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ABSTRACT

Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of
structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured
directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid,
convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same
information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally
expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic
effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present
the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser & Squires method (KS), and a
new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method
and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the
KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction
by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we
analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point
correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the
two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are
reduced by factors of about 2 and 10, respectively.
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1. Introduction

Gravitational lensing is the process in which light from
background galaxies is deflected as it travels towards us. The
deflection is a result of the gravitation of the intervening mass.
Measuring the deformations in a large sample of galaxies offers
a direct probe of the matter distribution in the Universe (includ-
ing dark matter) and can thus be directly compared to theoretical
models of structure formation. The statistical properties of the
weak-lensing field can be assessed by a statistical analysis of
either the shear field or the convergence field. On the one hand,
convergence is a direct tracer of the total matter distribution inte-
grated along the line of sight, and is therefore directly linked
with the theory. On the other hand, the shear (or more exactly,
the reduced shear) is a direct observable and usually preferred
for simplicity reasons.

Accordingly, the most common method for characterising
the weak-lensing field distribution is the shear two-point corre-
lation function. It is followed very closely by the mass-aperture
two-point correlation functions, which are the result of convolv-

? This paper is published on behalf of the Euclid Consortium.

ing the shear two-point correlation functions by a compensated
filter (Schneider et al. 2002) that is able to separate the E and
B modes of the two-point correlation functions (Crittenden et al.
2002). However, gravitational clustering is a non-linear process,
and in particular, the mass distribution is highly non-Gaussian
at small scales. For this reason, several estimators of the three-
point correlation functions have been proposed, either in the
shear field (Bernardeau et al. 2002b; Benabed & Scoccimarro
2006) or using the mass-aperture filter (Kilbinger & Schneider
2005). The three-point correlation functions are the lowest order
statistics to quantify non-Gaussianity in the weak-lensing field
and thus provide additional information on structure formation
models.

The convergence field can also be used to measure the
two- and three-point correlation functions and other higher-order
statistics. When we assume that the mass inversion (the compu-
tation of the convergence map from the measured shear field)
is properly conducted, the shear field contains the same infor-
mation as the convergence maps (e.g. Schneider et al. 2002;
Shi et al. 2011). While it carries the same information, the
lensing signal is more compressed in the convergence maps
than in the shear field, which makes it easier to extract and
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computationally less expensive. The convergence maps becomes
a new tool that might bring additional constraints complemen-
tary to those that we can obtain from the shear field. How-
ever, the weak-lensing signal being highly non-Gaussian at small
scales, mass-inversion methods using smoothing or de-noising to
regularise the problem are not optimal.

Reconstructing convergence maps from weak lensing is a
difficult task because of shape noise, irregular sampling, com-
plex survey geometry, and the fact that the shear is not a direct
observable. This is an ill-posed inverse problem and requires reg-
ularisation to avoid pollution from spurious B modes. Several
methods have been derived to reconstruct the projected mass dis-
tribution from the observed shear field. The first non-parametric
mass reconstruction was proposed by Kaiser & Squires (1993)
and was further improved by Bartelmann (1995), Kaiser (1995),
Schneider (1995), and Squires & Kaiser (1996). These linear
inversion methods are based on smoothing with a fixed ker-
nel, which acts as a regularisation of the inverse problem. Non-
linear reconstruction methods were also proposed using different
sets of priors and noise-regularisation techniques (Bridle et al.
1998; Seitz et al. 1998; Marshall et al. 2002; Pires et al. 2009a;
Jullo et al. 2014; Lanusse et al. 2016). Convergence mass maps
have been built from many surveys, including the COSMOS
Survey (Massey et al. 2007), the Canada France Hawaï Tele-
scope Lensing Survey CFHTLenS (Van Waerbeke et al. 2013),
the CFHT/MegaCam Stripe-82 Survey (Shan et al. 2014), the
Dark Energy Survey Science Verification DES SV (Chang et al.
2015; Vikram et al. 2015; Jeffrey et al. 2018), the Red Cluster
Sequence Lensing Survey RCSLenS (Hildebrandt et al. 2016),
and the Hyper SuprimeCam Survey (Oguri et al. 2018). With the
exception of Jeffrey et al. (2018), who used the non-linear recon-
struction proposed by Lanusse et al. (2016), all these methods
are based on the standard Kaiser & Squires method.

In the near future, several wide and deep weak-lensing sur-
veys are planned: Euclid (Laureijs et al. 2011), Large Synop-
tic Survey Telescope LSST (LSST Science Collaboration et al.
2009), and Wide Field Infrared Survey Telescope WFIRST
(Green et al. 2012). In particular, the Euclid satellite will sur-
vey 15 000 deg2 of the sky to map the geometry of the dark
Universe. One of the goals of the Euclid mission is to pro-
duce convergence maps for non-Gaussianity studies and con-
strain cosmological parameters. To do this, two different mass
inversion methods are being included into the official Euclid data
processing pipeline. The first method is the standard Kaiser &
Squires method (hereafter KS). Although it is well known that
the KS method has several shortcomings, it is taken as the refer-
ence for cross-checking the results. The second method is a new
non-linear mass-inversion method (hereafter KS+) based on the
formalism developed in Pires et al. (2009a). The KS+ method
aims at performing the mass inversion with minimum informa-
tion loss. This is done by performing the mass inversion with
no other regularisation than binning while controlling systematic
effects.

In this paper, the performance of these two mass-inversion
methods is investigated using the Euclid Flagship mock galaxy
catalogue (version 1.3.3, Castander et al., in prep.) with real-
istic observational effects (i.e. shape noise, missing data, and
the reduced shear). The effect of intrinsic alignments is not
studied in this paper because we lack simulations that would
properly model intrinsic alignments. However, intrinsic align-
ments also need to be considered seriously because they
affect second- and higher-order statistics. A contribution of
several percent is expected to two-point statistics (see e.g.
Joachimi et al. 2013).

We compare the results obtained with the KS+ method to
those obtained with a version of the KS method in which no
smoothing step is performed other than binning. We quantify the
quality of the reconstruction using two-point correlation func-
tions and moments of the convergence. Our tests illustrate the
efficacy of the different mass-inversion methods in preserving
the second-order statistics and higher-order moments.

The paper is organised as follows. In Sect. 2 we present
the weak-lensing mass-inversion problem and the standard KS
method. Section 2.2 presents the KS+ method we used to cor-
rect for the different systematic effects. In Sect. 4 we explain
the method with which we compared these two mass-inversion
methods. In Sect. 5 we use the Euclid Flagship mock galaxy cat-
alogue with realistic observational effects such as shape noise
and complex survey geometry and consider the reduced shear to
investigate the performance of the two mass-inversion methods.
First, we derive simulations including only one issue at a time to
test each systematic effect independently. Then we derive real-
istic simulations that include them all and study the systematic
effects simultaneously. We conclude in Sect. 6.

