
HAL Id: cea-02879211
https://cea.hal.science/cea-02879211v1

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified Runtime Assertion Checking for Memory
Properties

Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, Julien Signoles

To cite this version:
Dara Ly, Nikolai Kosmatov, Frédéric Loulergue, Julien Signoles. Verified Runtime Assertion Checking
for Memory Properties. TAP 2020 - 14th International Conference on Tests and Proofs, Jun 2020,
Bergen, Norway. �10.1007/978-3-030-50995-8_6�. �cea-02879211�

https://cea.hal.science/cea-02879211v1
https://hal.archives-ouvertes.fr

Verified Runtime Assertion Checking
for Memory Properties

Dara Ly1,4, Nikolai Kosmatov1,2, Frédéric Loulergue3,4, and Julien Signoles1

1 CEA, LIST, Software Security and Reliability Laboratory, Palaiseau, France
firstname.lastname@cea.fr

2 Thales Research & Technology, Palaiseau, France
nikolaikosmatov@gmail.com

3 Northern Arizona University, School of Informatics Computing and Cyber Systems,
Flagstaff, USA

frederic.loulergue@nau.edu
4 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France

Abstract. Runtime Assertion Checking (RAC) for expressive specifica-
tion languages is a non-trivial verification task, that becomes even more
complex for memory-related properties of imperative languages with dy-
namic memory allocation. It is important to ensure the soundness of
RAC verdicts, in particular when RAC reports the absence of failures
for execution traces. This paper presents a formalization of a program
transformation technique for RAC of memory properties for a repre-
sentative language with memory operations. It includes an observation
memory model that is essential to record and monitor memory-related
properties. We prove the soundness of RAC verdicts with regard to the
semantics of this language.

1 Introduction
Runtime assertion checking (RAC) [7] is a well-established verification technique
whose goal is to evaluate specified program properties (assertions, or more gen-
erally, annotations) during a particular program run and to report any detected
failures. It is particularly challenging for languages like C, where memory-related
properties (such as pointer validity or variable initialization) cannot be directly
expressed in terms of the language, while their evaluation is crucial to ensure the
soundness of the program and to avoid the numerous cases of undefined behav-
ior [12]. Indeed, memory-related errors, such as invalid pointers, out-of-bounds
memory accesses, uninitialized variables and memory leaks, are very common.
A study from IBM [29] reports that about 50% of detected software errors were
related to pointers and array accesses.

Recent tools addressing memory safety of C programs, such as Valgrind and
MemCheck [26,23], DrMemory [5] or AddressSanitizer [25], have become very pop-
ular and successful in detecting bugs. However, their soundness is usually not
formally established, and often does not hold, since most of them rely on very
efficient but possibly unsound heuristics [31]. While for a reported bug, it can
be possible—at least, in theory—to carefully analyze the execution and check
whether an error is correctly reported, the soundness of the “no-bug” verdict
cannot be checked.

2 D. Ly et al.

For runtime assertion checking, soundness becomes a major concern: this
technique is used to verify the absence of failures, often in complement to
sound deductive verification on parts of annotated code which were not (yet)
proved. It is the case of the E-ACSL tool [28], part of the Frama-C verification
platform [16] for static and dynamic analyses of C programs. A formal proof
of soundness is highly desirable with regard to the complexity of verification
of memory-related properties, that requires numerous instrumentation steps to
record memory related operations—often in a complex, highly optimized obser-
vation memory model [17,13,32]— and to evaluate them thanks to this record.
In this context, the proof of soundness is highly non-trivial: it requires to for-
malize not only the semantics of the considered programming and specification
languages, but also the program transformation and the observation memory.

The purpose of the present work is to formalize and prove the soundness of
a runtime assertion checker for memory-related properties. We consider a sim-
ple but representative imperative programming language with dynamic memory
allocation and a specification language with a complete set of memory-related
predicates, including pointer validity, variable initialization, as well as pointer
offset, base address and size of memory blocks. We define their semantics and
formalize a runtime assertion checker for these languages, including the under-
lying program transformation and observation memory model. Finally, we state
and prove the soundness result ensuring that the resulting verdicts are correct
with respect to the semantics.

