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Abstract

The multiple scattering of high-energy particles in a thick target is formulated in an im-

pact parameter representation. A formalism similar but not identical to that of Molière is

obtained. We show that calculations of particle beam broadening due to multiple Coulomb

scattering alone can be given in closed form. The focus of this study is on whether or not the

broadening of the Coulomb angular distribution prevents the retrieval of nuclear-interaction

information from measuring the angular distributions of charged particles scattered from

a thick target. For this purpose, we study multiple scatterings with both the nuclear and

Coulomb interactions included and we do not make a small-angle expansion. Conditions

for retrieving nuclear information from high-energy protons propagating through a block of

material are obtained.
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1 Introduction and basic formalism

Understanding and calculation of the broadening of a particle beam when it prop-

agates through a block of materials are important not only to make multiple-scattering

corrections for cross-section measurements in physics experiments but also to many appli-

cations such as radiography by means of high-energy protons. Many different theories of

the multiple scattering of electrons by thick targets have been formulated in the past sixty

years [1]-[7]. The theory of Molière [1][7] has received extensive attention because it gives

the best agreement with data concerning the broadening of Coulomb angular distribution,

arising from the multiple scattering of charged particles from the atoms in thick targets. An

excellent and succinct derivation of the Molière theory was given by Mott and Massey [8].

As one deals with a large (almost astronomical) number of scatterers in a thick tar-

get, the numerical aspect of the calculation becomes extremely demanding. One can obtain

good results provided that careful approximations are carried out. Over the years, successful

parametrizations of the broadening of angular distributions due to Coulomb multiple scatter-

ing have been established[9]. For hadronic projectiles, such as protons, nuclear interactions

also contribute to multiple scattering. However, this latter aspect has not yet received suffi-

cient attention in the literature. In this work, our focus is, therefore, on effects of multiple

scattering on angular distributions in the Coulomb-nuclear interference region and in the

region where the nuclear interaction dominates. We formulate the multiple-scattering prob-

lem in such a way that not only in the case with Coulomb multiple scattering alone can

analytical evaluations of the beam broadening become possible, but also the calculations are

greatly facilitated when both nuclear and Coulomb interactions are taken into consideration.

For a very high energy (e.g., ≥ 20 GeV) proton scattering from a single nucleus,

the Coulomb cross section decreases rapidly with the increase of scattering angles in such

a way that the Coulomb cross section is negligible with respect to the nuclear cross section

already at scattering angles as small as several milliradians. However, the Coulomb peak is

rapidly broadened by proton-atomic nucleus multiple scatterings. Clearly, for the purpose

of extracting the forward amplitude of the basic hadron-nucleus strong interaction, one
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should use targets as thin as possible and then employ Molière-type theory to correct for

the Coulomb contribution from the measurement[10]. On the other hand, in many practical

applications the thickness of the “target” is often fixed by specific needs, which is by no means

thin. It becomes, therefore, interesting to know how much nuclear information can still be

learned from hadrons scattered from a thick target. Certainly, the feasibility of learning

nuclear information can bring added value to probing materials with hadronic beams. In

other words, will the broadening of the Coulomb angular distribution render impossible

any study of the nuclear cross sections? One naturally expects that the survival of nuclear

information, if any, depends on the target thickness, i.e., on the number of nuclear scatterers

that a proton encounters in a block of material. We use our formalism to examine this

question.

In this section, after deriving the basic multiple-scattering formalism, we discuss the

important bearing of an ability to retrieve nuclear information on many applications. In

Section II, we show the broadening of angular distributions by Coulomb multiple scattering

in closed form. The broadening of angular distributions by combined Coulomb and nuclear

interactions are studied by means of semi-analytical models in regions of small momentum

transfers (Section III) as well as large momentum transfers (Section IV). We find that it is

possible to retrieve nuclear information from protons scattering from a thick target. Conclu-

sions and suggestions are presented in Section V.

It is well known that high-energy elastic scattering is basically forward peaked,

which allows to a very good approximation to neglect the longitudinal momentum trans-

fer. Glauber [11] has shown that, in an impact-parameter representation, every function

O(q) of the tranverse momentum transfer q, whether O is an amplitude or a cross-section,

can be parametrized in terms of a profile function φ(b) defined in the impact plane,

O(q) = (2π)−2
∫

d~b exp(i~q ·~b)φ(b) = (2π)−1

∞
∫

0

b db J0(qb)φ(b), (1)

where azimuthal symmetry is assumed, J0 is the Bessel function of the first kind, and q

and b are the moduli of the transverse momentum transfer ~q and impact parameter ~b, re-
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spectively. Nonessential complications (e.g. spins, etc) are here understood. Conversely, the

profile function results from the inverse Fourier transform and is given by

φ(b) =
∫

d~q exp(−i~q ·~b)O(q) = 2π

∞
∫

0

q dq J0(qb)O(q). (2)

Without loss of generality, we consider a target which consists of one kind of nuclei.