2. Weak-lensing mass inversion

2.1. Weak gravitational lensing formalism

In weak-lensing surveys, the shear field γ(θ) is derived from the
ellipticities of the background galaxies at position θ in the image.
The two components of the shear can be written in terms of
the lensing potential ψ(θ) as (see e.g. Bartelmann & Schneider
2001)

γ1 = 1
2

(
∂2

1 − ∂
2
2

)
ψ,

γ2 = ∂1∂2ψ,
(1)

where the partial derivatives ∂i are with respect to the angular
coordinates θi, i = 1, 2 representing the two dimensions of sky
coordinates. The convergence κ(θ) can also be expressed in terms
of the lensing potential as

κ =
1
2

(
∂2

1 + ∂2
2

)
ψ. (2)

For large-scale structure lensing, assuming a spatially flat Uni-
verse, the convergence at a sky position θ from sources at comov-
ing distance r is defined by

κ(θ, r) =
3H2

0Ωm

2c2

∫ r

0
dr′

r′(r − r′)
r

δ(θ, r′)
a(r′)

, (3)

where H0 is the Hubble constant, Ωm is the matter density, a is
the scale factor, and δ ≡ (ρ− ρ̄)/ρ̄ is the density contrast (where ρ
and ρ̄ are the 3D density and the mean 3D density, respectively).
In practice, the expression for κ can be generalised to sources
with a distribution in redshift, or equivalently, in comoving dis-
tance f (r), yielding

κ(θ) =
3H2

0Ωm

2c2

∫ rH

0
dr′p(r′)r′

δ(θ, r′)
a(r′)

, (4)

where rH is the comoving distance to the horizon. The con-
vergence map reconstructed over a region on the sky gives us
the integrated mass-density fluctuation weighted by the lensing-
weight function p(r′),

p(r′) =

∫ rH

r′
dr f (r)

r − r′

r
· (5)
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2.2. Kaiser & Squires method (KS)

2.2.1. KS mass-inversion problem

The weak lensing mass inversion problem consists of recon-
structing the convergence κ from the measured shear field γ.
We can use complex notation to represent the shear field, γ =
γ1 + iγ2, and the convergence field, κ = κE + iκB, with κE corre-
sponding to the curl-free component and κB to the gradient-free
component of the field, called E and B modes by analogy with
the electromagnetic field. Then, from Eq. (1) and Eq. (2), we can
derive the relation between the shear field γ and the convergence
field κ. For this purpose, we take the Fourier transform of these
equations and obtain

γ̂ = P̂ κ̂, (6)

where the hat symbol denotes Fourier transforms, P̂ = P̂1 + iP̂2,

P̂1(`) =
`2

1−`
2
2

`2 ,

P̂2(`) = 2`1`2
`2 ,

(7)

with `2 ≡ `2
1 + `2

2 and `i the wave numbers corresponding to the
angular coordinates θi.

P̂ is a unitary operator. The inverse operator is its complex
conjuguate P̂∗ = P̂1−iP̂2 , as shown by Kaiser & Squires (1993),

κ̂ = P̂∗ γ̂. (8)

We note that to recover κ from γ, there is a degeneracy when
`1 = `2 = 0. Therefore the mean value of κ cannot be recov-
ered if only shear information is available. This is the so-called
mass-sheet degeneracy (see e.g. Bartelmann 1995, for a discus-
sion). In practice, we impose that the mean convergence vanishes
across the survey by setting the reconstructed ` = 0 mode to
zero. This is a reasonable assumption for large-field reconstruc-
tion (e.g. Seljak 1998).

We can easily derive an estimator of the E-mode and B-mode
convergence in the Fourier domain,

ˆ̃κE = P̂1γ̂1 + P̂2γ̂2,

ˆ̃κB = −P̂2γ̂1 + P̂1γ̂2.
(9)

Because the weak lensing arises from a scalar potential (the lens-
ing potential ψ), it can be shown that weak lensing only produces
E modes. However, intrinsic alignments and imperfect correc-
tions of the point spread function (PSF) generally generate both
E and B modes. The presence of B modes can thus be used to test
for residual systematic effects in current weak-lensing surveys.

2.2.2. Missing-data problem in weak lensing

The shear is only sampled at the discrete positions of the galaxies
where the ellipticity is measured. The first step of the mass map-
inversion method therefore is to bin the observed ellipticities of
galaxies on a regular pixel grid to create what we refer to as the
observed shear maps γobs. Some regions remain empty because
various masks were applied to the data, such as the masking-out
of bright stars or camera CCD defects. In such cases, the shear
is set to zero in the original KS method,

γobs = Mγn, (10)

with M the binary mask (i.e. M = 1 when we have information
at the pixel, M = 0 otherwise) and γn the noisy shear maps. As

the shear at any sky position is non-zero in general, this intro-
duces errors in the reconstructed convergence maps. Some spe-
cific methods address this problem by discarding masked pixels
at the noise-regularisation step (e.g. Van Waerbeke et al. 2013).
However, as explained previously, this intrinsic filtering results
in subtantial signal loss at small scales. Instead, inpainting tech-
niques are used in the KS+ method to fill the masked regions
(see Appendix A).

2.2.3. Weak-lensing shape noise

The gravitational shear is derived from the ellipticities of the
background galaxies. However, the galaxies are not intrinsically
circular, therefore their measured ellipticity is a combination of
their intrinsic ellipticity and the gravitational lensing shear. The
shear is also subject to measurement noise and uncertainties in
the PSF correction. All these effects can be modelled as an addi-
tive noise, N = N1 + iN2,

γn = γ + N (11)

The noise terms N1 and N2 are assumed to be Gaussian and
uncorrelated with zero mean and standard deviation,

σi
n =

σε√
N i

g

, (12)

where N i
g is the number of galaxies in pixel i. The root-mean-

square shear dispersion per galaxy, σε , arises both from the
measurement uncertainties and the intrinsic shape dispersion
of galaxies. The Gaussian assumption is a reasonable assump-
tion, and σε is set to 0.3 for each component as is gener-
ally found in weak-lensing surveys (e.g. Leauthaud et al. 2007;
Schrabback et al. 2015, 2018). The surface density of usable
galaxies is expected to be around ng = 30 gal. arcmin−2 for the
Euclid Wide survey (Cropper et al. 2013).

The derived convergence map is also subject to an additive
noise,

ˆ̃κn = P̂∗ γ̂n = κ̂ + P̂∗ N̂. (13)

In particular, the E component of the convergence noise is

NE = N1 ∗ P1 + N2 ∗ P2, (14)

where the asterisk denotes the convolution operator, and P1 and
P2 are the inverse Fourier transforms of P̂1 and P̂2. When the
shear noise terms N1 and N2 are Gaussian, uncorrelated, and
with a constant standard deviation across the field, the conver-
gence noise is also Gaussian and uncorrelated. In practice, the
number of galaxies varies slightly across the field. The variances
of N1 and N2 might also be slightly different, which can be mod-
elled by different values of σε for each component. These effects
introduce noise correlations in the convergence noise maps, but
they were found to remain negligible compared to other effects
studied in this paper.