The contributions of the paper include:

– a formalization of all major steps of a runtime assertion checker for a simple
but representative language;

– a definition of a dedicated memory model for RAC with an observation
memory, suitable for a modular definition and verification of program trans-
formations injecting non-interfering code, and an associated proof technique;

– a proof of soundness of a runtime verifier for memory properties.

Outline. Section 2 gives an overview of the work and a motivating example.
Section 3 defines the considered languages. The runtime assertion checker is
formalized in Section 4, while Section 5 states and proves the soundness result.
Finally, Sections 6 and 7 give some related work and conclusion.

2 Overview and motivating example

At a first glance, runtime assertion checking might be considered as an easy task:
just directly translate each logic term and predicate from the source specification
language to the corresponding expression of the target programming language
and that’s it. In that spirit, Barnett et al. [2] explain how they enforce Spec#
contracts, but only a short paragraph is dedicated to their runtime checker (all
the others being dedicated to static verifications). Here it is in extenso:

The run-time checker is straightforward: each contract indicates some
particular program points at which it must hold. A run-time assertion is
generated for each, and any failure causes an exception to be thrown.

Verified Runtime Assertion Checking 3

1 int search (int ∗t , int len , int x) { // search x in array t of s i z e len
2 int l o = 0 , h i = len − 1 ; // i n i t i a l search i n t e r v a l bounds
3 while (l o <= hi) { // whi le search i n t e r v a l non empty
4 int mid = lo + (hi − l o) / 2 ; // take the middle va lue
5 /∗@ asser t (\ va l i d (t + mid)) ; ∗/
6 i f (t [mid] == x) return mid ; // element found
7 else i f (t [mid] < x) l o = mid + 1 ;
8 else hi = mid − 1 ; // reduce the search i n t e r v a l
9 }

10 return −1; // element not found
11 }
12

13 int main (void) {
14 int t [5] = { −3, 2 , 4 , 7 , 10 } ;
15 return search (t , 10 , 7) ;
16 }

Fig. 1. Binary search annotated with a memory-related property.

However, this statement is not true for complex properties such as memory
properties. Consider for instance the C function implementing binary search in
Fig. 1. It contains an assertion at line 5, written in the E-ACSL specification
language [9,27], stating that t+mid of type int* is a “valid memory location”,
ensuring that it is safe to dereference it at lines 6 and 7.

Checking such a property at runtime is not trivial: in particular, it requires
to know at the annotation’s program point (line 5) whether the sizeof(int)
bytes starting from the address t+mid have been properly allocated by the pro-
gram earlier in the execution, in the same memory block, without being freed
in the meantime. For that purpose, runtime memory checkers (also called mem-
ory debuggers) need to store at runtime pieces of information about program
memory in a disjoint memory space, named observation memory in this paper.
For instance, the instrumented version of Fig. 1 created by the E-ACSL runtime
assertion checker [28] is 111-line long (when deactivating its static optimization
described in [21]) for tracking the program’s memory manipulation. In particu-
lar, for the block t created and initialized at line 14, E-ACSL adds the following
lines of code (assuming that sizeof(int)= 4, so t is 20-byte long):

__e_acsl_store_block((void *)(t),(size_t)20); //record new block
__e_acsl_full_init((void *)(& t)); //mark it as initialized

Optimized implementations of such functions are also pretty complex, as ex-
plained by Vorobyov et al. [32]. In this work, assuming their correct implemen-
tation, we formalize the whole instrumentation performed by a RAC tool, and
prove its soundness. For that purpose, we provide a model for such functions.

Moreover, RAC often has to manipulate additional variables, e.g. to evaluate
annotations. We also prove that the instrumentation has no effect on the func-
tional behavior of the input program as long as no annotation is violated. For
that purpose, we add a new memory space, named observation memory, that
helps to prove non-interference in a modular way.

