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We study the continuum level density (CLD) in the formalism of the complex scaling
method (CSM) for coupled-channel systems. We apply the formalism to the 4He = [3H+p]+
[3He+n] coupled-channel cluster model where there are resonances at low energy. Numerical
calculations of the CLD in the CSM with a finite number of L2 basis functions are consistent
with the exact result calculated from the S-matrix by solving coupled-channel equations. We
also study channel densities. In this framework, the extended completeness relation (ECR)
plays an important role.

§1. Introduction

The continuum level density (CLD),1)–3) Δ(E), plays an important role in the
description of scattering phenomena and structures of nuclei since the CLD connects
the scattering S-matrix4)–6)

Δ(E) =
1
2π

Im
d

dE
ln detS(E) (1.1)

with the Green functions

Δ(E) = − 1
π

Im [Tr {G(E + i0) − G0(E + i0)}] , (1.2)

where the full and free Green functions are given by G(z) = (z −H)−1 and G0(z) =
(z−H0)−1, respectively. The notation G(E+i0) (G0(E+i0)) stands for the following
limit,

lim
ε→+0

G(E + iε). ( lim
ε→+0

G0(E + iε))

The CLD of a single particle spectrum has been well investigated1)–3),7),8) and
applied to the cluster model.9) Recently, we have shown that the combination of
the complex scaling method (CSM)10)–13) and the basis function method provides a
great help for calculating the CLD.14) In this formalism, the CLD can be obtained
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from the eigenvalues of the complex-scaled Hamiltonian, H(θ), and the asymptotic
Hamiltonian, H0(θ), in which a finite number of L2 basis functions are used for
diagonalization. Usually, the CSM is used to obtain the energies and widths of the
resonant states with the L2 basis functions as well as the energies of the bound states.
Simultaneously, an advantage of the complex scaling in calculations of the CLD is a
reduction of the cumbersome problem of smoothing15)–17) the contribution from the
discretized continuum states obtained with the L2 basis functions.

In our previous paper,14) the applicability of the formalism was confirmed in
single-channel systems, such as 5He = 4He + n, 8Be = α + α, and we also confirmed
that the scattering phase shift is obtained from the eigenvalues of the complex-scaled
Hamiltonian. The next question is how we can apply this method to more complex
systems, such as coupled-channel systems or three-body systems.

In this paper, we discuss the applicability of the CLD within the CSM to coupled-
channel systems and discuss the extended completeness relation (ECR) in the CSM.
The ECR was originally discussed in Ref. 18) and the ECR in the CSM has been
discussed in Ref. 19). The mathematical proof of the ECR for the coupled-channel
problems has been recently given,20),21) and we show here its numerical verification.

In §2, we explain the CLD formalism, and in §3, its application to the coupled-
channel cluster model is shown. In §4, we study channel densities, and a summary
and conclusions are given in §5.

§2. Continuum level density

2.1. CLD in coupled-channel systems

In this section, we explain the CLD in a coupled-channel system. Here, we
formulate a treatment of the CLD using the coupled-channel formalism.

Before discussing the coupled-channel problem, we explain the explicit represen-
tation of the CLD in single-channel systems. As shown in the right-hand side of Eq.
(1.2), the CLD is represented as

Δ(E) = − 1
π

Im
∫

dr

{〈
r

∣∣∣∣ 1
E + i0 − H

∣∣∣∣ r
〉
−

〈
r

∣∣∣∣ 1
E + i0 − H0

∣∣∣∣ r
〉}

. (2.1)

For systems having only bound states the level density is defined in a similar form

− 1
π

Im
∫

dr

〈
r

∣∣∣∣ 1
E + i0 − H

∣∣∣∣ r
〉

(2.2)

and a simple calculation gives the expected result,
∑

B δ(E −EB), where the bound
state energies are denoted by EB. The CLD in Eq. (2.1) is a generalization of the
level density of bound states to include resonant states produced by interactions in
the energy region of the continuum.

