either
H nor (H − Ẽn)

2. Only their eigenvalues are sorted
out and reorganized. Note that the pusher expecta-
tion value vanishes for ψnγ . Naturally, when w is fi-

nite, eigenstates of K differ from those of K̃, but what
counts is the information given by the DF when w van-
ishes. A simplification, avoiding cumbersome square op-
erators H2, is worth noticing. Consider the operator,
K̂ = H + C (G − γ)2 + W. At the limit where w van-
ishes, there is always a choice of a positive constant C
which makes the lowest state with quantum number γ
become the GS. This leads to a more restricted density

functional that is of interest for the study of an yrast line.
That DF, FM [ρ], based upon K, provides the ex-

pectation value, FM [ρ] = 〈ψmin| [ (H − Ẽn)
2 + C (G −

γ)2 ] |ψmin〉, where ψmin, square normalized to unity, is

also constrained by the facts that 〈ψmin|a
†
~ra~r|ψmin〉 =

ρ(~r) and K|ψmin〉 = ε|ψmin〉 for the eigenvalue ε =
FM . It may be interesting to find a DF that pro-
vides the expectation value of H itself. This can be
done by taking the derivative of FM [ρ] with respect

to Ẽn, at constant ρ. We suppose that this deriva-
tive exists, which is the case for a discrete spectrum
at least. With the notation |ψ̇〉 = d|ψ〉/dẼn, and us-
ing the fact that 〈ψmin|W|ψ̇min〉 + 〈ψ̇min|W|ψmin〉 =∫
w(~r)

(
dρ(~r)/dẼn

)
d~r = 0, one can write:

dFM [ρ]

dẼn

= 2 〈ψmin|
(
Ẽn −H

)
|ψmin〉+

〈ψ̇min|(ε−W)|ψmin〉+ 〈ψmin|(ε−W)|ψ̇min〉

= 2 〈ψmin|
(
Ẽn −H

)
|ψmin〉 . (1)

Therefore we can define a new DF,

FD[ρ] = Ẽn −
dFM [ρ]

2 dẼn
, (2)

such that FD[ρ] = 〈ψmin|H|ψmin〉 and FD[ρnγ ] = En
for the density ρnγ of the eigenstate ψnγ of H at energy
En. Furthermore one finds that δFD

δρ
[ρnγ ] = 0, because

δ〈ψmin|
δρ

H|ψmin〉+ 〈ψmin|H
δ|ψmin〉
δρ

= En
δ〈ψmin|ψmin〉

δρ
= 0

for ψmin = ψnγ . Hence the functional FD[ρ] is stationary
at the exact density ρ = ρnγ . It is not expected to be
minimal at ρnγ , however, unless the resulting eigenstate
corresponds to the absolute GS when w vanishes.
Resonances may be defined as special eigenstates of

H if one uses an argument à la Gamow, allowing some
radial Jacobi coordinate r ≥ 0 to show a diverging, ex-
ponential increase of the resonance wave function at in-
finity of the form exp(ipr), where the channel momen-
tum p is complex and ℑp < 0. It is well known that
those eigenvalues En describing resonances are complex
numbers, with ℑEn < 0. There have been extensive dis-
cussions in the literature about the physical, or lack of,
meaning of such non normalizable wave functions and
about the wave packets which might be used to replace
them, [21, 22, 23, 24]. The point of view we adopt in
this note is based upon the Complex Scaling Method
(CSM) [25, 26, 27, 28]: a modest modification ofH trans-
forms narrow resonances into square integrable states;
then there is no difference between the diagonalization
for bound states and that for resonances. The cost of the
CSM, however, is a loss of hermiticity: the CSM Hamilto-
nian H′ is non hermitian, somewhat similar to an optical
Hamiltonian [25, 26, 27, 28].
Given the ket eigenstate equation, (H′ −En)|ψn〉 = 0,

where |ψn〉 is now a square integrable resonance wave
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function, we can consider the hermitian conjugate equa-
tion, 〈ψn|(H

′† − E∗
n) = 0. Clearly, ψn is a GS, as both a

ket and a bra, of the hermitian and semipositive definite
operator, Qexact = (H′†−E∗

n) (H
′−En), with eigenvalue

0. Applying the same argument as before, but now to
Qexact instead of (H− Ẽn)

2, demonstrates the existence
of a DF around the targeted resonant state.