For a thin target of thickness t and atomic density ρ the probability that a beam particle

undergoes a scattering is ptot1 = t ρ σtot
1 , where σtot

1 is the total cross section [12]. (The subscript

1 denotes the single scattering.) The transmission probability is, therefore, given by ptrans1 =

1− ptot1 . From the definition of the differential cross section σ1(~q), one obtains the sum rule

σtot
1 =

∫

d~q σ1(~q). The scattering probability density p1(~q) is related to the differential cross

section by [12],[13] p1(~q) = t ρ σ1(q). It is the probability that a particle experiences scattering

in the direction ~q. The sum rule of σ1(~q) leads to the sum rule ptot1 =
∫

d~q p1(~q). Most often,

only the modulus q counts, σ1(~q) = σ1(q). Hence, σ
tot
1 = π

∫

d(q2) σ1(q).

In thick targets the beam can bounce forward from many nuclei and/or electronic

clouds and/or different atoms. These multiple scatterings are incoherent because the scatter-

ers are separated far apart with respect to the ranges of the screened Coulomb and nuclear

interactions so that the scattering waves are already in the asymptotic region before the

next collision occurs. Furthermore, the target is not crystalline on a macroscopic scale, and

thus the distance between scatterers are largely random. One must, therefore, add proba-

bilities (not amplitudes) coming from individual scatterings. If one splits the thick target

with thickness T into a large number N of thin targets each with thickness T/N, then

the total multistep probability for a particle to be transmitted without any scattering is

P trans
M ≡ P0 = (1− σtot

1 Tρ/N)
N
.

The differential probability density for just one scattering in this situation with many

thin targets, each with thickness T/N, is

P1(~q) = N σ1(~q) (T/N) ρ
(

1− σtot
1 Tρ/N

)N−1
. (3)

This represents a combination of scattering from any one single layer and transmission
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through the remaining (N − 1) layers without scattering. The factor N in front of the right

hand side accounts for the N layers, obviously.

For double scattering one must count pairs of layers and fold two single-scattering

probability densities p1. Hence,

P2(~q) =
N(N − 1)

2

(

Tρ

N

)2

σ2(~q)

[

1−
σtot
1 Tρ

N

]N−2

, (4)

where

σ2(~q) =
∫

d~q ′ σ1(~q
′) σ1(~q − ~q ′). (5)

For triple scattering, an identical argument induces the result

P3(~q) =





N

3





(

Tρ

N

)3

σ3(~q)

[

1−
σtot
1 Tρ

N

]N−3

, (6)

where

σ3(~q) =
∫

d~q ′

∫

d~q ′′ σ1(~q
′) σ1(~q

′′ − ~q ′) σ1(~q − ~q ′′) (7)

is a double convolution. Again, the first factor is the counting of all triplets of layers.

It is useful at this stage to introduce the profiles

φ1(b) =
∫

d~q exp(−i~q ·~b) σ1(~q) = 2 π

∞
∫

0

q dq J0(qb) σ1(q), (8)

with φ1(0) = σtot
1 , and, ∀n,

φn(b) =
∫

d~q exp(−i~q ·~b) σn(~q) = [φ1(b)]
n . (9)

If we define Φ1 as the profile of P1, then we see that,

Φ1(b) = N
(

Tρ

N

)

φ1(b)
(

1− σtot
1 Tρ/N

)N−1
, (10)
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and, more generally, the profile of Pn reads,

Φn =





N

n





(

T ρφ1

N

)n [

1−
σtot
1 T ρ

N

]N−n

. (11)

The “total multistep profile” due to PM =
∑N

n=1 Pn can be written as,

ΦM (b) =

(

1−
σtot
1 T ρ

N
+

T ρ φ1(b)

N

)N

− P0

=

{

1 +
ν [φ1(b)/σ

tot
1 − 1]

N

}N

− (1− ν/N)N , (12)

where we have introduced the parameter ν = σtot
1 Tρ. Like ptot1 , ν is dimensionless. However,

it is not a probability for a thick target. Indeed, because the mean free path, Λ, of a beam

particle is 1/(ρσtot
1 ) , therefore, ν = T/Λ represents the average number of collisions of a

beam particle when it passes through a target of thickness T . Hence ν can be a very large

number.

In the limit, N → ∞, we obtain,

ΦM (b) = exp

[

ν

(

φ1(b)

σtot
1

− 1

)]

− exp(−ν) . (13)

Here, we emphasize the nonlinear action of ν on ΦM(b). The second term in Eq.(13) comes

from the limit of P0, it also shows that ν has the meaning of a beam decay rate in a target of

thickness T . Note that this latter term is neglected in the Molière theory [1] as well as in its

reformulation by Bethe [7] and by Mott and Massey [8]. Hence, we find a form similar but

not identical to that of the Molière theory for the final, multistep probability density PM :

PM(q) = (2π)−2 exp(−ν)
∫

d~b exp(i~q ·~b)

{

exp

[

ν
φ1(b)

σtot
1

]

− 1

}

. (14)

Again, we note that PM(q) depends nonlinearly on ν. It is appropriate to underline the

importance of the above-mentioned extra term in the present formulation. If T is small

rather than large, T = t, then ν is also small. The presence of this extra term reduces PM

to p1 = t ρ σ1, as should be for thin targets. On the other hand, φ1(b) → 0 as b → ∞.
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Consequently, the first term in the curly bracket has a limit, exp[ ] → 1, that exactly

compensates the second term in the curly bracket, ensuring the convergence of the integration

for PM(q).

