Detecting axisymmetric magnetic fields using gravity modes in intermediate-mass stars - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Astronomy and Astrophysics - A&A Year : 2020

Detecting axisymmetric magnetic fields using gravity modes in intermediate-mass stars

Abstract

Context. Angular momentum (AM) transport models of stellar interiors require improvements to explain the strong extraction of AM from stellar cores that is observed with asteroseismology. One of the frequently invoked mediators of AM transport are internal magnetic fields, even though their properties, observational signatures, and influence on stellar evolution are largely unknown.Aims. We study how a fossil, axisymmetric internal magnetic field affects period spacing patterns of dipolar gravity mode oscillations in main sequence stars with masses of 1.3, 2.0, and 3.0 M⊙. We assess the influence of fundamental stellar parameters on the magnitude of pulsation mode frequency shifts.Methods. We computed dipolar gravity mode frequency shifts due to a fossil, axisymmetric poloidal–toroidal internal magnetic field for a grid of stellar evolution models, varying stellar fundamental parameters. Rigid rotation was taken into account using the traditional approximation of rotation, and the influence of the magnetic field was computed using a perturbative approach.Results. We find magnetic signatures for dipolar gravity mode oscillations in terminal-age main sequence stars that are measurable for a near-core field strength larger than 105 G. The predicted signatures differ appreciably from those due to rotation.Conclusions. Our formalism demonstrates the potential for the future detection and characterization of strong fossil, axisymmetric internal magnetic fields in gravity-mode pulsators near the end of core-hydrogen burning from Kepler photometry, if such fields exist.
Fichier principal
Vignette du fichier
aa37363-19.pdf (3.52 Mo) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

cea-02882578 , version 1 (26-06-2020)

Identifiers

Cite

J. van Beeck, V. Prat, T. van Reeth, S. Mathis, D. M. Bowman, et al.. Detecting axisymmetric magnetic fields using gravity modes in intermediate-mass stars. Astronomy and Astrophysics - A&A, 2020, 638, pp.A149. ⟨10.1051/0004-6361/201937363⟩. ⟨cea-02882578⟩
36 View
59 Download

Altmetric

Share

Gmail Facebook X LinkedIn More