In the KS method, a smoothing by a Gaussian filter is fre-
quently applied to the background ellipticities before mass inver-
sion to regularise the solution. Although performed in most
applications of the KS method, this noise regularisation step
is not mandatory. It was introduced to avoid infinite noise
and divergence at very small scales. However, the pixelisation
already provides an intrinsic regularisation. This means that
there is no need for an additional noise regularisation prior to
the inversion. Nonetheless, for specific applications that require
denoising in any case, the filtering step can be performed before
or after the mass inversion.
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3. Improved Kaiser & Squires method (KS+)

Systematic effects in mass-inversion techniques must be fully
controlled in order to use convergence maps as cosmological
probes for future wide-field weak-lensing experiments such as
Euclid. We introduce the KS+ method based on the formalism
developed in Pires et al. (2009a) and Jullo et al. (2014), which
integrates the necessary corrections for imperfect and realistic
measurements. We summarise its improvements over KS in this
section and evaluate its performance in Sect. 5.

In this paper, the mass-mapping formalism is developed in
the plane. The mass inversion can also be performed on the
sphere, as proposed in Pichon et al. (2010) and Chang et al.
(2018), and the extension of the KS+ method to the curved sky is
being investigated. However, the computation time and memory
required to process the spherical mass inversion means limita-
tions in terms of convergence maps resolution and/or complexity
of the algorithm. Thus, planar mass inversions remain important
for reconstructing convergence maps with a good resolution and
probing the non-Gaussian features of the weak-lensing field (e.g.
for peak-count studies).

3.1. Missing data

When the weak-lensing shear field γ is sampled on a grid of
N×N pixels, we can describe the complex shear and convergence
fields by their respective matrices. In the remaining paper, the
notations γ and κ stand for the matrix quantities.

In the standard version of the KS method, the pixels with no
galaxies are set to zero. Figure 1 shows an example of simulated
shear maps without shape noise derived from the Euclid Flag-
ship mock galaxy catalogue (see Sect. 4.3 for more details). The
upper panels of Fig. 1 show the two components of the shear with
zero values (displayed in black) corresponding to the mask of the
missing data. These zero values generate an important leakage
during the mass inversion.

With KS+, the problem is reformulated by including addi-
tional assumptions to regularise the problem. The convergence
κ can be analysed using a transformation Φ, which yields a set
of coefficients α = ΦTκ (Φ is an orthogonal matrix operator,
and ΦT represents the transpose matrix of Φ). In the case of
the Fourier transformation, ΦT would correspond to the discrete
Fourier transform (DFT) matrix, and α would be the Fourier
coefficients of κ. The KS+ method uses a prior of sparsity, that
is, it assumes that there is a transformation Φ where the conver-
gence κ can be decomposed into a set of coefficients α, where
most of its coefficients are close to zero. In this paper, Φ was
chosen to be the discrete cosine transform (DCT) following
Pires et al. (2009a). The DCT expresses a signal in terms of a
sum of cosine functions with different frequencies and ampli-
tudes. It is similar to the DFT, but uses smoother boundary con-
ditions. This provides a sparser representation. Hence the use of
the DCT for JPEG compression.

We can rewrite the relation between the observed shear γobs

and the noisy convergence κn as

γobs = MPκn, (15)

with M being the mask operator and P the KS mass-inversion
operator. There is an infinite number of convergence κn that
can fit the observed shear γobs. With KS+, we first impose that
the mean convergence vanishes across the survey, as in the KS
method. Then, among all possible solutions, KS+ searches for
the sparsest solution κ̃n in the DCT Φ (i.e. the convergence κn

that can be represented with the fewest large coefficients). The

solution of this mass-inversion problem is obtained by solving

min
κ̃n
‖ΦTκ̃n‖0 subject to ‖ γobs −MPκ̃n ‖2≤ σ2, (16)

where ||z||0 the pseudo-norm, that is, the number of non-zero
entries in z, ||z|| the classical l2 norm (i.e. ||z|| =

√∑
k(zk)2), and

σ stands for the standard deviation of the input shear map mea-
sured outside the mask. The solution of this optimisation task can
be obtained through an iterative thresholding algorithm called
morphological component analysis (MCA), which was intro-
duced by Elad et al. (2005) and was adapted to the weak-lensing
problem in Pires et al. (2009a).

Pires et al. (2009a) used an additional constraint to force the
B modes to zero. This is optimal when the shear maps have
no B modes. However, any real observation has some resid-
ual B modes as a result of intrinsic alignments, imperfect PSF
correction, etc. The B-mode power is then transferred to the E
modes, which degrades the E-mode convergence reconstruction.
We here instead let the B modes free, and an additional con-
straint was set on the power spectrum of the convergence map.
To this end, we used a wavelet transform to decompose the con-
vergence maps into a set of aperture mass maps using the star-
let transform algorithm (Starck et al. 1998; Starck & Murtagh
2002). Then, the constraint consists of renormalising the stan-
dard deviation (or equivalently, the variance) of each aperture
mass map inside the mask regions to the values measured in the
data, outside the masks, and then reconstructing the convergence
through the inverse wavelet transform. The variance per scale
corresponding to the power spectrum at these scales allows us
to constrain a broadband power spectrum of the convergence κ
inside the gaps.

Adding the power spectrum constraints yields the final sparse
optimisation problem,

min
κ̃n
‖ΦTκ̃n‖0 s.t. ‖ γobs −MPWTQWκ̃n ‖2≤ σ2, (17)

where W is the forward wavelet transform and WT its inverse
transform, and Q is the linear operator used to impose the power
spectrum constraint. More details about the KS+ algorithm are
given in Appendix A.

The KS+ method allows us to reconstruct the in-painted con-
vergence maps and the corresponding in-painted shear maps,
where the empty pixels are replaced by non-zero values. These
interpolated values preserve the continuity of the signal and
reduce the signal leakage during the mass inversion (see lower
panels of Fig. 1). The quality of the convergence maps recon-
struction with respect to missing data is evaluated in Sect. 5.
Additionally, the new constraint allows us to use the residual
B modes of the reconstructed maps to test for the presence of
residual systematic effects and possibly validate the shear mea-
surement processing chain.

3.2. Field border effects

The KS and KS+ mass-inversion methods relate the conver-
gence and the shear fields in Fourier space. However, the discrete
Fourier transform implicitly assumes that the image is periodic
along both dimensions. Because there is no reason for oppo-
site borders to be alike, the periodic image generally presents
strong discontinuities across the frame border. These disconti-
nuities cause several artefacts at the borders of the reconstructed
convergence maps. The field border effects can be addressed by
removing the image borders, which throws away a large fraction
of the data. Direct finite-field mass-inversion methods have also
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Fig. 1. Simulated shear maps with missing data covering a field of 5◦ × 5◦. Left panels: first component of the shear γ1, and right panels: second
component of the shear γ2. Upper panels: incomplete shear maps, where the pixels with no galaxies are set to zero (displayed in black). Lower
panels: result of the inpainting method that allows us to fill the gaps judiciously.

been proposed (e.g. Seitz & Schneider 1996, 2001). Although
unbiased, convergence maps reconstructed using these methods
are noisier than those obtained with the KS method. In the KS+
method, the problem of borders is solved by taking larger sup-
port for the image and by considering the borders as masked
regions to be in-painted. The upper panels of Fig. 2 show the
two components of a shear map covering 5◦ × 5◦ degrees and
extending to a field of 10◦ × 10◦. The inpainting method is then
used to recover the shear at the field boundaries, as shown in the
lower panels of Fig. 2. After the mass inversion is performed,
the additional borders are removed. This technique reduces the
field border effects by pushing the border discontinuities farther
away.