It is interesting to note from Eq. (14) that

P tot
M ≡

∫

d~q PM(~q) = 1− exp(−ν) = 1− PMt , (15)

where PMt is the total transmission probability. This last equation is a sum rule for the

multiple-scattering probability. Multiple-scattering differential cross sections can be related

to probability densities by the general relation

PM(q) = T ρ σM (q) , (16)

in the same way σ1(~q) is to p1(~q). In summary, three steps thus occur in this formalism: (i)

Fourier transform thin target data σ1 into their profile φ1, see Eq. (8); (ii) Find ν = T ρ σtot
1

and exponentiate T ρφ1, see Eq. (13); (iii) Fourier transform ΦM back into a probability

distribution PM , see Eq. (14).

It is reasonable to parametrize the single-scattering distribution as σ1 = σ1c+σ1n with

σ1c being the Coulomb cross sections and σ1n the sum of cross sections of nuclear scattering

and nuclear-Coulomb interference. The separation of σ1 into σ1c and σ1n induces the same

for the profile function: φ1 = φ1c + φ1n. The relation

exp(βφ1c) exp(βφ1n)− 1 = [exp(βφ1c)− 1] + exp(βφ1c) [exp(βφ1n)− 1] (17)

with β = ν/σtot
1 then leads to a split of PM as the sum of two probability densities,

PMc =
exp(−ν)

(2π)2

∫

d~b exp(i~q ·~b)

{

exp

[

ν
φ1c(b)

σtot
1

]

− 1

}

(18)

and

PMn =
exp(−ν)

(2π)2

∫

d~b exp(i~q ·~b) exp

[

ν
φ1c(b)

σtot
1

] {

exp

[

ν
φ1n(b)

σtot
1

]

− 1

}

. (19)
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This allows a perturbative consideration of nuclear effects at those angles where Coulomb

scattering dominates. Note that the exponent in Eq. (18) contains a denominator σtot
1 and

not σtot
1c . Hence PMc is proportional to a pure Coulomb process with an effective value of ν,

namely νeff = (σtot
1c /σ

tot
1 ) ν.

Alternately, at angles where nuclear scattering might dominate, the roles of φ1c and

φ1n can be interchanged to generate similar formulae, namely,

P ′

Mn =
exp(−ν)

(2π)2

∫

d~b exp(i~q ·~b)

{

exp

[

ν
φ1n(b)

σtot
1

]

− 1

}

(20)

and

P ′

Mc =
exp(−ν)

(2π)2

∫

d~b exp(i~q ·~b) exp

[

ν
φ1n(b)

σtot
1

] {

exp

[

ν
φ1c(b)

σtot
1

]

− 1

}

. (21)

One can parametrize the screened Coulomb interactions as σ1c(q) =
∑

αCα (q
2+ κ2

α)
−α. The

powers α, screening momenta κα, and normalizations Cα are mainly functions of the charge

Z of each individual nucleus. But σ1n will depend on both Z and the mass number A. The

global normalization of σM will also depend on the target thickness or the parameter ν.

Hence, the theory is essentially driven by three parameters of a thick target, namely, Z, A

and ν. Experimental measurements of σM might, conversely, permit a determination of such

three parameters when the nuclear nature of the target is unknown a priori, as is most often

the case for radiographic studies where a recovery of A, besides Z, would be precious. Success

will occur, however, only if multiple scattering does not spoil the information carried by A.

This question is the main concern of the following sections.

2 Broadening of angular distributions by multiple scatterings

The mean-square width 〈q2〉1 of the distribution σ1 represents a useful observable for

the broadening of the cross-section distribution σ1 and can be defined by an integral

〈q2〉1 = (σtot
1 )−1

∫

d~q q2 σ1(~q) = 2 π (σtot
1 )−1

∞
∫

0

dq q3 σ1(q), (22)
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if it converges. The use of Eq.(8) and elementary properties of the Fourier transform allows

us to write

〈q2〉1 = − lim
b→ 0

(

1

b

d

db
b
d

db

)

φ1(b)

φ1(0)
, (23)

where the operator between brackets ( ) comes from a two-dimensional Laplacian in cylin-

drical coordinate space. The same procedure gives the mean-square width of σM (~q) as

〈q2〉M = − lim
b→ 0

(

1

b

d

db
b
d

db

)

ΦM(b)

ΦM (0)
, (24)

where ΦM(0) = (1− e−ν). Assume, for the sake of the argument, that σ1(q) is a Gaussian,

σ1(q) = C exp[−q2/(2κ2)], (25)

where C is a suitable normalization and the parameter 1/κ is the interaction range. For

instance, if one discusses screened-Coulomb interactions, then 1/κ is of the scale of an atomic

radius. Then one obtains σtot
1 = 2 π C κ2 , 〈q2〉1 = 2κ2, and

φ1(b) = 2 π C κ2 exp(−b2κ2/2). (26)

From Eqs. (13) and (24) one further obtains

ΦM (b) = exp
[

ν
(

e−b2κ2/2 − 1
)]

− exp[−ν] (27)

and

〈q2〉M =
ν 〈q2〉1

1− exp(−ν)
. (28)

Since ν is large in general, the denominator is ≃ 1. Consequently, the multiple scattering

has broadened the mean-square width by a factor ν, as might be expected from a Brownian

motion in the transverse-momentum space. The multiplication of 〈q2〉1 by ν also occurs if

we start from a “polynomial Gaussian distribution” (q/κ)2n exp[−q2/(2κ2)]. This growth
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rate is very general and can be viewed as one more version of the central limit theorem. As

additional evidence, one finds that if σ1(q) is of the functional form σ1(q) = C(q2+κ2)−n with

an exponent n > 2, then 〈q2〉1 = κ2/(n− 2) and again 〈q2〉M = ν 〈q2〉1/(1− e−ν) ≃ ν〈q2〉1.