Next, we study a two-body coupled-channel system of n channels, where each
channel {α; α = 1, ... , n} is described by a relative radial wavefunction, χα(rα),
and a channel wavefunction, Φα (〈〈Φα|Φβ〉〉 = δα,β), where the double bracket 〈〈|〉〉
indicates integration for internal degrees of clusters and angular coordinates of rel-
ative motion between clusters. Therefore, the total wavefunction of the system is
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expressed as

|Ψ〉 =
n∑

α=1

χα(rα)|Φα(r̂α)〉〉. (2.3)

The Hamiltonian H of the coupled-channel system is given as a sum of the asymptotic
term H0 and the short-range interaction V ,

H = H0 + V. (2.4)

These are

H0 =
n∑

α=1

(Tα + εα)|Φα〉〉〈〈Φα|, (2.5a)

V =
n∑

α,β=1

Vαβ|Φα〉〉〈〈Φβ|, (2.5b)

where Tα, εα and Vαβ are the radial kinetic energy, the channel energy corresponding
to the threshold of the α channel, and the interaction coupling the α and β channels,
respectively. We here assume that ε1 ≤ ε2 ≤ · · · ≤ εn.

The trace operation in Eq. (2.1) for a single channel case is replaced as
∫

dr →∑n
α=1〈〈Φα(r̂α)| ∫ r2

αdrα in the coupled-channel system, and we have

Δ(E) = − 1
π

Im
n∑

α=1

∫
r2
αdrα 〈〈Φα|

〈
r¸

∣∣∣∣ 1
E + i0 − H

− 1
E + i0 − H0

∣∣∣∣ r¸

〉
|Φα〉〉.

(2.6)

2.2. CLD in complex scaling method

In the CSM for coupled-channel systems, the relative coordinate rα and the
conjugate wave number kα of every channel are commonly transformed as

U(θ) : rα → rα exp(iθ), kα → kα exp(−iθ), (2.7)

where U(θ) is a scaling operator and θ is a real number called a scaling parameter.
Under this transformation, because of their damping behaviors in the asymptotic

region, resonant states and bound states are obtained as discrete solutions of the
complex-scaled Schrödinger equation

H(θ)Ψθ = EΨθ, (2.8)

where H(θ) is the complex-scaled Hamiltonian, H(θ) = U(θ)HU−1(θ). The con-
tinuum spectra of the Hamiltonian H(θ) are distributed on the 2θ-lines originating
from the threshold energies of the channels, as shown in Fig. 1.

In Fig. 1, a schematic eigenvalue distribution of coupled-channel systems is illus-
trated. The 2θ-lines are the rotated branch cuts of the multisheet Riemann surface.
In addition to bound states with negative energies, where the energy E is measured
from the lowest channel threshold energy assigned as the origin, complex eigenvalues
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Fig. 1. Schematic energy eigenvalue distribution of a complex scaled Hamiltonian.

of the resonances are obtained in the wedge region surrounded by the lowest channel
2θ-line and the real axis. The resonant states obtained in the energy strip between
two 2θ-lines of the m- and (m+1)-channels have the asymptotic property of a closed
behavior for the (m + 1, · · · , n) channels while they can have an open behavior for
the (1, · · · , m) channels.

For the solutions of the complex-scaled Schrödinger equation (2.8), we have
the extended completeness relation (ECR),18),19) which was proven for single- and
coupled-channel cases in Refs. 20) and 21), respectively,

1 =
NB∑
B

|Ψθ
kB

〉〈Ψ̃θ
kB

| +
Nθ

R∑
R

|Ψθ
kR

〉〈Ψ̃θ
kR

| +
n∑

α=1

∫
dEkα

θ
|Ψθ

kα
θ
〉〈Ψ̃θ

kα
θ
|. (2.9)

The number of bound states Ψθ
kB

is denoted by NB, and N θ
R denotes the number of

resonant solutions Ψθ
kR

extracted as isolated eigenstates of H(θ) for a given scaling
parameter θ. The integration in the third term is performed along the rotated
branch cuts (the 2θ-lines) of α = 1 ∼ n channels. The bra-states with a tilde are
biorthogonal to the ket-states.18)