3.3. Reduced shear

In Sect. 2.2 we assumed knowledge of the shear, in which case
the mass inversion is linear. In practice, the observed galaxy
ellipticity is not induced by the shear γ, but by the reduced shear
g that depends on the convergence κ corresponding to that par-
ticular line of sight,

g ≡
γ

1 − κ
· (18)

While the difference between the shear γ and the reduced shear
g is small in the regime of cosmic shear (κ � 1), neglecting
it might nevertheless cause a measurable bias at small angular

scales (see e.g. White 2005; Shapiro 2009). In the standard ver-
sion of KS, the Fourier estimators are only valid when the con-
vergence is small (κ � 1), and they no longer hold near the
centre of massive galaxy clusters. The mass-inversion problem
becomes non-linear, and it is therefore important to properly
account for reduced shear.

In the KS+ method, an iterative scheme is used to recover
the E-mode convergence map, as proposed in Seitz & Schneider
(1995). The method consists of solving the linear inverse prob-
lem iteratively (see Eq. (9)), using at each iteration the previous
estimate of the E-mode convergence to correct the reduced shear
using Eq. (18). Each iteration then provides a better estimate
of the shear. This iterative algorithm was found in Jullo et al.
(2014) to quickly converge to the solution (about three itera-
tions). The KS+ method uses the same iterative scheme to cor-
rect for reduced shear, and we find that it is a reasonable assump-
tion in the case of large-scale structure lensing.

3.4. Shape noise

In the original implementation of KS, the shear maps are first
regularised with a smoothing window (i.e. a low-pass filter) to
obtain a smoothed version of the shear field. Then, Eq. (9) is
applied to derive the convergence maps. In contrast, the KS+
method aims at producing very general convergence maps for
many applications. In particular, it produces noisy maps with
minimum information loss.
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Fig. 2. Upper panels: simulated shear maps covering a field of 5◦ × 5◦, extended to a field of 10◦ × 10◦ by zero padding (zero values are displayed
in black). Lower panels: result of the inpainting method that allows us to extrapolate the shear on the borders. Left panels: first component of the
shear γ1, and right panels: second component of the shear γ2.

However, for specific applications (e.g. galaxy cluster detec-
tion and characterisation), it can be useful to add an additional
de-noising step, using any of the many regularisation techniques
that have been proposed (Bridle et al. 1998; Seitz et al. 1998;
Marshall et al. 2002; Starck et al. 2006; Lanusse et al. 2016). To
compare the results of the KS and KS+ methods on noisy maps,
we used a linear Gaussian and the non-linear MRLens filter
(Starck et al. 2006) for noise suppression. Figure 3 illustrates the
effect of shape noise on reconstructing the convergence map. The
upper panels show one E-mode convergence map reconstructed
from noise-free (left) and noisy (right) shear data. The conver-
gence map is dominated by the noise. The lower panels show
the results of the Gaussian filter (left) and MRLens filter (right).
The Gaussian filter gives a smoothed version of the noisy con-
vergence map, whose level of smoothness is set by the width
of the Gaussian (σ). Thus, the amplitude of the over-densities
(in blue) are systematically lowered by the Gaussian filter. In
contrast, the MRLens filter uses a prior of sparsity to better
recover the amplitude of the structures and uses a parameter,
the false-discovery rate (αFDR), to control the average fraction
of false detections (i.e. the number of pixels that is truly inac-
tive, declared positive) made over the total number of detections
(Benjamini & Hochberg 1995). For some other applications (e.g.
two- or three-point correlation), the integrity of the reconstructed
noisy convergence maps might be essential and this denoising
step can be avoided.

4. Method

4.1. Comparing second-order statistics

The most common tools for constraining cosmological parame-
ters in weak-lensing studies are the shear two-point correlation
functions. Following Bartelmann & Schneider (2001), they are
defined by considering pairs of positions ϑ and θ + ϑ, and defin-
ing the tangential and cross-component of the shear γt and γ× at
position ϑ for this pair as

γt = −Re(γ e−2iϕ), (19)

γ× = −Im(γ e−2iϕ), (20)

where ϕ is the polar angle of the separation vector θ. Then we
define the two independent shear correlation functions

ξ±(θ) : = 〈γtγ
′
t 〉 ± 〈γ×γ

′
×〉 (21)

=
1

2π

∫ ∞

0
d` ` Pκ(`) J0,4(`θ), (22)

where the Bessel function J0 (J4) corresponds to the plus (minus)
correlation function, Pκ(`) is the power spectrum of the projected
matter density, and ` is the Fourier variable on the sky. We can
also compute the two-point correlation functions of the conver-
gence (κ = κE + iκB), defined as

ξκE (θ) = 〈κEκ
′
E〉,

ξκB (θ) = 〈κBκ
′
B〉. (23)
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Fig. 3. Shape-noise effect. Upper panels: original E-mode convergence κ map (left) and the noisy convergence map with ng = 30 gal. arcmin−2

(right). Lower panels: reconstructed maps using a linear Gaussian filter with a kernel size of σ = 3′ (left) and the non-linear MRLens filtering
using αFDR = 0.05 (right). The field is 5◦ × 5◦ downsampled to 512 × 512 pixels.

We can verify that these two quantities agree (Schneider et al.
2002):

ξ+(θ) = ξκE (θ) + ξκB (θ). (24)

When the B modes in the shear field are consistent with zero,
the two-point correlation of the shear (ξ+) is equal to the two-
point correlation of the convergence (ξκE ). Then the differences
between the two are due to the errors introduced by the mass
inversion to go from shear to convergence.

We computed these two-point correlation functions using the
tree code athena (Kilbinger et al. 2014). The shear two-point
correlation functions were computed by averaging over pairs of
galaxies of the mock galaxy catalogue, whereas the convergence
two-point correlation functions were computed by averaging
over pairs of pixels in the convergence map. The convergence
two-point correlation functions can only be computed for sep-
aration vectors θ allowed by the binning of the convergence
map.