3 The Considered Languages
We model the instrumentation operated by RAC as a program transformation
from a source language with logical assertions to a destination one with program

4 D. Ly et al.

e ::= n integer constant
| x variable
| ∗e dereference
| &e address
| † e unary operator
| e ‡ e binary operator

t ::= e expression
| ∗̄t dereference
| &̄t address
| †̄ t unary operator
| t ‡̄ t binary operator
| \base address(t) base address
| \offset(t) pointer offset
| \block length(t) block length

p ::= \true | \false true, false
| t .̄/ t comparison
| p ∧ p conjunction
| p ∨ p disjunction
| p⇒ p implication

| ¬ p negation
| \valid(t) pointer validity
| \initialized(t) initialization

s ::= skip; noop
| e = e; assignment
| e = malloc(e); allocation
| free(e); deallocation
| logical assert(p); log. assertion
| s s sequence
| if(e) then s else s branching
| while(e) s loop
| {d s} code block

d ::= τ x; var. declaration

τ ::= sgn sz integer type
| τ∗ pointer type

sgn ::= unsigned | signed
sz ::= int | long

Fig. 2. Syntax of the source language, with expressions e, logical terms t, predicates
p, statements s, declarations d, types τ , signedness sgn and size sz.

assertions and observation memory primitives. We describe both languages in
this section, before defining the program transformation in the next section.

3.1 Source Language

Our source language is a small C-like imperative language extended with formal
annotations. It focuses on memory-related constructs and properties.

Syntax. Figure 2 presents the syntax of this source language. Expressions are
(integer) constants, variables and operators (e.g. arithmetic operators), as well
as the distinguished reference (&) and dereference (∗) operators. Variables are
implicitly type-annotated, and all programs are supposed well-typed with respect
to a type system that we do not detail here.

Statements include assignment of a value to a memory location (variable or
dereferenced pointer) and basic control flow (sequence, conditional branching,
loop). Beside these, notable constructs are primitives for dynamic memory allo-
cation and deallocation, the logical assert(p); statement (which does nothing
if predicate p evaluates to True and halts the execution otherwise), and code
blocks with (possibly multiple) local variable declarations (denoted d).

Predicates form a propositional calculus (with the usual conjunction, disjunc-
tion, negation, and implication connectives), whose atoms are pointer validity,
pointed value initialization, and logical term comparison. Terms are a superset of
C expressions, extended with block-level memory attributes such as the length of
the block containing the pointer, the base address of the pointer (i.e. the address
of the first byte of its block), or the offset of the pointer with regards to the base
address. To express this extension, terms have to include syntactical constructs
mapping those of expressions, denoted with an overline: for instance ∗̄ denotes
pointer dereferencing for terms.

Verified Runtime Assertion Checking 5

Semantics Overview. We give our language a big-step operational semantics
adapted from that of CompCert’s Clight [4]. The choice of this style (rather than,
say, small-step operational semantics) is motivated by its ease of use when rea-
soning about program transformations. Moreover, the semantics is blocking [8]:
in case of an error, the evaluation cannot evolve.

The evaluation context is composed of a variable environment Ê (mapping

variables’ names to memory blocks) and a memory state M̂ (mapping block off-
sets to values, as explained below). Five inductive relations define our semantics:

– Ê, M̂ �e e ⇒ v, evaluation of an expression e in the context of a variable
environment Ê and a memory state M̂ , yielding a value v;

– Ê, M̂ �lv e⇒ (b, δ), evaluation of an expression e as a left-value, yielding a
memory location (b, δ) in a memory block b with an offset δ;

– Ê, M̂ �t t⇒ v, evaluation of a logical term t, similarly yielding a value v;
– Ê, M̂ �p p⇒ b, evaluation of predicate p to a boolean truth value b;

– Ê, M̂1 �s s ⇒ M̂2, evaluation of statement s in the context of a variable
environment Ê and an initial memory state M̂1; the evaluation results in a
final memory state M̂2, while the environment Ê remains the same.

To distinguish source and destination language judgments, environments and
memory states of the source language are written with a hat: (Ê, M̂), while that
of the destination language without it: (E,M).