Applying the complex scaling defined in Eq. (2.7) and the ECR given in Eq. (2.9)
to the CLD in Eq. (2.6), we obtain

Δ(E) = − 1
π

Im
n∑

α=1

∫
r2
αdrα 〈〈Φα|

〈
rα

∣∣∣∣U(θ)−1U(θ)
(

1
E + i0 − H

− 1
E + i0 − H0

)

×U(θ)−1U(θ)
∣∣ rα

〉 |Φα〉〉

= − 1
π

Im
n∑

α=1

∫
r2
αdrα 〈〈Φα|

〈
rθ

α

∣∣∣∣
(

1
E − H(θ)

− 1
E − H0(θ)

)∣∣∣∣ rθ
α

〉
|Φα〉〉

= − 1
π

Im
n∑

α=1

∫
r2
αdrα 〈〈Φα|

⎡
⎣NB∑

B

|Ψθ
kB

〉〈Ψ̃θ
kB

|
E − EB

+
Nθ

R∑
R

|Ψθ
kR

〉〈Ψ̃θ
kR

|
E − ER
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+
n∑

β=1

∫
dE

kβ
θ

|Ψθ
kβ

θ

〉〈Ψ̃θ
kβ

θ

|
E − E

kβ
θ

−
n∑

β=1

∫
dE

kβ
θ ,0

|Ψθ
kβ

θ ,0
〉〈Ψ̃θ

kβ
θ ,0

|
E − E

kβ
θ ,0

⎤
⎦ |Φα〉〉,(2.10)

where the complex-scaled total wavefunctions Ψθ
k and Ψ̃θ

k are expressed as

|Ψθ
k 〉 =

n∑
β=1

χθ
β(k, rβ)|Φβ〉〉 and 〈Ψ̃θ

k | =
n∑

β=1

χ̃θ∗
β (k, rβ)〈〈Φβ|, (2.11)

respectively. The scalar product of the complex scaled radial wave functions χθ
α(k, rα)

and χ̃θ
α(k, rα) is defined as the so-called c-product,12),22)

∫
r2
αdrαχθ

α(k, rα)χ̃θ∗
α (k, rα) =

∫
r2
αdrα

{
χθ

α(k, rα)
}2

. (2.12)

The free continuum states Ψθ
kα

θ ,0 are solutions for H0(θ),

H0(θ)|Ψθ
kα

θ ,0〉 = Ekα
θ ,0|Ψθ

kα
θ ,0〉 and |Ψθ

kα
θ ,0〉 = χθ

α,0(k
α
θ , rα)|Φα〉〉. (2.13)

2.3. Discretization of continuum

As shown in the previous paper,14) the CSM enables us to calculate the second
(resonance part) and third (continuum part) terms of Eq. (2.9) with the basis func-
tion method. In this method, the relative radial wavefunction of the channel α is
approximately expressed with a finite number, Nα, of square-integrable (L2) basis
functions {φn},

χθ
α(r) =

Nα∑
n=1

cα
n(θ)φn(r), (2.14)

where the channel suffix α of the radial coordinate rα is left out, because only
one radial coordinate exists in every channel of a two-body system. The energy
eigenvalues in the continuum are rotated and discretized in the complex energy
plane, as shown by black circles in Fig. 2. By the basis function expansion method,
the CLD can be split into two parts

Δ(E) ≈ ρN
θ (E) − ρN

θ(0)(E). (2.15)

In this approximation, Eq. (2.14), not only the bound and resonant states can be
normalized but also the continuum eigenstates. When we integrate over every radial
coordinate r in (2.10), we obtain

ρN
θ (E) = − 1

π
Im

⎡
⎣NB∑

B

1
E − EB

+
Nθ

R∑
R

1
E − ER

+
N−Nθ

R−NB∑
k∈C

1
E − Ek(θ)

⎤
⎦ . (2.16)

The bound state contribution can be easily derived from the well-known expression
1

E+i0−EB
= P

E−EB
− iπδ(E −EB). In the calculation of the resonant and continuum

contributions, the limit procedure, expressed by +i0, has no effect because E is a
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real number while ER and Ek(θ) are complex numbers located in the lower half plane.
Here, Ek(θ) stands for a discretized continuum energy Ekα

θ
; α = 1 ... , n.