4.2. Comparing higher-order statistics

Two-point statistics cannot fully characterise the weak-lensing
field at small scales where it becomes non-Gaussian (e.g.
Bernardeau et al. 2002a). Because the small-scale features carry
important cosmological information, we computed the third-
order moment, 〈κ3

E〉, and the fourth-order moment, 〈κ4
E〉, of the

convergence. Computations were performed on the original con-
vergence maps provided by the Flagship simulation, as well as
on the convergence maps reconstructed from the shear field with
the KS and KS+ methods. We evaluated the moments of con-
vergence at various scales by computing aperture mass maps
(Schneider 1996; Schneider et al. 1998). Aperture mass maps
are typically obtained by convolving the convergence maps with
a filter function of a specific scale (i.e. aperture radii). We per-
formed this here by means of a wavelet transform using the star-
let transform algorithm (Starck et al. 1998; Starck & Murtagh
2002), which simultaneously produces a set of aperture mass
maps on dyadic (powers of two) scales (see Appendix A for
more details). Leonard et al. (2012) demonstrated that the aper-
ture mass is formally identical to a wavelet transform at a specific
scale and the aperture mass filter corresponding to this transform
is derived. The wavelet transform offers significant advantages
over the usual aperture mass algorithm in terms of computation
time, providing speed-up factors of about 5 to 1200 depending
on the scale.

4.3. Numerical simulations

We used the Euclid Flagship mock galaxy catalogue version 1.3.3
(Castander et al., in prep.) derived from N-body cosmological
simulation (Potter et al. 2017) with parameters Ωm = 0.319,
Ωb = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns = 0.96, h = 0.67,
and the particle mass was mp ∼ 2.398 × 109 M� h−1. The galaxy
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Fig. 4. Missing data effects: Pixel difference outside the mask between the original E-mode convergence κ map and the map reconstructed from
the incomplete simulated noise-free shear maps using the KS method (le f t) and the KS+ method (right). The field is 10◦ × 10◦ downsampled to
1024 × 1024 pixels. The missing data represent roughly 20% of the data.

light-cone catalogue contains 2.6 billion galaxies over 5000 deg2,
and it extends up to z = 2.3. It has been built using a
hybrid halo occupation distribution and halo abundance match-
ing (HOD+HAM) technique, whose galaxy-clustering properties
were discussed in detail in Crocce et al. (2015). The lensing prop-
erties were computed using the Born approximation and projected
mass density maps (in HEALPix format with Nside = 8192) gener-
ated from the particle light-cone of the Flagship simulation. More
details on the lensing properties of the Flagship mock galaxy cat-
alogue can be found in Fosalba et al. (2015, 2008).

In order to evaluate the errors introduced by the mass-
mapping methods, we extracted ten contiguous shear and con-
vergence fields of 10◦ × 10◦ from the Flagship mock galaxy
catalogue, yielding a total area of 1000 deg2. The fields cor-
respond to galaxies that lie in the range of 15◦ < α < 75◦
and 15◦ < δ < 35◦, where α and δ are the right ascension and
declination, respectively. In order to obtain the density of
30 galaxies per arcmin2 foreseen for the Euclid Wide survey, we
randomly selected one quarter of all galaxies in the catalogue.
Then projected shear and convergence maps were constructed by
combining all the redshifts of the selected galaxies. More sophis-
ticated selection methods based on galaxy magnitude would pro-
duce slightly different maps. However, they would not change
the performances of the two methods we studied here. The fields
were down-sampled to 1024 × 1024 pixels, which corresponds
to a pixel size of about 0′.6. Throughout all the paper, the shaded
regions stand for the uncertainties on the mean estimated from
the total 1000 deg2 of the ten fields. Because the Euclid Wide
survey is expected to be 15 000 deg2, the sky coverage will be
15 times larger than the current mock. Thus, the uncertainties
will be smaller by a factor of about 4.

4.4. Shear field projection

We considered fields of 10◦×10◦. The fields were taken to be suf-
ficiently small to be approximated by a tangent plane. We used a
gnomonic projection to project the points of the celestial sphere
onto a tangent plane, following Pires et al. (2012a), who found
that this preserves the two-point statistics. We note, however,
that higher-order statistics may behave differently under differ-
ent projections.

The shear field projection is obtained by projecting the
galaxy positions from the sphere (α, δ) in the catalogue onto

a tangent plane (x, y). The projection of a non-zero spin field
such as the shear field requires a projection of both the galaxy
positions and their orientations. Projections of the shear do not
preserve the spin orientation, which can generate substantial
B modes (depending on the declination) if not corrected for. Two
problems must be considered because of the orientation. First,
the projection of the meridians are not parallel, so that north is
not the same everywhere in the same projected field of view. Sec-
ond, the projection of the meridians and great circles is not per-
pendicular, so that the system is locally non-Cartesian. Because
we properly correct for the other effects (e.g. shape noise, miss-
ing data, or border effects) and consider large fields of view
(10◦ × 10◦) possibly at high latitudes, these effects need to be
considered. The first effect is dominant and generates substantial
B modes (increasing with latitude) if not corrected for. This can
be easily corrected for by measuring the shear orientation with
respect to local north. We find that this correction is sufficient for
the residual errors due to projection to become negligible com-
pared to errors due to other effects.

5. Systematic effects on the mass-map inversion

In this section, we quantify the effect of field borders, missing
data, shape noise, and the approximation of shear by reduced
shear on the KS and KS+ mass-inversion methods. The qual-
ity of the reconstruction is assessed by comparing the two-point
correlation functions, third- and fourth-order moments.

5.1. Missing data effects

We used the ten noise-free shear fields of 10◦ × 10◦ described in
Sect. 4.3 and the corresponding noise-free convergence maps.
We converted the shear fields into planar convergence maps
using the KS and KS+ methods, masking 20% of the data as
expected for the Euclid survey. The mask was derived from the
Data Challenge 2 catalogues produced by the Euclid collabora-
tion using the code FLASK (Xavier et al. 2016).

Figure 4 compares the results of the KS and KS+ methods
in presence of missing data. The figure shows the residual maps,
that is, the pixel difference between the original E-mode con-
vergence map and the reconstructed maps. The amplitude of the
residuals is larger with the KS method. Detailed investigation
shows that the excess error is essentially localised around the
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Fig. 5. Missing data effects: PDF of the residual errors between the
original E-mode convergence map and the reconstructed maps using
KS (blue) and KS+ (red), measured outside the mask.
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Fig. 6. Missing data effects: mean shear two-point correlation function
ξ+ (black) and corresponding mean convergence two-point correlation
function ξκE reconstructed using the KS method (blue) and using the
KS+ method (red) from incomplete shear maps. The estimation is only
made outside the mask M. The shaded area represents the uncertainties
on the mean estimated on 1000 deg2. Lower panel: relative two-point
correlation errors introduced by missing data effects, that is, the nor-
malised difference between the upper curves.

gaps. Because the mass inversion operator P is intrinsically non-
local, it generates artefacts around the gaps. In order to quantify
the average errors, Fig. 5 shows the probability distribution func-
tion (PDF) of the residual maps, estimated outside the mask. The
standard deviation is 0.0080 with KS and 0.0062 with KS+. The
residual errors obtained with KS are then 30% larger than those
obtained with KS+.