Memory Model. In accordance with our choice of using CompCert as an inspi-
ration for our semantics, we reuse the (first) memory model of CompCert [20],
based on the notion of memory blocks. A memory location l in this model is a
couple (b, δ) where b is the memory block l belongs to and δ ∈ Z the offset of
l within b. Blocks have bounds defined at allocation time, which determine the
possible offset interval where a value may effectively be stored.

Following [20], the type of such a memory state is left abstract. It is only
defined by four axiomatized operations over it that are informally described here.
For that purpose, this paper uses the following notation: M (or M̂) denotes
a memory state, b a block, δ an offset, v a value, and τ a type. As memory
operations may fail, their return value has an option type, meaning that such a
value is either ε (no return value) of bvc (some value v).

Thus, alloc(M, lo, hi) = b(b,M ′)c means that the allocation of a new block
in memory state M succeeds and returns the identifier b of the new block, along
with the new memory state M ′; in M ′, b is allocated with lower bound lo (inclu-
sive) and higher bound hi (exclusive). bounds(M, b) returns the bounds recorded
for b. If the operation fails, ε is returned. Conversely, free(M, b) deallocates a
block b from M . If b was allocated in M and not previously deallocated, a new
memory state bM ′c is returned. Otherwise, the deallocation fails and returns ε.
store(τ,M, b, δ, v) stores value v with type τ at location (b, δ) in M , returning
a new memory state bM ′c if it succeeds. The store can fail and return ε, for
instance if it is out of b’s bounds. Finally, load(τ,M, b, δ) reads from M at (b, δ)
a value of type τ , returning a value bvc upon success and ε upon failure.

6 D. Ly et al.

E var:
Ê(x) = b

Ê, M̂ �lv x⇒ (b, 0)

E deref:
Ê, M̂ �e a⇒ Ptr(b, δ)

Ê, M̂ �lv ∗a⇒ (b, δ)

E addr:
Ê, M̂ �lv l⇒ (b, δ)

Ê, M̂ �e &l⇒ Ptr(b, δ)

E lval:
Ê, M̂ �lv l⇒ (b, δ) typeof(l) = τ load(τ, M̂, b, δ) = bvc v 6= Undef

Ê, M̂ �e l⇒ v

E int:

Ê, M̂ �e n⇒ Int(n)

Fig. 3. Semantics of expressions.

Semantics Inference Rules. The relations expressing the semantics of our source
language are defined by a set of inference rules. Expressions (see Figure 3) eval-
uate either to a value, or, as left-values, to a memory location. A value is either
an integer, a pointer to a memory location (that is, in our memory model, a
block and an offset), or an undefined value: v ::= Int(n) | Ptr(b, δ) | Undef .

Figure 4 defines the semantics of statements. Rule E assign is an example
of use of the memory model: the right-hand side of the assignment is evaluated
to a value v, while the left-hand side is evaluated to a memory location (b, δ).

A store() operation is then performed to write v into M̂1 at location (b, δ), and

must lead to a final memory state M̂2 (recall our semantics is blocking). Selected
rules defining the semantics of predicates and terms are given in Figure 5.

3.2 Destination Language

The destination language is quite close to the source language: it has the same
expressions, and mostly the same statements (see Figure 6). The first difference is
the absence of assertions over logical predicates, therefore removing the need for
terms and predicates. These are substituted with a weaker, program assertion
over expressions, similar to the C assert macro. The other difference is the
addition of a set of primitives to interact with an additional observation memory.
In order to give these primitives a semantics, we extend the evaluation relation
with the state of the observation memory (denoted M). Consequently, evaluation
relations for the destination language take the following shapes:

– E,M �e e⇒ v, evaluation of an expression (unchanged);

– E,M �lv e⇒ b, δ, evaluation of an expression as a left-value (unchanged);

– E,M1,M1 �s s⇒M2,M2, evaluation of a statement; in addition to the final
execution memory M2, it also returns a final observation memory M2.