As shown in Fig. 2, the contribution of each continuum eigenstate to the level
density can be derived from eigenvalues, Ek(θ) = ER

k − iEI
k , of H(θ) in terms of a

Lorentzian function,

Im
1

E − Ek(θ)
=

−EI
k

(E − ER
k )2 + EI

k
2 . (2.17)

The continuum contribution is automatically smoothed out when we use a sufficiently
large number of basis functions {φn} for a given scaling parameter θ. In the usual
basis function method, a smoothing technique such as the Strutinsky procedure15)

is required to calculate the CLD,2),3) because the continuum is discretized on the
real axis, and each continuum contribution has a delta-function form. As mentioned
above, the present discretization method in the CSM creates no need for an auxil-
iary technique like the Strutinsky procedure; no singularity like the delta-function
appears.

Fig. 2. Schematic energy eigenvalue distribu-

tion (black circles) for a complex scaled

Hamiltonian and contributions to the level

density (solid lines).

Finally, the level density can be cal-
culated as

ρN
θ (E) =

NB∑
B

δ(E − EB)

+
1
π

Nθ
R∑

R

Γr/2
(E − Er)2 + Γ 2

r /4

+
1
π

N−Nθ
R−NB∑

k∈C

EI
k

(E − ER
k )2 + EI

k
2 ,

(2.18)

where Er and Γr are the energy and
width of a resonant state, respectively.
In the CSM, the eigenvalue of the reso-
nance is expressed as ER = Er − iΓr/2,
and then the resonance part has exactly
the Breit-Wigner form.

As discussed in the previous pa-
per,14) this expression of the level den-
sity is dependent on the scaling parame-

ter θ, but this θ dependence disappears in the form of the CLD, ΔN (E), which is
defined as

ΔN (E) = ρN
θ (E) − ρN

θ(0)(E), (2.19)

where ρN
θ(0)(E) is expressed in terms of the eigenvalues of the asymptotic Hamiltonian
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H0(θ) as

ρN
θ(0)(E) = − 1

π
Im

[
N∑
i

1
E − E0

i (θ)

]
(2.20)

which has only continuum spectra. This result indicates a cancellation of the θ-
dependences in ρN

θ (E) and ρN
θ(0)(E).

In the previous paper, it was also shown that ΔN (E) gives a good description for
Δ(E), which is the derivative of the phase shift for single-channel systems. For a gen-
eralization, the CLD is obtained as the right-hand side of Eq. (1.2) and represented
as the sum of the derivatives of the eigenphases δj(E),4)

Δ(E) =
1
π

∑
j

dδj

dE
. (2.21)

§3. Application

3.1. Application to a 3N-N coupled-channel model

We apply the present formalism to the 4He = [3H + p] + [3He + n] cluster-model
calculation.23) In this model, the total wavefunction is expressed as

|Ψ q(4He)〉 = χq
3H+p

(r)|Φq
3H+p

〉〉 + χq
3He+n

(r)|Φq
3He+n

〉〉, (3.1)

where χq
3H+p

(r) and χq
3He+n

(r) are the relative radial wavefunctions of 3H + p and
3He + n channels, respectively, and q is an abbreviation of the quantum numbers
(2S+1LJ). The channel wavefunctions of 3H + p and 3He + n systems are denoted as
Φq

3H+p
and Φq

3He+n
, respectively.