The quality of the mass inversion at different scales can be
estimated using the two-point correlation function and higher-
order moments computed at different scales. Figure 6 compares
the two-point correlation functions computed on the conver-
gence and shear maps outside the mask. Because the B mode
is consistent with zero in the simulations, we expect that these
two quantities are equal within the precision of the simulations
(see Sect. 4.1). The KS method systematically underestimates
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Fig. 7. Missing data effects: third-order (upper panel) and fourth-order
(lower panel) moments estimated on seven wavelet bands of the original
E-mode convergence map (black) compared to the moments estimated
on the KS (blue) and KS+ (red) convergence maps at the same scales.
The KS and KS+ convergence maps are reconstructed from incomplete
noise-free shear maps. The estimation of the third- and fourth-order
moments is made outside the mask. The shaded area represents the
uncertainties on the mean estimated on 1000 deg2. Lower panel: rela-
tive higher-order moment errors introduced by missing data effects, that
is, the normalised difference between the upper curves.

the original two-point correlation function by a factor of about 2
on arcminute scales, but can reach factors of 5 at larger scales.
The mass-inversion operator P being unitary, the signal energy
is conserved by the transformation (i.e.

∑
(γ2

1 +γ2
2) =

∑
(κ2

E +κ2
B),

where the summation is performed over all the pixels of the
maps). We found that about 10% of the total energy leaks into
the gaps and about 15% into the B-mode component. In contrast,
the errors of the KS+ method are of the order of a few percent at
scales smaller than 1◦. At any scale, the KS+ errors are about
5–10 times smaller than the KS errors, remaining in the 1σ
uncertainty of the original two-point correlation function.

Figure 7 shows the third-order (upper panel) and fourth-
order (lower panel) moments estimated at six different wavelet
scales (2′.34, 4′.68, 9′.37, 18′.75, 37′.5, and 75′.0) using the KS and
KS+methods. For this purpose, the pixels inside the mask were
set to zero in the reconstructed convergence maps. The aperture
mass maps corresponding to each wavelet scale were computed,
and the moments were calculated outside the masks.
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Fig. 8. Field border effects: Pixel difference between the original E-mode convergence κ map and the map reconstructed from the corresponding
simulated shear maps using the KS method (left) and the KS+ method (right). The field is 10◦ × 10◦ downsampled to 1024 × 1024 pixels.
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Fig. 9. Field border effects: PDF of the residual errors between the orig-
inal E-mode convergence map and the convergence maps reconstructed
using KS (blue) and KS+ (red). The dotted lines correspond to the PDF
of the residual errors measured at the boundaries of the field, and the
solid lines show the PDF of the residual errors measured in the centre
of the field. The borders are 100 pixels wide.

The KS method systematically underestimates the third- and
fourth-order moments at all scales. Below 10′, the errors on the
moments remain smaller than 50%, and they increase with scale
up to a factor 3. In comparison, the KS+ errors remain much
smaller at all scales, and remain within the 1σ uncertainty.

5.2. Field border effects

Figure 8 compares the results of the KS (left) and KS+ (right)
methods for border effects. It shows the residual error maps
corresponding to the pixel difference between the original E-
mode convergence map and the reconstructed maps. With KS,
as expected, the pixel difference shows errors at the border of
the field. With KS+, there are also some low-level boundary
effects, but these errors are considerably reduced and do not
show any significant structure at the field border. In KS+, the
image is extended to reduce the border effects. The effect of bor-
ders decreases when the size of the borders increases. A border
size of 512 pixels has been selected for Euclid as a good compro-
mise between precision and computational speed. It corresponds

10-6

10-5

10-4
T
w

o
-p

o
in

t 
co

rr
e
la

ti
o
n
 f

u
n
ct

io
n
s

Original
KS
KS+

101 102

θ [arcmin]

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Fig. 10. Field border effects: mean shear two-point correlation function
ξ+ (black) compared to the corresponding mean convergence two-point
correlation function ξκE reconstructed using the KS method (blue) and
the KS+ method (red). The shaded area represents the uncertainties on
the mean estimated on 1000 deg2. The lower panel shows the relative
two-point correlation error introduced by border effects.

to extending the image to be in-painted to 2048 × 2048 pixels.
Again, the PDF of these residuals can be compared to quantify
the errors. For the two methods, Fig. 9 shows the residuals PDFs
computed at the boundaries (as dotted lines) and in the remain-
ing central part of the image (as solid lines). The border width
used to compute the residual PDF is 100 pixels, which corre-
sponds to about one degree. With the KS method, the standard
deviation of the residuals in the centre of the field is 0.0062.
In the outer regions, the border effect causes errors of 0.0076
(i.e. 25% larger than at the centre). Away from the borders, the
KS+ method gives results similar to the KS method (0.0060).
However, it performs much better at the border, where the error
only reaches 0.0061. The small and uniform residuals of the KS+
method show how efficiently it corrects for borders effects.

As before, the scale dependence of the errors can be esti-
mated using the two-point correlation function and higher-order
moments computed at different scales. Figure 10 shows the two-
point correlation functions. For both methods, the errors increase
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Fig. 11. Field border effects: third-order (upper panel) and fourth-order
(lower panel) moments estimated on seven wavelet bands of the origi-
nal convergence (black) compared to the moments estimated on the KS
(blue) and KS+ (red) convergence maps reconstructed from noise-free
shear maps. The shaded area represents the uncertainties on the mean
estimated on 1000 deg2. Lower panel: relative higher-order moment
errors introduced by border effects.

with angular scale because the fraction of pairs of pixels that
include boundaries increase with scale. The loss of amplitude at
the image border is responsible for significant errors in the two-
point correlation function of the KS convergence maps. In con-
trast, the errors are about five to ten times smaller with the KS+
method and remain in the 1σ uncertainty range of the original
two-point correlation function.

Figure 11 shows field borders effects on the third-order
(upper panel) and fourth-order (lower panel) moments of the
convergence maps at different scales. As was observed earlier for
the two-point correlation estimation, the KS method introduces
errors at large scales on the third- and fourth-order moment esti-
mation. With KS+, the discrepancy is about 1% and within the
1σ uncertainty.

When the two-point correlation functions and higher-order
moments are computed far from the borders, the errors of the
KS method decrease, as expected. In contrast, we observe no
significant improvement when the statistics are computed simi-
larly on the KS+ maps, indicating that KS+ corrects for borders
properly.

Fig. 12. Reduced shear effects: relative two-point correlation error
between the mean two-point correlation functions ξγ+ estimated from
the shear fields and corresponding mean two-point correlation function
ξ

g
+ estimated from the reduced shear fields without any correction.

5.3. Reduced shear

In this section we quantify the errors due to the approximation
of shear (γ) by the reduced shear (g). To this end, we used the
noise-free shear fields described in Sect. 4.3 and computed the
reduced shear fields using Eq. (18) and the convergence provided
by the catalogue. We then derived the reconstructed convergence
maps using the KS and KS+ methods.