In practice we do not know En exactly. Given a
sufficiently close estimate Ẽn of En, an approximate
GS eigenvalue |En − Ẽn|

2 occurs for Qapprx = (H′† −

Ẽ∗
n) (H

′ − Ẽn), at first order with respect to ∆Q =
Qapprx − Qexact. Since ψn is not a ket eigenstate of
H′† = H′ − 2iℑH′, it is also perturbed at first order
in ∆Q. Still one can copy the construction for FD[ρ],

see Section 3, if one interprets the operator d/dẼ∗
n as

d/dℜẼn + id/dℑẼn. The resulting functional FD[ρ] is

linear in H′. For Ẽn = En the functional will be sta-
tionary at the density of the exact resonant state. While
provinding a proof of existence, the construction of the
exact functional for H′ requires the knowledge of the ex-
act eigenvalue En. This might be an inconvenient limita-
tion but fortunately calculations of numbers such as En
are usually much easier and much more precise than cal-
culations of wave functions ψn and/or of their densities.

If the resonance has good quantum numbers (QN)s
inducing degeneracies, the same pusher terms as those
which have been discussed above can be added to create
a unique GS, from the operator, Qexact + C (G − γ)2.
The HK argument, implemented with the full operator,

K
′
= (H′† − E∗

n) (H
′ − En) + C (G − γ)2 + W, then

proves that DFs exist for those resonances regularized by
the CSM. Notice, however, that a simplified theory, with
an “yrast suited” operator K̂′, linear with respect to H′,
is not available here, since the restoration of hermiticity
forces a product H′† H′ upon our formalism.

We now consider a special case of rather wide inter-
est in nuclear and atomic physics. i) Good parity of
eigenstates of H0 = T + V or H = H0 + U when
u is restricted to be even, is assumed in the following.
Hence our eigendensities, quadratic with respect to the
states, have positive parities. ii) We also assume that
the number of fermions is even. iii) The QNs in which
we are interested in this Section are the integer angu-
lar momentum L and magnetic label M of an eigenstate
ΨLM of H, where it is understood that the two-body v
and one-body u interactions conserve angular momen-
tum. When w is switched on and is not rotationally in-
variant, eigenstates of K, K̃, or K may still tolerate such
labels LM by continuity. First, consider w = 0. The
density ρLM comes from the product Ψ ∗

LMΨLM , but it
does not transform under rotations as an {LM} tensor.
Rather, it is convenient to define “auxiliary densities”,
σλ0(~r) =

∑L
M=−L(−)L−M 〈L −M L M | λ 0〉 ρLM (~r),

where 〈L −M L M | λ 0〉 is a usual Clebsch-Gordan co-
efficient. Each function σλ0(~r) now behaves under rota-

tions as a {λ0} tensor. It can therefore be written as the
product of a spherical harmonic and a radial form factor,
σλ0(~r) = Yλ0(r̂) τλ(r) =

√
(2λ+ 1)/4πLλ(cosβ) τλ(r),

where Lλ is a Legendre polynomial and the angle β is the
usual polar angle, counted from the z-axis. Conversely,

ρLM (~r) =

2L∑

λ=0

(−)L−M 〈L−MLM |λ0〉Yλ0(r̂) τλ(r). (3)

This provides a “Fourier analysis” of ρLM in angular
space. The density is parametrized by scalar form fac-
tors, τλ. Since L is here an integer and furthermore ρL−M
and ρLM are equal, and since Clebsch-Gordan coefficients
have the symmetry property 〈L M L′ M ′ | λ M ′′〉 =
(−)L+L