The relative radial wavefunctions χq
3H+p

(r) and χq
3He+n

(r) are obtained by solv-
ing the Schrödinger equation

H |Ψ q(4He)〉 = E |Ψ q(4He)〉, H = T + V , (3.2)

where T is the kinetic energy and V is the nuclear plus Coulomb potential.
The coupled-channel equations to be solved are given as[
− �

2

2μ3H+p
∇2 + V q

D(r) +
e2

r
erf(

√
βr) − E + ε3H+p

]
χq

3H+p
(r) = V q

C(r)χq
3He+n

(r),

(3.3a)[
− �

2

2μ3He+n
∇2 + V q

D(r) − E + ε3He+n

]
χq

3He+n
(r) = V q

C(r)χq
3H+p

(r), (3.3b)

where β, in the Coulomb folding interaction, is taken to be 0.66 fm2 from the observed
r.m.s. radius of 3He.

We also use the experimental threshold energy difference between 3He + n and
3H + p channels as

ε3He+n − ε3H+p = 0.763 MeV, (3.4)



956 R. Suzuki, A. T. Kruppa, B. G. Giraud and K. Katō

and we set ε3H+p as the origin of the complex energy plane.
The diagonal potential (V q

D) and the coupling potential (V q
C) are constructed

from T = 1 and T = 0 components as

V q
D(r) =

1
2

{
V q,T=1 exp

[
−
(

r

bq,T=1

)2
]

+ V q,T=0 exp

[
−
(

r

bq,T=0

)2
]}

(3.5)

and

V q
C(r) =

1
2

{
V q,T=1 exp

[
−
(

r

bq,T=1

)2
]
− V q,T=0 exp

[
−
(

r

bq,T=0

)2
]}

, (3.6)

where the parameters of the Gaussian forms are determined from the phase shift
data of 3H + n, 3He + n, 3H + p and 3He + p. The details of these potentials
and the parameters used here are found in Refs. 23) and 24). For the 3P1 state,
V q,T=1 = −18.83 MeV, V q,T=0 = −8.0 MeV, bq,T=1 = 3.06 fm, bq,T=0 = 3.0 fm are
obtained to reproduce the experimental phase shifts.

We employ the Gaussian basis functions25) to describe the relative radial wave-
function, and the same parameters as those used in Ref. 14) are adopted for each
channel. In this calculation, we use 30 Gaussian basis functions for every channel;
hence, the total basis number is N = 60.

At first, we show the energy eigenvalue distributions of 3P1 states in Fig. 3.
With θ = 20◦ and 30◦ (left-hand side of Fig. 3), a resonance is not extracted and
only continua appear. When we take θ = 40◦ (right-hand side of Fig. 3), the broad
resonance ER = 1.89 − i2.46 MeV is obtained. The continuum solutions deviate
slightly from the 2θ-line, and the deviation increases for θ = 40◦. As shown in the

Fig. 3. Energy eigenvalues of the 3P1 state

with θ = 20◦ (left top), θ = 30◦ (left bot-

tom) and θ = 40◦ (right). The circles rep-

resent energy eigenvalues and dotted lines

are 2θ- lines.

Fig. 4. θ-dependence of calculated level densi-

ties ρN
θ (E) of the 3P1 state. The vertical

line indicates the threshold energy of the
3He+n system. In this calculation, N = 60

eigenvalues are used.
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Fig. 5. Calculated CLD of 3P1 state. The vertical dotted line indicates the threshold energy of the
3He + n system.

previous paper and will be shown later, this energy deviation from the 2θ-line has
no serious effect on the CLD calculations.

In Fig. 4, the calculated level density ρN
θ (E) of this system is shown. There

are two peaks associated with the threshold. Similarly to the single-channel case,
the quantity ρN

θ (E) has a θ-dependence and these peaks disappear if we calculate
ΔN (E) by subtracting ρN

0(θ)(E) from ρN
θ (E), which is obtained from eigenvalues of

the asymptotic Hamiltonian with the Coulomb potential between 3He and p:⎛
⎝− ~

2

2μ3H+p
∇2 + e2/r + ε3H+p, 0

0 − ~
2

2μ3He+n
∇2 + ε3He+n

⎞
⎠ . (3.7)

The calculated CLD, ΔN (E), is shown in Fig. 5. The “exact” dots represent the
results obtained from the S-matrix form (Eq. (2.21)) which is calculated by solving
Eqs. (3.3a) and (3.3b) with the Runge-Kutta method.