For both methods, the errors on the convergence maps are
dominated by field border effects. We did not find any estimator
able to separate these two effects and then identify the reduced
shear effect in the convergence maps. The errors introduced by
the reduced shear can be assessed by comparing the shear and
reduced shear two-point correlation functions (see Fig. 12), how-
ever. While the differences are negligible at large scales, they
reach the percent level on arcminute scales (in agreement with
White 2005), where they become comparable or larger than the
KS+ errors due to border effects.

5.4. Shape noise

In this section we study the effect of the shape noise on conver-
gence maps. We derived noisy shear maps, assuming a Gaus-
sian noise (σε = 0.3). Then, we compared the two mass-
inversion methods. The pixel difference cannot be used in this
case because the convergence maps are noise dominated (see
Fig. 3, upper right panel). However, we can still assess the qual-
ity of the convergence maps using two-point correlation func-
tions because the ellipticity correlation is an unbiased estimate
of the shear correlation, and similarly, the convergence two-point
correlation functions is unbiased by the shape noise.

Figure 13 compares the results of the KS and KS+ methods
when shape noise is included. Compared to Fig. 10, the two-
point correlation of the noisy maps is less smooth because the
noise fluctuations do not completely average out. However, the
amplitude of the errors introduced by the mass inversion remain
remarkably similar to the errors computed without shape noise
for the KS and KS+ methods. The same conclusions then hold:
the errors are about five times smaller with the KS+ method.

Moments of noisy maps are biased and potentially domi-
nated by the shape noise contribution. For instance, the total vari-
ance in the noisy convergence map is expected to be the sum of
the variance in the noise-free convergence map and the noise
variance. Therefore moments of the noisy KS and KS+ con-
vergence maps cannot be directly compared to moments of the
original noise-free convergence maps. Instead, Fig. 14 compares
them to the moments of the original convergence maps where
noise was added with properties similar to the noise expected
in the convergence maps. For this purpose, we generated noise
maps N1 and N2 for each field using Eqs. (11) and (12), and
we derived the noise to be added in the convergence using
Eq. (14).
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Fig. 13. Shape noise effects: mean shear two-point correlation function
ξ+ (black) and corresponding mean convergence two-point correlation
function ξκE estimated from complete noisy shear fields. The conver-
gence maps have been estimated using the KS method (blue) and using
the KS+ method (red). The shaded area represents the uncertainties on
the mean estimated on 1000 deg2. Lower panel: relative two-point cor-
relation error introduced by shape noise.

The comparison of Figs. 14 to 11 shows that the third-order
moment of the convergence is not affected by shape noise. In
contrast, the fourth-order moment is biased for scales smaller
than 10′. The two methods slightly underestimate the third- and
fourth-order moments at large scales. However, with KS+, the
errors are reduced by a factor of 2 and remain roughly within the
1σ uncertainty.

5.5. All systematic effects taken into account simultaneously

In this section, we assess the performance of KS and KS+
for realistic data sets by combining the effects of shape noise,
reduced shear, borders, and missing data.

Figure 15 compares the results of the KS method and the
KS+ method combined with a filtering step to correct for all
systematic effects in one field. We used the non-linear MRLens
filter to reduce the noise in the KS and KS+ convergence maps
because it is particularly well suited for the detection of isotropic
structures (Pires et al. 2009b, 2012b; Lin et al. 2016). Again,
KS+ better recovers the over-densities because it reduces the sig-
nal leakage during the mass inversion compared to KS.

Figure 16 shows the two-point correlation computed with
the two methods. The masked regions were excluded from the
two-point correlation computation, resulting in fewer pairs and
higher noise than in Fig. 13. Again, the strong leakage due to
missing data is clearly observed with the KS method. The results
obtained with the KS+ method reduce the errors in the mean
convergence two-point correlation function by a factor of about
5, and the errors remain roughly within the 1σ uncertainty.

In Fig. 17 we test the efficacy of the mass-inversion methods
in preserving higher-order moments of the convergence maps in
a realistic setting. As before, realistic noise was added to the
original convergence maps for comparison. As was observed ear-
lier in the noise-free case, the KS method systematically under-
estimates the third- and fourth-order moments at all scales. With
KS+, the errors are significantly reduced, by a factor of about
2 in the third-order moment and by a factor of about 10 in the

10 10

10 9

10 8

10 7

10 6

<
3 E

>

Original
KS
KS+

101 102

 [arcmin]

10 1

Re
la

tiv
e 

er
ro

r

10 12

10 11

10 10

10 9

10 8

10 7

10 6

<
4 E

>

Original
KS
KS+

101 102

 [arcmin]

10 2

10 1

Re
la

tiv
e 

er
ro

r

Fig. 14. Shape noise effects: third-order (upper panel) and fourth-order
(lower panel) moments estimated on seven wavelet bands of the orig-
inal convergence with realistic shape noise (black) compared to the
moments estimated on the KS (blue) and KS+ (red) convergence recon-
structed from noisy shear maps. The shaded area represents the uncer-
tainties on the mean estimated on 1000 deg2. Lower panel: relative
higher-order moment errors introduced by shape noise.

fourth-order moment estimation, at all scales. Although reduced,
the errors of the KS+ method on the third-order moment cannot
be neglected. These errors might result from noise correlations
introduced by the inpainting method in the shear maps. Inside
the gaps, the noise is indeed correlated because it is interpolated
from the remaining data. These noise correlations propagate into
the convergence maps and can explain the bias in the moment
estimation.

We note that the two-point correlation functions and higher-
order moments are here only used to probe the accuracy
of the reconstruction methods. For specific applications, the
small residuals of the KS+ method can be reduced even
more using additional treatment such as down-weighting the
region around the mask when the moments are computed (e.g.
Van Waerbeke et al. 2013).

6. Conclusion

This paper was motivated by the use of convergence maps
in Euclid to constrain cosmological parameters and to assess
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Fig. 15. All systematic effects: upper panels: original E-mode convergence κ map (left) and the mask that is applied to the shear maps (right).
Lower panels: convergence map reconstructed from an incomplete noisy shear field using the KS method (left) and using the KS+ method (right)
applying a non-linear MRLens filtering with αFDR = 0.05. The field is 10◦ × 10◦ downsampled to 1024 × 1024 pixels.
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Fig. 16. All systematic effects: mean shear two-point correlation
function ξ+ (black) and corresponding mean convergence two-point
correlation function ξκE estimated from incomplete noisy shear fields.
The convergence maps have been estimated using KS (blue) and KS+
(red). The convergence two-point correlations were estimated outside
the mask. The shaded area represents the uncertainties on the mean
estimated on 1000 deg2. Lower panel: normalised difference between
the two upper curves.

other physical constraints. Convergence maps encode the lens-
ing information in a different manner, allowing more optimised
computations than shear. However, the mass-inversion process is
subject to field border effects, missing data, reduced shear, intrin-
sic alignments, and shape noise. This requires accurate control
of the systematic effects during the mass inversion to reduce
the information loss as much as possible. We presented and
compared the two mass-inversion methods that are included in
the official Euclid data-processing pipeline: the standard Kaiser
& Squires (KS) method, and an improved Kaiser & Squires
(KS+) mass-inversion technique that integrates corrections for
the mass-mapping systematic effects. The systematic effects
on the reconstructed convergence maps were studied using the
Euclid Flagship mock galaxy catalogue.