In the following, we illustrate the broadening of the cross-section distribution in the

case of a screened Coulomb scattering. We fit σ1 at small angles by a few terms of the sum

σ1c(q) =
∑

m>2

Cm

(q2 + κ2
m)

m
, (29)

where m can be half-integers as well as integers, and Cm and κm are fitting parameters. It

follows that

σtot
1c = π

∑

m

Cm

(m− 1) κ2(m−1)
. (30)

For definiteness, we take two terms with m = 5/2 and 4, namely,

σ1c(q) =
C5/2

(q2 + κ2
5/2)

5/2
+

C4

(q2 + κ2
2)

4
. (31)

Hence,

σtot
1c =

2πC5/2

3κ3
5/2

+
πC4

3κ6
4

. (32)

Dividing both sides by σtot
1c , we obtain

1 =
2πC5/2

3κ3
5/2 σ

tot
1c

+
πC4

3κ6
4 σ

tot
1c

≡ a5/2 + a4 . (33)

Eq. (33) shows that both a5/2 and a4 are dimensionless numbers between 0 and 1. An

advantage of using Eq. (29) is that its Fourier transform gives the profile function φ1c in

terms of analytical functions which can be easily analyzed, i.e.,

φ1c(b) =
2πC5/2(1 + κ5/2b) exp(−κ5/2b)

3 κ3
5/2

+
πC4b

3K3(κ4b)

24 κ3
4

, (34)
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where K3 is the modified Bessel function of the second kind. One verifies easily that φ1c(0) =

2πC5/2/(3κ
3
5/2) + πC4/(3κ

6
4) = σtot

1c . The “Coulomb” multistep profile then reads

ΦMc = exp

{

ν

[

a5/2(1 + κ5/2b)e
−κ5/2b +

a4b
3

8κ3
4

K3(κ4b)− 1

]}

− e−ν . (35)

When b → ∞, it is easy to verify that Eq. (34) induces exponential decreases with ranges

κ−1
5/2 and κ−1

4 . Numerical integrals with such integrands converge well. The final integral for

the Coulomb cross section then reads

σMc(q) =
1

2 π T ρ

∞
∫

0

db b J0(qb) ΦMc(b). (36)

Let κ be an average between the two momenta κ5/2 and κ4, which are both atomic

scales. It is now convenient to scale momenta and lengths as q = κQ and b = B/κ. The

dimensionless Q will be a few units or a few tens, if one wants to describe scattering angles

moderately larger than the Coulomb peak. We also expect that the values of B contributing

to the integral

σMc(Q) =
exp(−ν)

2πκ2Tρ

∞
∫

0

dB B J0(QB)

×

{

exp

[

νa5/2

(

1 +
κ5/2

κ
B
)

e−κ5/2B/κ +
νC4B

3

8κ3
K3

(

κ4

κ
B
)

]

− 1

}

(37)

should be mainly between 0 and several units. In atomic units, all parameters κ, κ5/2/κ and

κ4/κ are of order 1. It remains to estimate the dimensionless magnitudes of ν a5/2 and ν a4/8.

From Eq.(33), a5/2 and a4 are moderate fractions of 1. It is thus the large number ν that

drives the integrand.

It is also convenient to write

σ1(q) = κ−4 σ1(Q) , φ1(b) = κ−2 φ1(B) (38)

with σ1(Q) and φ1(B) being dimensionless. Because we work with systems of atomic scale,

we further set κ to be 1, meaning that our primary scale is “atomic”. In this scale, all lengths
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and momenta will, respectively, be given in units of atomic radius and its inverse.

To show the shrinking of profiles by multiple scatterings we plot φ1c and ΦMc in Fig. 1

as the “crosses” and solid curves when σ1c = (Q2 +1)−5/2, and, respectively, as the “circles”

and dashed curves when σ1c = (Q2 + 1)−4. As one can see, the dashed and solid curves do

decay faster than their respective single scattering partners. The Fourier transform of ΦMc

 
 

     B
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

   
φ 1

c(
B

) 
  ,

   
Φ

M
c(

B
)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Crosses: φ1c(B) for σ1c(Q) = (Q2+1)−5/2. Solid curve: the corresponding multistep ΦMc(B)

if ν = 4. Circles and dashed curve: φ1c(B) and ΦMc(B) (with ν = 4) for σ1c = (Q2 + 1)−4. All

profiles normalized to 1 at B = 0.

then leads to the expected broadening of σMc, as shown in Fig. 2. (For graphical convenience

we used ν = 4 in Figs. 1 and 2, which is much smaller than physical ν but is demonstrative

enough.)
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     Q
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

   
σ 1

c(
Q

) 
  ,

   
σ M

c(
Q

)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Crosses: σ1c(Q) = (Q2 + 1)−5/2. Solid curve: the corresponding σMc(Q) for ν = 4. Circles:

σ1c(Q) = (Q2 + 1)−4. Dashed curve: the corresponding σMc(Q) for ν = 4. All cross sections

normalized to 1 at Q = 0.