In Fig. 5, we can see that the calculated CLD ΔN
θ (E) in the CSM does not

depend on the scaling parameter θ. The results with θ = 20◦, 30◦ and θ = 40◦ over-
lap each other. Therefore, we cannot distinguish the results obtained for different
θ-values in Fig. 5. Two peaks associated with the thresholds shown in ρN

θ (E) disap-
pear in the CLD. Instead, one broad peak associated with the resonance appears in
ΔN

θ (E).
Moreover, we can see a good agreement with the “exact” calculation obtained

from the S-matrix by solving the coupled-channel equations. From such results, we
can confirm the good applicability of this formalism to coupled-channel systems.

The calculated resonance peak does not depend on whether the resonance energy
is obtained as an isolated eigenvalue or not. With θ = 40◦, the ECR used in the
CLD calculation is constructed from the resonance and continuum. As shown in Eq.
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(2.18), the resonance part has the Breit-Wigner form and the continua describe the
background contribution. On the other hand, with a small θ (θ = 20◦ or θ = 30◦),
no resonance eigenvalue is obtained, but the resonance structure is reproduced in the
CLD. In the calculations with a small θ, the ECR is constructed only from continuum
states, and these rotated continuum states describe both the resonance peak around
E =2 MeV and the background contributions.

3.2. Orthogonality condition model

In this subsection, we study another numerical example. In the model for 3H+p
and 3He + n, where a (0s1/2)3 configuration is assumed for 3H and 3He clusters,
the S-wave relative motion between projectile and target for such systems has three
Pauli-forbidden states (PFS) with zero node. The 3S1 partial waves with T = 0 and
T = 1 and one 1S0 partial wave with T = 1 are the PFS. Other S states orthogonal
to these PFS are Pauli-allowed states. We take into account the Pauli principle by
employing the orthogonality condition model (OCM).26) In this section, we calculate
the CLD ΔN

θ (E) for the 1S0 partial wave. The PFS is constructed using the harmonic
oscillator wavefunction, un,l(r) with n = 0, l = 0 as

ΨT=1
PF (1S0) =

1√
2

[
u

3H+p
0,0 (r)Φ3H+p(

1S0) + u
3He+n
0,0 (r)Φ3He+n(1S0)

]
. (3.8)

We add the following Pauli potential27) into the Hamiltonian of Eq. (3.2);

VPauli = λ|ΨT=1
PF (1S0)〉〈ΨT=1

PF (1S0)| (3.9)

to push the PFS into an unphysical energy region by taking a large positive value
for λ. In the present calculation, λ is taken to be 106 MeV. We use the harmonic
oscillator width bm = 1.61 fm from the observed matter radius of 4He. Finally, the
coupled-channel equations for 1S0 partial waves are rewritten from Eqs. (3.3a) and
(3.3b) as[
− �

2

2μ3H+p
∇2 + V q

D(r) +
e2

r
erf(

√
βr) +

λ

2
|u3H+p

0,0 (r)〉〈u3H+p
0,0 (r)| − E + ε3H+p

]
χq

3H+p
(r)

=
[
V q

C(r) +
λ

2
|u3H+n

0,0 (r)〉〈u3He+n
0,0 (r)|

]
χq

3He+n
(r), (3.10a)[

− �
2

2μ3He+n
∇2 + V q

D(r) +
λ

2
|u3He+n

0,0 (r)〉〈u3He+n
0,0 (r)| − E + ε3He+n

]
χq

3He+n
(r)

=
[
V q

C(r) +
λ

2
|u3He+p

0,0 (r)〉〈u3H+p
0,0 (r)|

]
χq

3H+p
(r). (3.10b)

The asymptotic Hamiltonian is not changed from Eq. (3.7), because the Pauli po-
tential has a short range and no effect in the asymptotic region.