In the same way as the execution memory model is a prerequisite to the
definition of the source language semantics, the observation memory must be
defined prior to the semantics of the above primitives. The observation memory
is basically a data structure for the runtime monitor to store metadata about
the (execution) memory of the program under monitoring. As for the execution
memory model, we define it with an abstract type, a set of functions over this
type, and an axiomatization of these functions. Four of them are the observa-
tion counterparts of the execution memory operations. store block(M, b, lo, hi)
records block b as being allocated with bounds lo and hi, returning an updated

Verified Runtime Assertion Checking 7

E assign:
Ê, M̂1 �e e⇒ v

store(τ, M̂1, b, δ, v) = bM̂2c
Ê, M̂1 �lv l⇒ (b, δ) typeof(e) = τ

Ê, M̂1 �s l = e;⇒ M̂2

E malloc:
Ê, M̂1 �e e⇒ Int(n)

alloc(M̂1, 0, n) = (b′, M̂2)

Ê, M̂1 �lv l⇒ (b, δ) typeof(l) = τ∗
store(τ∗, M̂2, b, δ,Ptr(b′, 0)) = bM̂3c
Ê, M̂1 �s l = malloc(e);⇒ M̂3

E free:
Ê, M̂1 �e e⇒ Ptr(b, 0)

free(M̂1, b) = bM̂2c
Ê, M̂1 �s free(e);⇒ M̂2

E logical assert:
Ê, M̂ �p p⇒ true

Ê, M̂ �s logical assert(p);⇒ M̂

E seq:

Ê, M̂1 �s s1 ⇒ M̂2

Ê, M̂2 �s s2 ⇒ M̂3

Ê, M̂1 �s s1 s2 ⇒ M̂3

E if false:
Ê, M̂1 �e e⇒ Int(0)

Ê, M̂1 �s s2 ⇒ M̂2

Ê, M̂1 �s if (e) then s1 else s2 ⇒ M̂2

E if true:
Ê, M̂1 �e e⇒ Int(n)

n 6= 0 Ê, M̂1 �s s1 ⇒ M̂2

Ê, M̂1 �s if (e) then s1 else s2 ⇒ M̂2

E while false
Ê, M̂ �e e⇒ Int(0)

Ê, M̂ �s while (e) s⇒ M̂

E while true:
Ê, M̂1 �e e⇒ Int(n) n 6= 0

Ê, M̂1 �s s⇒ M̂2 Ê, M̂2 �s while (e) s⇒ M̂3

Ê, M̂1 �s while (e) s⇒ M̂3

E block:
Ê2, M̂2 = alloc vars(d, Ê1, M̂1) Ê2, M̂2 �s s⇒ M̂3 M̂4 = dealloc vars(d, Ê2, M̂3)

Ê1, M̂1 �s {d s} ⇒ M̂4

Fig. 4. Semantics of the source language statements, where alloc vars() allocates mem-
ory for the list of local variable declarations d using the alloc() operation, and adds the
corresponding bindings into the environment. dealloc vars() is the converse function.

observation memory state. delete block(M, b) marks b as deallocated and re-
turns an updated observation memory. initialize(τ,M, b, δ) marks the data with
type τ at location (b, δ) as initialized and returns an updated observation mem-
ory. Conversely, is initialized(τ,M, b, δ) returns 1 if location (b, δ) with type τ is
marked as initialized in M , and 0 otherwise. Two other functions provide infor-
mation about metadata stored in the memory state: is valid(τ,M, b, δ) returns
1 if accessing data with type τ at location (b, δ) is legal, and 0 otherwise, while
bounds(M, b) returns the bounds that were recorded for b with store block().
Vorobyov et al. explain how all these operations can be implemented [32].

Figure 7 presents the semantics of the destination language’s additional state-
ments, and their relation with the observation memory operations. Evaluation
rules for the statements already present in the source language are omitted, as
they are similar and only adapted to include observation memory states.