3 Loss of nuclear information at small momentum transfers

In this section, we introduce a semi-realistic model for σ1(Q) which contains “nu-

clear” information. We will investigate (a) changes of normalizations and not just shrinking

or dilation of shapes of σ(Q), and (b) how nuclear information may become lost. We will,

therefore, illustrate the blurring of signal through the study of various relevant quantities,

such as PM , PMc, PMn, P
′

Mc, P
′

Mn. We also use analytical models to ensure that the blur-

ring comes from physics and is not a result of numerical imprecision. A good analytical

model must satisfy the following constraints: (i) positivity of the sum of σ1c and σ1n; (ii)

big contrasts between maxima and minima; (iii) analyticity in both the momentum and the
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impact parameter representations; and (iv) significant differences between the atomic and

the nuclear scales for profiles.

Let

σ1c(Q) = (1 +Q2)−2 (1 +Q2/100)−1. (39)

This is qualitatively realistic, because the factor, (1+Q2)−2, represents a screened Coulomb

scattering. The additional, artificial factor, (1 +Q2/100)−1, is here just for the convergence

of 〈Q2〉1c. Then we further use, with σ1n(0) = 0, the following semi-realistic σ1n:

σ1n(Q) = 11 Q2/65060976287632087746874800000000

× exp(1/2−Q2/50)
[

24684880296681586800 e
12

25 (3600− 169Q2 +Q4)2

−175731507577476 (Q2 − 144)2 (491485925− 20593402Q2 + 215573Q4)

+40919125 e
119

50 (Q2 − 25)2 (3973881778272− 103796385841Q2 + 463199137Q4)
]

(40)

The quality of the model with respect to the requirements (ii) and (iv) are evidenced by Fig.

3.

As it is allowed by the split of σ1 into a “Coulomb” part (σ1c) and a “nuclear” part

(σ1n), our σ1n can be positive or negative, as long as σ1 remains positive. Our σ1n was fine

tuned to create four clear “nuclear” signals, namely two maxima of σ1 near Q = 8 and

18, and, as signatures of interferences, two sharp minima at Q = 5 and 12. Furthermore,

we adjusted its parameters so that the maxima do not exceed ∼ 1% of the forward peak

of σ1c. Note also that our model σ1n has only two maxima and, thus, carries no “nuclear”

information for Q > 40. This is designed to track whether or not the maxima, if they survive

the blurring of angular distribution by multiple scatterings, would migrate towards larger

values of Q. The log10 σ1 and log10 σ1c of our toy model are shown as functions σ(Q) in Fig.

3. It is trivial to deduce σ1n visually.

The corresponding profiles read, in closed forms,

φ1c(B) = 200 π

(

−K0(B)

9801
+

K0(10B)

9801
+

BK1(B)

198

)

, (41)
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Fig. 3. log10 σ1 (solid curve) and log10 σ1c (dashed curve) as functions of Q.

and, with u = −e12/25 and v = −e119/50,

φ1n(B) = 11/2081951241204226807899993600 π exp(1/2− 25B2/2) ×
[

152587890625B10 (37882968282999233748+ 24684880296681586800 u

+18953703386795125 v)− 4638671875B8 (1727605574138750181696+

1184874254240716166400 u+ 973536146177791625 v) + 2734375B6 ×

(1318896762458059001549772+ 935772074343960364976400 u+

815387774668679551625 v)− 625B4 (987420216355162578690908328+

716741544586342715769420000 u+ 649720700222675824315625 v) +

2800 (12734093638656544401340038+ 9458232286390484639445000 u

+8603026609006638128125 v)B2− 8 (53363090971589265717153336+

40407914801652923512260000u+ 34558380311245783728125 v)
]

. (42)

These profile functions are shown in Fig. 4. The width of φ1n is significantly smaller

than that of φ1c, as one should expect when comparing a “nuclear” profile to an “atomic”

15



one. A geometrical ratio of widths might be ∼ 10−4 or even ∼ 10−5, but the model ratio

we choose, between ∼ 1/5 and ∼ 1/10, is sufficient for a pedagogical study and much more

convenient numerically.
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Fig. 4. log10 φ1 (solid curve), log10 φ1n (dotted curve), and log10 φ1c (dashed curve) as functions of

B.

This choice of “data” gives, after a numerical implementation of Eq. (14), the total

multistep probability distributions shown in Fig. 5. The solid curve is the same as that

in Fig. 3, namely, log10 σ1. The dashed, linked-crosses, and linked-circles curves represent

log10 PM for ν = 4, 9 and 16, respectively. The result is striking, on two counts: (i) the

forward peak is more and more damped, the distributions extending more and more towards

larger momenta, and (ii) the “nuclear information”, whether minima or maxima, becomes

rapidly blurred beyond recognition. Furthermore, the broadening of distributions does not

seem to push much residual information towards larger momenta. The broadening process
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Fig. 5. The dependences on Q of log10 σ1 of single scattering (solid curve) and log10 PM of mul-

tiple scattering when ν = 4 (dashed curve), 9 (linked-crosses curve), and 16 (linked-circles curve),

respectively.

is also confirmed by the behavior of the component PMc of PM , shown in Fig. 6. In our

model σtot
1 ≃ 5.7 and σtot

1c ≃ 3.0. We chose a large nuclear contribution, σtot
1n ≃ 2.7, in order

to emphasize nuclear effects. However, at Q < 40, even this exaggerated nuclear information

did not survive multiple scatterings.