In a first step, we analysed and quantified one by one the sys-
tematic effects on reconstructed convergence maps using two-
point correlation functions and moments of the convergence. In
this manner, we quantified the contribution of each effect to the
error budget to better understand the error distribution in the con-
vergence maps. With KS, missing data are the dominant effect at
all scales. Field border effects also have a strong effect, but only
at the map borders. These two effects are significantly reduced
with KS+. The reduced shear is the smallest effect in terms of
contribution and only affects small angular scales. The study also
showed that pixellisation provides an intrinsic regularisation and
that no additional smoothing step is required to avoid infinite
noise in the convergence maps.
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Fig. 17. All systematic effects: third-order (upper panel) and fourth-
order (lower panel) moments estimated on seven wavelet bands of
the original convergence with realistic noise (black) compared to the
moments estimated using KS (blue) and KS+ (red) obtained from
incomplete noisy shear maps. The third- and fourth-order moments are
estimated outside the mask. The shaded area represents the uncertainties
on the mean estimated on 1000 deg2. Lower panel: relative higher-order
moment errors.

In a second step, we quantified the errors introduced by the
KS and KS+ methods in a realistic setting that included the sys-
tematic effects. We showed that the KS+ method reduces the
errors on the two-point correlation functions and on the moments
of the convergence compared to the KS method. The errors
introduced by the mass inversion on the two-point correlation
of the convergence maps are reduced by a factor of about 5.
The errors on the third-order and fourth-order moment estimates
are reduced by factors of about 2 and 10, respectively. Some
errors remain in the third-order moment that remain within the
2σ uncertainty. They might result from noise correlations intro-
duced by the inpainting method inside the gaps.

Our study was conducted on a mock of 1000 deg2 divided
into ten fields of 10◦ × 10◦ to remain in the flat-sky approxima-
tion. Euclid will observe a field of 15 000 deg2. As long as KS+
has not been extended to the curved sky, it is not possible to
apply the method to larger fields without introducing significant
projection effects. However, the Euclid survey can be divided
into small fields, which allows reducing the uncertainties in the

statistics that are estimated on the convergence maps. Moreover,
we can expect that part of the errors will average out.

Recent studies have shown that combining the shear two-
point statistics with higher-order statistics of the conver-
gence such as higher-order moments (Vicinanza et al. 2018),
Minkowski functionals (Vicinanza et al. 2019), or peak counts
(Liu et al. 2015; Martinet et al. 2018) allows breaking common
degeneracies. The precision of the KS+ mass inversion makes
the E-mode convergence maps a promising tool for such cos-
mological studies. In future work, we plan to propagate these
errors into cosmological parameter constraints using higher-
order moments and peak counts.
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Appendix A: KS+ inpainting algorithm

This appendix describes the KS+ method presented in Sect. 3 in
more detail. The solution of the KS+ mass inversion is obtained
through the iterative algorithm described in Algorithm 1.

The outer loop starting at step 5 is used to correct for the
reduced shear using the iterative scheme described in Sect. 3.3.
The inner loop starting at step 7 is used to solve the optimisa-
tion problem defined by Eq. (17). Φ is the discrete cosine trans-
form operator matrix. If the convergence κ is sparse in Φ, most
of the signal is contained in the strongest DCT coefficients. The
smallest coefficients result from missing data, border effects, and
shape noise. Thus, the algorithm is based on an iterative algo-
rithm with a threshold that decreases exponentially (at each iter-
ation) from a maximum value to zero, following the decreasing
law F described in Pires et al. (2009a). By accumulating increas-
ingly more high DCT coefficients through each iteration, the
gaps in γ̃ fill up steadily, and the power of the spurious B modes
due to the gaps decreases. The algorithm uses the fast Fourier
transform at each iteration to compute the shear maps γ from the
convergence maps κ (step 14) and the inverse relation (step 16).

A data-driven power spectrum prior is introduced at
steps 11–13. To do so, the KS+ algorithm uses the undecimated
isotropic wavelet transform that decomposes an image κ into a
set of coefficients {w1,w2, . . . ,wJ , cJ }, as a superposition of the
form

κ[i1, i2] = cJ [i1, i2] +

J∑
j=1

w j[i1, i2], (A.1)

where cJ is a smoothed version of the image, and κ and w j are a
set of aperture mass maps (usually called wavelet bands) at scale
θ = 2 j. Then, we estimate the variance on each wavelet band w j.
The variance per scale estimated in this way can be directly com-
pared to the power spectrum. This provides a way to estimate a
broadband power spectrum of the convergence κ from incom-
plete data. The power spectrum is then enforced by multiplying
each wavelet coefficient by the factor σout

j /σin
j inside the gaps,

where σin
j and σout

j are the standard deviation estimated in the
wavelet band w j inside and outside the mask, respectively. This

normalisation can be described by a linear operator Q as used in
Eq. (17). The constraint is applied on the E- and B-mode com-
ponents before reconstructing the convergence κ by backward
wavelet transform.

Algorithm 1 KS+ algorithm
1. Project the shear from the celestial sphere onto a tangent

plane by projecting the galaxy positions and applying a local
rotation to the shear field.

2. Bin the projected shear onto a grid and define γ̃ as the aver-
age shear in each pixel.

3. Set the mask M: M[i1, i2] = 1 for pixels where we have infor-
mation and M[i1, i2] = 0 for pixels with no galaxies, and take
a support twice larger for the shear maps and include the bor-
ders in the masked region (see Fig. 1).

4. Set the maximum number of iterations to Imax = 100, the
maximum threshold λmax = max(| ΦTP∗γ̃ |), and the mini-
mum threshold λmin = 0.

5. Set k = 0, κk
E

= 0 and iterate:
6. Update the shear γ̃k = γ̃ (1 − κk

E
) and initialise the solu-

tion to κk = P∗γ̃k.
7. Set i = 0, λ0 = λmax, κi = κk and iterate:

8. Compute the forward transform: α = ΦTκi.
9. Compute α̃ by setting to zero the coefficients α

below the threshold λi.
10. Reconstruct κi from α̃: κi = Φα̃.
11. Decompose κi into its wavelet coefficients
{w1,w2, . . . ,wJ , cJ }.

12. Renormalise the wavelet coefficients w j by a factor
σout

j /σin
j inside the gaps.

13. Reconstruct κi by performing the backward wavelet
transform from the normalised coefficients.

14. Perform the inverse mass relation: γi = Pκi.
15. Enforce the observed shear γ̃ outside the gaps: γi =

(1 −M)γi + Mγ̃k.
16. Perform the direct mass inversion: κi = P∗γi.
17. Update the threshold: λi = F(i, λmin, λmax).
18. Set i = i + 1. If i < Imax, return to step 8.

19. Set k = k + 1, κk = κi. If k < 3, return to step 6.
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