4 Program Transformation

We now turn to the implementation of a runtime monitor by program transfor-
mation. This transformation has two purposes: first, translating logical predi-

8 D. Ly et al.

E or1:
Ê, M̂ �p p1 ⇒ true

Ê, M̂ �p p1 ∨ p2 ⇒ true

E or2:
Ê, M̂ �p p1 ⇒ false Ê, M̂ �p p2 ⇒ b

Ê, M̂ �p p1 ∨ p2 ⇒ b

E init true:
Ê, M̂ �e a⇒ Ptr(b, δ)

load(τ,M, b, δ) = bvc v 6= Undef

Ê, M̂ �p initialized(a)⇒ true

E init false:
Ê, M̂ �e a⇒ Ptr(b, δ)

load(τ,M, b, δ) = bUndefc
Ê, M̂ �p initialized(a)⇒ false

E base addr:
Ê, M̂ �e a⇒ Ptr(b, δ)

Ê, M̂ �t \base address(a)⇒ Ptr(b, 0)

E ofs:
Ê, M̂ �e a⇒ Ptr(b, δ)

Ê, M̂ �t \offset(a)⇒ Int(δ)

E block length:
Ê, M̂ �e a⇒ Ptr(b, δ) bounds(M̂, b) = blo, hic

Ê, M̂ �t \block length(a)⇒ Int(hi− lo)

E expr:
Ê, M̂ �e e⇒ v

Ê, M̂ �t e⇒ v

Fig. 5. Semantics of predicates and terms.

s ::= . . . source lang. stmts
| logical assert(p); no assert. over pred.
| assert(e); assert. over exp.
| store block(e, e); record new block
| delete block(e); remove recrorded bl.
| e = is valid(e); is e valid

| e = is initialized(e); is (∗e) initialized
| initialize(e); mark ∗e as initialized
| e = base address(e); e’s block base address
| e = offset(e); get pointer offset
| e = block length(e); e’s block length

Fig. 6. Additional statements of the destination language.

cates (and terms) into chunks of executable code evaluating them; and second,
inserting statements into the original code, in order to track the state of the ex-
ecution memory; that is, updating the observation memory whenever a memory
related operation occurs.

The general idea underlying this transformation is the following: atomic pred-
icates and terms are translated into dedicated primitives of the target language,
while composite ones (logical connectors, comparison operators. . .) are encoded
with non-logical constructs of the source language. The translation of each term
and predicate introduces a specific variable res that stores its results for later
use by subsequent computations.

Formally, we express the transformation as a set of three recursive functions
over statements (denoted J·Ks), predicates (J·Kp) and terms (J·Kt). Notice that
indices s, p, t are here part of notation (and not a reference to a specific state-
ment s, predicate p or term t). These functions have the following types: J·Ks :
statement → statement; J·Kp : predicate → {code : statement; res : variable};
J·Kt : term → {code : statement; res : variable}. While J·Ks is a straightforward
translation from statement to statement, the other two translation functions
return records; their fields are a statement (the code field of the record type)
performing computation of the translated term or predicate, and distinguished
variable res to store the result of the computation.

Verified Runtime Assertion Checking 9

E storeblock:
E,M1 �e p⇒ Ptr(b, 0) E,M1 �e e⇒ n

store block(M1, b, 0, n) = bM2c
E,M1,M1 �s store block(p, e);⇒M1,M2

E deleteblock:
E,M1 �e p⇒ Ptr(b, 0)

delete block(M1, b) = bM2c
E,M1,M1 �s delete block(p);⇒M1,M2

E isvalid:
E,M1 �lv e1 ⇒ (b1, δ1) E,M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e2) = τ∗

is valid(τ,M1, b2, δ2) = n store(int,M1, b1, δ1, n) = bM2c
E,M1,M1 �s e1 = is valid(e2);⇒M2,M1

E isinitialized:
E,M1 �lv e1 ⇒ (b1, δ1) E,M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e2) = τ∗

is initialized(τ,M1, b2, δ2) = n store(int,M1, b1, δ1, n) = bM2c
E,M1,M1 �s e1 = is initialized(e2);⇒M2,M1

E initialize:
typeof(e) = τ∗

E,M1 �e e⇒ Ptr(b, δ)

initialize(τ,M1, b, δ) = bM2c
E,M1,M1 �s initialize(e);⇒M1,M2

E baseaddr:
E,M1 �lv e1 ⇒ (b1, δ1)