In Fig. 7, we show the various probability distributions PMn(Q). We note again that

multiple scatterings wash away nuclear information. A similar feature is also seen in the P ′

Mn

given in Fig. 8. Besides the damping and information loss which are evident from Figs. 7 and

8, we may stress a feature of Fig. 8, namely the transformation of “negative cross sections”

into positive ones after multiple scattering. In order to create interferences, it was necessary,

at the stage of making a model for σ1n, to create negative values interfering with σ1c. As has
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Fig. 6. Solid curve: log10 σ1c(Q). Dashed, linked-crosses and linked-circles curves: log10 PMc(Q)

for ν = 4, 9 and 16, respectively.

already been pointed out, this is allowed as long as σ1 remains positive; there is a degree of

freedom in modeling σ1n. The solid curve in Fig. 8 shows log10 |σ1n|. One sees four arches, the

first and the tiny third ones meaning negative values. Such “negative” arches disappear in

the dashed curves representing P ′

Mn. This disappearance justifies the use of models where σ1n

can be not everywhere positive as long as σ1n + σ1c is everywhere positive, as was discussed

after Eq. (40).

An advantage of our use of special analytical forms for the cross sections, Eqs. (39,40),

is that such forms induce analytical profiles, Eqs. (41,42), which in turn allow analytical forms

for the multistep profiles, Eqs. (13) and (18-21). Values of 〈Q2〉 can then be easily obtained

from the use of Eq. (24). The rates of broadening as functions of ν can also be readily

calculated. Fig. 9 shows how, at values of ν smaller by several orders of magnitudes than

18



 
 

    Q
0 10 20 30 40 50

   
lo

g 1
0 

P M
n(

Q
)

-4.6

-4.4

-4.2

-4.0

-3.8

-3.6

-3.4

-3.2

   ν= 4
   ν= 9
   ν= 16

Fig. 7. Dashed, linked-crosses and linked-circles curves: log10 PMn(Q) for ν = 4, 9 and 16, respec-

tively.

those estimated from geometric cross sections, the square-widths 〈Q2〉 of PMn, PMc already

increase linearly with ν. We have also noted a similar behavior of the widths of P ′

Mn and

P ′

Mc.

In summary, the signature of nuclear information (diffractive oscillations in the dif-

ferential cross section) in the region of small momentum transfers is washed away by the

broadening of the angular distribution. This happens even with our model that has exagger-

ated nuclear cross sections. In the next section, we examine if there exist momentum-transfer

regions where the multiple scattering of the proton does not completely blurr nuclear signals.
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4 Conditions for observing nuclear information

Let r ≡ q
1/2

/q
min1

be the ratio of the half-width of the Coulomb peak to the mo-

mentum transfer at which the first minimum due to nuclear diffraction is observed for a

thin target. At high energies, both q
1/2

and q
min1

occur at very small angles. Consequently,

r = θ
1/2

/θ
min1

with the θ’s being the respective scattering angles corresponding to q
1/2

and

q
min1

. From Eq. (28), it is reasonable to expect a rule, 〈q2〉M ≃ ν 〈q2〉1 ≃ ν q2
1/2

(= νr2q2
min1

),

hence that there is a critical value νcrit ≃ r−2, above which nuclear signals will be obliterated

by the broadening of the Coulomb peak. In other words, nuclear signals can only be observed

at q ≫ qmin1 for ν > νcrit.

In Fig. 10, we show the elastic scattering differential cross sections of protons scattered
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Fig. 9. The dependences on log10 ν of log10 〈Q
2〉 for PM (Q) (solid curve), PMc(Q) (dashed curve)

and PMn(Q) (dotted curve). Note that the slopes ≃ 1 when ν >> 10.

from a thin 208Pb target at ∼20 GeV, which we have calculated by using the method of

optical model of Ref.[14] with a screened Coulomb interaction. The calculated cross sections

exhibit the main characteristics of high-energy proton-nucleus scattering, namely, a narrow

forward Coulomb peak and the diffractive oscillations at larger angles. Here, the diffractive

pattern constitutes the nuclear signal. One notes that the first diffractive minimum lies at

about ∼ 6 milliradians. We have noted from our calculation that θ1/2 for the Coulomb peak

is of order ∼ 0.003 milliradians. It is therefore reasonable to assume that, for high-energy

proton scattering from nuclei, r is of order ∼ 10−3 or less in general. At most one might

consider r of order ∼ 10−2. Accordingly, although the geometric size of a nucleus is typically

∼ 104 − 105 smaller than that of its atom, the range of “nuclear information profiles” at

high scattering energies may be taken ∼ 102 to ∼ 103 smaller than the range of the screened

atomic profile, and possibly much smaller. While the model used in the previous section

21



where ∼ 0.5 < r <∼ 0.1 is pedagogically justified, an analysis with a smaller r is in order.
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Fig. 10. Differential cross sections of p−208Pb elastic scattering at 20 GeV.