′−λ 〈L′ M ′ L M | λ M ′′〉, then necessarily τλ = 0
if λ is odd. There are thus (L + 1) scalar functions,
τ0, τ2, ..., τ2L, to parametrize (L + 1) distinct densi-
ties ρL0, ρL1, ..., ρLL. Because of the quadratic nature
of the density observable, the even label λ for angular
“modulation” of ρ runs from zero to twice L, with a “2L
cut-off”; a signature, necessary if not sufficient, for an
“L-density”. Reinstate now w as the LT conjugate of
ρLM . It makes sense to study situations where w is re-
stricted to expansions with (L+1) arbitrary scalar form

factors, w(~r) =
∑2L

even λ=0 Yλ0(r̂)wλ(r). With inessential
factors such as (−)L−M 〈L − M L M | λ 0〉 omitted
for simplicity in the following, every pair {r τλ, r wλ} is

conjugate. An eigendensity of K, K̃,K may have an in-
finite number of multipole form factors, but, with such
restricted potentials w, only τ0, τ2, ..., τ2L are chosen by
the LT relating FM and FM .
It can make even more sense to restrict w to one multi-

pole only, w(~r) = Yλ0(r̂)wλ(r), with λ = 0, or 2, ... or 2L,
to study each multipole of ρ separately. For simplicity we
now use the easier version of the theory, with that oper-
ator K̂ which is suited to the yrast line. Add therefore
to H a pusher term ZLM leaving intact the eigenstates,
namely ZLM = B [~L·~L−L(L+1)]2+C (Lz −M)

2
. Hence

K̂LMλ = H + ZLM +Wλ = T +V +U + ZLM +Wλ.
Here the subscript λ specifies that w is reduced to one
multipole only. Then ~L is the total angular momentum
operator and Lz is its third component. This operator
ZLM moves the eigenvalues ofH so that the lowest eigen-
state ofH with quantum numbers {LM} becomes the GS
of H+ZLM . The commutator [H,ZLM ] vanishes indeed,
and given A, t, v and u, there are always positive, large
enough values for B and C that reshuffle the spectrum
such that the lowest {LM} eigenstate ΨLM becomes the
GS of H+ZLM under this Zeeman-like effect. We stress
again that ZLM changes nothing in the eigenfunctions,
eigendensities, etc., of all our Hamiltonians if w is ro-
tationally invariant. Furthermore, angular momentum
numbers remain approximately valid for eigenstates of
K̂LMλ if w is weak, and the same numbers might still
make sense as labels by continuity when stronger defor-
mations occur. Then the usual ad absurdum argument
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generates a map wλ ↔ τλ, where τλ(r) is the form fac-
tor of the λ-multipole component of the GS density for
K̂LMλ, leading to an exact DF, for every {LM} lowest
state and every even λ between 0 and 2L. A generaliza-
tion to operators KLMλ, involving (H− Ẽn)

2, is trivial.
This note offers theorems for the existence of exact

DFs for every excited bound state, and even narrow res-
onances, and every set of good QNs used in nuclear,
atomic and molecular physics. Furthermore, the densi-
ties used as arguments of our DFs do not need to be fully
three-dimensional ones; they can be radial form factors
of multipole components of the states under study. Our
existence theorems, though, suffer from the usual plague
of the field: constructive algorithms are missing and em-
pirical approaches will have to be designed. What is the
corresponding (KS) theory [3]? In its usual form, the
task of calculating the kinetic energy part of the DF is
actually left to the solution of a Schrödinger equation,
and this can be trivially generalized to any one-body
part. Published studies of the KS formalism are actu-
ally dedicated to calculations of the functional derivative,
δVxc/δρ(~r), of the exchange and correlation part of the
DF, coming from the two-body part V of the DF. Our
present use of modified Hamiltonians, or even squares of
H, introduces two-body operators, but also three- and
four-body operators. For the versions where no squares
of H occur, see the yrast suited operator K̂ and Section
3, the nature of the three- and four-body terms, typically
coming from (~L.~L)2, is not forbidding, because of obvi-
ous factorization properties. Hence a KS theory might
be realizable for such simplified versions. With squared
Hamiltonians, however, a KS theory seems out of reach
at present. A systematic analysis of solvable models on
a basis of “modes” [19], however, may help to extrapo-
late such models into practical rules. For the discussion
of differentiability, representability and fine topological
properties of the w- and ρ-spaces, we refer again to [16].
Up to our understanding of the topology of the varia-
tional spaces, flat or curved [29], of general use in nuclear,
atomic and molecular theory, the validity domain of our
existence theorems is quite large. We have not used the
time dependent formalism, although much progress has
been made in deriving excitation energies from it [30].
A generalization of our arguments to finite temperatures
seems plausible, however, and insofar as inverse temper-
ature may be viewed as an imaginary time, a generaliza-
tion to a time dependent theory is not excluded.
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