E,M1 �e e2 ⇒ Ptr(b2, δ2) typeof(e1) = τ∗
store(τ∗,M1, b1, δ1,Ptr(b2, 0)) = bM2c

E,M1,M1 �s e1 = base address(e2);⇒M2,M1

E blocklength:
E,M1 �lv e1 ⇒ (b1, δ1)
E,M1 �e e2 ⇒ Ptr(b2, δ2)

bounds(M1, b2) = b0, nc
store(int,M1, b1, δ2, n) = bM2c

E,M1,M1 �s e1 = block length(e2);⇒M2,M1

E offset:
E,M1 �lv e1 ⇒ (b1, δ1)
E,M1 �e e2 ⇒ Ptr(b2, δ2)

store(int,M1, b1, δ1, δ2) = bM2c
E,M1,M1 �s e1 = offset(e2);⇒M2,M1

Fig. 7. Semantics of destination-specific statements.

4.1 Statement Translation

The statement translation (see Figure 8) is the top-level transformation func-
tion. It simply follows the structure of the source program, only adding observa-
tion memory manipulation primitives where execution memory operations occur.
Therefore, besides logical assertions, the only statements actually transformed
are assignements, memory allocation, deallocation, and code blocks (to account
for automatic allocation and deallocation of local variables).

When translating a logical assertion over a predicate p, a block of code is
generated, ending with a C-like assertion over a local variable, JpKp.res, that
will receive the result of p’s translation. Its declaration is generated from its
name (and, implicitly, type) using a dedicated function mkdecl. As for the code,
JpKp.code, it is inserted just before the final assertion. The execution of such a
block therefore follows these steps: first, the control enters the block and JpKp.res
is allocated; then JpKp.code executes, computing p’s truth value and writing
the result (0 or 1) into JpKp.res; finally, the assertion is evaluated, halting the
program if JpKp.res is zero (meaning that p is false in the source program), and
resuming otherwise; in the latter case, the control exits the block and JpKp.res
is automatically deallocated, returning the memory to its previous state.

4.2 Predicate Translation

The predicate translation is the main component of the program transformation
as a whole. Its purpose is to convert a logical predicate into code reflecting

10 D. Ly et al.

Jskip;Ks = skip;
Jp = malloc(e); Ks =

p = malloc(e);
store block(p, e);
initialize(&p);

Jfree(p); Ks = free(p);
delete block(p);

Jl = e; Ks = l = e;
initialize(&l);

Jlogical assert(p); Ks = {
mkdecl(JpKp.res)
JpKp.code;
assert(JpKp.res); }

Js1 s2Ks = Js1Ks Js2Ks
Jif (e) then s1 else s2Ks =

if (e) then Js1Ks else Js2Ks
Jwhile(e) sKs = while(e) JsKs
J{τ1 x1; . . . τn xn; s}Ks = {

τ1 x1; . . . τn xn;
store block(&x1, sizeof(τ1));
. . .
store block(&xn, sizeof(τn));
JsKs
delete block(&x1);
. . .
delete block(&xn); }

Fig. 8. Translation of statements.

J\falseKp.code = JpKp.res = 0;

Jt1 .̄/ t2Kp.code = {
mkdecl(Jt1Kt.res)
mkdecl(Jt2Kt.res)
Jt1Kt.code
Jt2Kt.code
JpKp.res = Jt1Kt.res ./ Jt2Kt.res; }

Jp1 ∨ p2Kp.code = {
mkdecl(Jp1Kp.res)
Jp1Kp.code
if(Jp1Kp.res) then

JpKp.res = 1;

else {
mkdecl(Jp2Kp.res)

Jp2Kp.code
JpKp.res = Jp2Kp.res; } }

J¬pKp.code =

JpKp.code
JpKp.res = 1− JpKp.res;

J\valid(t)Kp.code = {
mkdecl(JtKt.res)
JtKt.code
JpKp.res = is valid(JtKt.res); }

J\initialized(t)Kp.code = {
mkdecl(JtKt.res)
JtKt.code
JpKp.res = is initialized(JtKt.res); }

Fig. 9. Translation of predicates, where p denotes the currently translated predicate
for short. Omitted cases are similar to those displayed.

the evaluation of this predicate. Figure 9 presents the definition of JpKp.code,
inductively defined on the structure of p. Regarding the result variable (JpKp.res),
we only require the transformation to generate a fresh name for each predicate.
The code field of the resulting record is expected to be inserted at a program
point at which its result variable, the res field, has already been declared and
allocated with an adequate memory block.