We first introduce a model in which r = 10−2; the profile function φ1(B) is the sum

of a “Coulomb” term,

φ1c(B) = BK1(B) (43)

and a “nuclear” term,

φ1n(B) =
4× 10−6

1 + exp[800 (B − 1/100)]
. (44)

The profile φ1c gives a bare Coulomb cross section of the form σ1c(Q) ∝ (1 +Q2)−2 and the

Woods-Saxon profile φ1n makes, in practice, a window with range r = 1/100 indeed. The

coefficient 800 in its exponent creates a “smoothed” Heaviside function. Both profiles are
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normalized so that σtot
1c = 1, and σtot

1n /σ
tot
1c = 4 × 10−6 except for a negligible factor 1 + e−8.

This cross-section ratio is quite compatible with the r2 suggested by Fig. 10. Hence, the set of

parameters given in Eqs. (43) and (44) is more realistic than that used in the previous section.

The result for various angular cross sections σM (Q; ν), compared with the single scattering

σ1(Q), is shown in Fig. 11. An inspection of the figure shows that the Coulomb peak damps

and spreads and the nuclear signal fades when ν increases. The solid curve, representing

log10 σ1(Q), and the dashed curve, representing log10 σM (Q) for ν = 2000, exhibit somewhat

similar oscillations. The dotted curve, corresponding to log10 σM for ν = 104, hardly oscillates

any more, i.e., nuclear signals are completely washed out. This confirms a loss of nuclear

signal at low and moderate momentum transfers when ν approaches νcrit ∼ r−2 = 104.
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Fig. 11. The dependences on Q of log10 σ1 (solid curve) and of log10 σM for ν = 2000 (dashed

curve) and ν = 10000 (dotted curve). All with r = 10−2.

The νcrit ∼ r−2 rule is also seen in the previous section, where the use of ∼ 0.5 <
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r <∼ 0.1 induces the loss of nuclear signal as early as ν >∼ 10. To further verify this rule,

we use the same φ1c but use instead r = 0.5× 10−2 in φ1n, namely,

φ1n(B) =
4× 10−6

1 + exp[1600 (B − 1/200)]
. (45)

The results are shown in Fig. 12. As we can see, the observation of nuclear signals is much

improved; in agreement with the rule that r = 1/200 elevates νcrit to a higher value, ∼ 4×104.
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Fig. 12. The dependences on Q of log10 σ1 (solid curve) and of Y = log10 σM for ν = 2000 (dashed

curve) and ν = 10000 (dotted curve). All with r = 0.5× 10−2.

As a last test of the νcrit ∼ r−2 rule, we keep φ1c(B) = BK1(B) and let

φ1n(B) =
2× 10−8

1 + exp[8000 (B − 1/1000)]
, (46)
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which is an obvious r = 1/1000 case. The results are shown in Fig. 13, where it is clear that,

as expected, νcrit occurs between 10−5 and 10−6.
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Fig. 13. The dependences on Q of log10 σ1 (solid curve) and of log10 σM for ν = 105 (dashed curve)

and ν = 106 (dotted curve). All with r = 10−3.

Because ν = Tρ σtot
1 ≃ Tρ σtot

1c , the existence of a νcrit induces a critical target thick-

ness Tcrit such that the retrieval of nuclear signal is possible for target thickness T sufficiently

less than Tcrit; namely,

T < Tcrit ≃
νcrit
ρ σtot

1c

. (47)

For p−208Pb elastic scattering at 20 GeV, σtot
1c ≃ 6.7 × 108 mb = 6.7 × 10−19 cm2. The

density d and the atomic mass number A of lead are 11.3 g/cm3 and 208, respectively.

Hence, ρ = (d/A)NAvog = 3.27× 1022 cm−3, with the Avogadro number NAvog = 6.02× 1023

[1/mole]. Because from Fig. 10 it is likely that r ∼ 10−3 and our analysis indicates that
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Table 1

Target thickness T corresponding to ν = 105 for 20-GeV protons.

Atom d [g/cm3] Z λ A ρ [1022 cm−3] T [cm]

Pb 11.3 82 1.000 208 3.27 4.6

Cu 8.9 29 0.250 64 8.39 7

Al 2.7 13 0.086 27 6.02 29

Mg 1.74 12 0.077 24 4.37 44

Be 1.85 4 0.018 9 12.38 67

νcrit ∼ 106, then Eq. (47) gives Tcrit ≃ 46 cm. Hence, a nuclear signal can be retrieved at

ν ≤ 105, which corresponds to T ≤ 4.6 = 0.1 Tcrit [cm]. In so far as Q = 1 corresponds to

θ ∼ 0.003 milliradians, the survivor oscillation seen for ν = 105 in Fig. 13 between Q ∼ 6000

and Q ∼ 12000, compatible with the expected period ∼ 2π/r, would demand experimental

measurements at angles of order a few dozens of milliradians at most.

The proton-nucleus Coulomb cross section σtot
1c is ∝ Z2R2

e ∼ Z4/3, where Z is the

target charge and Re is the root-mean-square radius of electric charge distribution in an atom

with Re ∼ a0/Z
1/3 and a0 being the first Bohr radius[15]. Hence, one can estimate σtot

1c;pA

for proton scattering from a given nucleus A at 20 GeV by using σtot
1c;pA ∼ λ σtot

1c;p−Pb with

the scaling factor λ = (82/Z)−4/3. Hence, for a same ν one has T (pA) = T (pPb)ρPb/(ρAλ).