In this treatment, the potential parameters are obtained as V q,T=1 = −7.55 MeV,
V q,T=0 = −58.5 MeV, bq,T=1 = 3.0 fm, and bq,T=0 = 3.0 fm for the 1S0 state.

The calculated energy eigenvalue distribution is shown in Fig. 6 and the CLD is
shown in Fig. 7. Here, we use θ = 35◦. In Fig. 6, no resonance is obtained. However,
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Fig. 6. Energy eigenvalues (open circles) of
1S0 state with θ = 35◦. The dotted lines

are the 2θ-lines.

Fig. 7. Calculated CLD of 1S0 state. The ver-

tical dotted line is the threshold of the
3He + n system.

in the CLD, there is one peak at low energy and we can see the cusp at the threshold
energy.

We compare the result obtained using the present formalism with the “exact”
calculation of the CLD from the S-matrix. In the present calculation of the S-matrix,
we solve the coupled-channel equation using the Jost function method (JFM)28) with
the OCM29) for treating the nonlocal potential term. We can see that the present
formalism works well even if the potential contains a nonlocal part with very large
coefficients (106) indicating an almost singular behavior.

Using the JFM-OCM,29) the S-matrix pole is obtained at ER = 0.14 − i0.21
MeV. We can then understand that the peak of CLD at low energy is caused by the
resonance. In the usual CSM with a finite number of basis functions, it is difficult
to obtain such a resonance with such a large width Γ/2 > Er, since, as shown in
Fig. 6, the resonance is not clearly separated from the continua. To investigate this
kind of resonance, it is necessary to use an additional method such as the analytical
continuation of a coupling constant (ACCC)30) together with the complex scaling
method.31),32)

The CLD in the CSM has a great advantage: we can obtain the resonance peak
even if the resonance is not isolated by the CSM.

§4. Definition of density in a coupled-channel system

In this section, we discuss the matrix form of the CLD. In coupled-channel
systems, a Green’s function is expressed as the following matrix form,

〈r|G(E)|r′〉 =

⎛
⎜⎝

G11(r, r′) G12(r, r′) · · ·
G21(r, r′) G22(r, r′) · · ·

...
...

. . .

⎞
⎟⎠ , (4.1)
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and we also define an operator matrix Γ as

Γ(r, r′) ≡ 〈r|G(E) − G0(E)|r′〉 =

⎛
⎜⎝

Γ11(r, r′) Γ12(r, r′) · · ·
Γ21(r, r′) Γ22(r, r′) · · ·

...
...

. . .

⎞
⎟⎠ , (4.2)

where G − G0 results from V = H − H0 as

G − G0 = GV G0 = G0V G. (4.3)

Therefore, Eq. (1.2) becomes

Δ(E) = − 1
π

Im
∫

r2dr {Γ11(r, r) + Γ22(r, r) + · · · } . (4.4)

Consider the term, − 1
π Im

∫
r2drΓαα, as a density in channel α. Diagonalizing the

matrix Γ(r, r), we obtain ⎛
⎜⎝

λ11(r, r) 0 0
0 λ22(r, r) 0

0 0
. . .

⎞
⎟⎠ . (4.5)

Therefore, the total level density is represented as

Δ(E) = − 1
π

Im
∫

r2dr {λ11(r, r) + λ22(r, r) + · · · } , (4.6)

and the partial density in the “eigenchannel” c is expressed as − 1
π Im

∫
r2drλcc.