Results for a sample of atomic nuclei at ν = 105 are given in Table I. Of course, the price

one pays in studying the nuclear signals that survive the multiple-scattering broadening

is that one has to measure the angular distribution with good energy resolution at large

proton scattering angles. In the case of 20 GeV incoming protons, the angles are about tens

of milliradians, where the magnitudes of the cross sections are quite small. However, such

measurements should be feasible with the currently available technology.
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5 Conclusion

The main mathematical and physical statement proposed by this work about multiple

scattering consists in folding probabilities rather than scattering amplitudes. This is justified

by the incoherence which is expected between the different scatterers of a thick, non crys-

talline target. Simultaneously, an eikonal approximation, justified by the very high energy

of the beam, allows a familiar impact parameter representation with profiles. Furthermore,

small-momentum expansions[1] are not employed in the formulation. As a consequence of

such initial statements, a Poisson process is found, leading to an elementary formalism of

convolutions and exponentiations in a context of Fourier-Bessel transforms.

This Poisson process is nothing but a random walk in transfer momentum space.

The central limit theorem is at work and the details of nuclear oscillations and interferences

between Coulomb and nuclear scattering are blurred very fast as soon as the parameter

ν = Tρ σtot
1 , a measure of the number of collisions, exceeds a critical value of order r−2. Here

r is the ratio of the range of the nuclear profile to that of the atomic profile.

Below this critical value of ν, and at moderate and large momentum transfers (at the

cost of very small elastic cross sections in the latter case) our conclusion is that some nuclear

information remains observable. Such information is contained in oscillations of the multistep

angular cross section σM(Q) with periods ∼ 2π/r, oscillations that are similar to those of

the Bessel function, J1(r Q), which typically represents pure nuclear diffractive scattering.

Our model analysis shows that the characteristic distances between successive cross-section

maxima and minima in the angular distribution remain essentially unchanged while each of

these oscillations dampens as ν increases.

From the point of view of retrieving nuclear signals from protons traveling through a

thick target, for which no sufficient attention was given in the literature, our work is more

of a general feasibility study rather than a specific numerical evaluation. We have made use

of analytical and semi-analytical models to bring out the basic features of the underlying

physics. We believe that the positive feasibility concluded from this study will sustain tests
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in detailed numerical applications.

One problem which has not been solved in the present work, however, is to find an

estimate of the ν dependence of such periods ∼ 2π/r. Our numerical evidence suggests that

the dependence is not very strong, despite all the causes for a broadening of the signal, but

our models and calculations lack the precision needed to tabulate such periods into functions

of ν. This effort is under consideration for an extension of the present work.

In summary, below νcrit, which is of order 1/r2 with r being the ratio of the range

of nuclear profile to the range of atomic profile, the nuclear signals can be retrieved from

proton scattering from a thick target of thickness T < Tcrit. We suggest a conservative upper

bound, namely, T ≤ 0.1 Tcrit for practical considerations.

References

[1] G. Molière, Z. Naturforsch 3a, 78 (1948).

[2] E.J. Williams, Proc. Roy. Soc. 169, 531 (1938); Phys. Rev. 58, 292 (1940); Rev. Mod. Phys.

17, 217 (1945).

[3] S.A. Goudsmit and J.L. Saunderson, Phys. Rev. 57, 24 (1940); ibid. 58, 36 (1940).

[4] H. Snyder and W.T. Scott, Phys. Rev. 76, 220 (1949).

[5] W.T. Scott, Phys. Rev. 85, 245 (1952). (1940) and ibid. 36 (1940).

[6] H.W. Lewis, Phys. Rev. 78, 526 (1950).

[7] H.A. Bethe, Phys. Rev. 89, 1256 (1953).

[8] N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Oxford at the Clarendon

Press, third edition, 1965, pp.467-476.

[9] The European Journal of Physics 15, 166 (2000).

[10] See, for example, G. Shen, C. Ankenbrandt, M. Atac, et al., Phys. Rev. 20, 1584 (1979).

28



[11] R.J. Glauber, in High-Enery Physics and Nuclear Structure, Proc. of the 2nd International

Conference, Rehovoth, 1967, ed. G. Alexander, North-Holland, Amsterdam, 1967, p.311, and

the references mentioned therein.

[12] Charles J. Joachain, Quantum Collision Theory, North-Holland Publishing Co., Amsterdam-

New York-Tokyo-Oxford (1983), pp.7-9.

[13] L.S. Rodberg and R.M. Thaler, Introduction to the Quantum Theory of Scattering, Academic

Press, New York-London (1967), pp.7-8.

[14] R.J. Glauber and G. Matthiae, Nucl. Phys. B21, 135 (1970).

[15] K. Gottfried, Quantum Mechanics, Vol. I, p458, Addison-Wesley, N.Y. (1980): The root-mean-

square of electron charge distribution is of the order of a0/Z
1/3 with a0 = 0.528 × 105 fm.

29


	Introduction and basic formalism
	Broadening of angular distributions by multiple scatterings
	Loss of nuclear information at small momentum transfers
	Conditions for observing nuclear information
	Conclusion
	References