Applying the CSM with the basis function method, we calculate the matrix
elements of Γ

ΓN
α,β(r, r′) = 〈〈Φα|

〈
r

∣∣∣∣
[

1
E − H

− 1
E − H0

]∣∣∣∣ r′
〉
|Φβ〉〉

=
N∑

k=1

⎡
⎣χθ

α,k(r)χ
θ
β,k(r

′)
E − Eθ

k

− χ
θ,(0 )
α,k (r)χθ,(0 )

β,k (r′)

E − Eθ
k(0 )

⎤
⎦ . (4.7)

From this expression of the Γ matrix elements, we obtain CLD matrix elements
between channels α and β as

ΔN
α,β(E) = − 1

π
Im

∫
r2drΓN

α,β(r, r). (4.8)

By diagonalizing this ΔN
α,β, we can define the CLD in the so called eigenchannels of

the coupled-channel system.
We calculate these quantities for the [3H+p]+ [3He+n] coupled-channel system

with the CSM. Results for the 1P1 state are shown in Fig. 8. It provides results
calculated with θ = 20◦ and 40◦ and N = 60. Channel labels 1 and 2 denote 3H+p
and 3He+n, respectively. From such results, we can see that there is no θ dependence
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Fig. 8. Calculated coupled-channel CLDs ΔN
α,β(E) of 1P1 states. The left-hand side shows the

matrix form of the CLD and the right-hand side shows the CLD in the eigenchannels. The

calculated results with θ = 20◦ and 40◦ are presented in lines and circles, respectively, where

N = 60. The channels 1 and 2 denote 3H+p and 3He+n, respectively. The vertical line is the

threshold of the 3He + n system.

in the matrix elements ΔN
α,β(E) and the eigenchannel partial CLDs ΔN

c (E). In this
energy region, both channels have the same contribution to the CLD. However, the
eigenchannel CLDs show that eigenchannel 1 has the dominant contribution.

To see the physical meaning of eigenchannel partial CLDs, we calculated the
phase shifts from ΔN

c (E) and compared with the eigenphase shifts. In the single-
channel case, the phase shift δl(E) is calculated as δl(E) =

∫ E
0 dE′Δ(E′). However,

in the case of coupled-channel systems, the eigenphase shifts are not reproduced by a
formula δc(E) =

∫ E
0 dE′Δc(E′) from the partial CLD of the eigenchannel, although

the derivative of the eigenphase shifts sum is equivalent to the trace of the matrix
ΔN

α,β(E) as shown in Fig. 5.

§5. Summary and conclusion

In this paper, we have formulated the CLD for coupled-channel systems. We
have shown that the CLD with the CSM and the basis function method works well
for coupled-channel systems. The CLD is also formulated in a matrix form where
matrix elements enable us to investigate the contribution of each channel. Such
results prove numerically that the ECR works also for coupled-channel systems.

Recently, it has also been shown that scattering amplitudes are obtained from
complex scaling.33) In the method, we can calculate the scattering amplitudes with-
out an explicit enforcement of boundary conditions. However, the method demands
the calculation of matrix elements between basis functions and regular asymptotic
functions (Bessel or Coulomb functions). This task becomes harder in more complex
systems.

The CLD formalism is very convenient because it does not demand further calcu-
lations. This method gives a great opportunity to investigate scattering properties,
from those eigenvalues calculated for resonant states and bound states within an
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L2 basis set. Therefore, the CLD acts as a mediator between nuclear structure and
scattering information.

Usually, to calculate with the CSM, a resonant state with a complex wave number
kR = κ − iγ, one must take θ such that γ/κ < tan θ. However, if the system is
complex, it becomes difficult to take a large value of θ.31),32) In the CLD formalism,
the complex scaling is mainly used to smooth the continuum contribution, and one
can obtain, from the CLD with small θ values, information about resonances. There
is no restriction for the θ value for an investigation of resonances in this formalism.

In coupled-channel systems with rearrangement, an interesting problem of shadow
poles has been discussed for 5He.34) This problem, unfortunately, is out of scope in
the present CLD discussion. To investigate shadow poles, we have to solve the com-
plex scaled Schrödinger equation with different scaling angles for every channel or
within the multimomentum plane. This is left as a future work. Another future
problem concerns the CLD in three-body systems.35) Recently, we have studied sev-
eral types of three-body resonances in the 3α system. A calculation of the CLD of
the 3α system is now in progress.
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