Our translation introduces many intermediate variables (cf. Figure 9). To
minimize the impact of these variables, we introduce them only when needeed,
and deallocate them as soon as they are no longer used. Therefore, in all but the
most simple cases (\true,\false, and ¬p), code is a block that limits the scope
of the intermediate variable(s) res.

4.3 Term Translation

The translation function for terms (see Figure 10) is quite similar to that of
predicates, the main difference being that the type of the result variable depends

Verified Runtime Assertion Checking 11

JeKt.code = JtKt.res = e;

J∗̄t1Kt.code = {
mkdecl(Jt1Kt.res)
Jt1Kt.code
JtKt.res = ∗ Jt1Kt.res; }q

&̄t1
y
t
.code = {. . . } // similar to J∗̄t1Ktq

t1 ‡̄ t2
y
t
.code = {

mkdecl(Jt1Kt.res)
mkdecl(Jt2Kt.res)
Jt1Kt.code
Jt2Kt.code
JtKt.res = Jt1Kt.res ‡ Jt2Kt.res; }q

†̄ t1
y
t
.code = {

mkdecl(Jt1Kt.res)

Jt1Kt.code
JtKt.res = † Jt1Kt.res }

J\base address(t1)Kt.code = {
mkdecl(Jt1Kt.res)
Jt1Kt.code
JtKt.res = base address(Jt1Kt.res); }

J\offset(t1)Kt.code = {
mkdecl(Jt1Kt.res)
Jt1Kt.code
JtKt.res = offset(Jt1Kt.res); }

J\block length(t1)Kt.code = {
mkdecl(Jt1Kt.res)
Jt1Kt.code
JtKt.res = block length(Jt1Kt.res); }

Fig. 10. Translation of terms, where t denotes the currently translated term for short.

on the translated term, while it is always a Boolean for predicates. As with
predicates, the only requirement for generated variables is freshness.

5 Soundness
Preliminary Notation Convention. Statements in the source language evaluate in
some evaluation context Ĉ = (Ê, M̂), consisting of a variable environment Ê and

an execution memory state M̂ . In the destination language, an evaluation context
C = (E,M,M) has an additional third component: the observation memory M .
In both languages, statement evaluation only affects memory states, and does
not alter environments. Therefore, an evaluation such as Ĉi �s s⇒ M̂f actually

links the initial context Ĉi = (Êi, M̂i) to a final context Ĉf = (Êf , M̂f), where

Êf = Êi. For the sake of conciseness, we assume that any memory state M̂k

at some program point k is implicitly extended to a context Ĉk by the current
environement Êk. Reciprocally, any context Ĉk may implicitly be decomposed
into its components Êk and M̂k. The same holds for the destination language.

5.1 Definitions

Let us elaborate a notion of semantics preservation for our program transforma-
tion. Assume a source program s sucessfully evaluates from the initial evaluation
context Ĉi: we have Ĉi �s s ⇒ M̂f . We want to relate this evaluation of s and
that of its associated transformed program JsKs. The preservation property states

that if the initial evaluation context of the source program Ĉi and that of the
transformed program Ci are related according to a certain relation R, then eval-
uating JsKs in Ci should succeed and terminate in a final context Cf that is also

related to Ĉf byR. More formally, our transformation soundness theorem states:

∀s, Ĉi, Ci, Ĉf ,

{
Ĉi �s s⇒ Ĉf
Ĉi R Ci

=⇒ ∃ Cf ,
{
Ci �s JsKs ⇒Mf ,Mf

Ĉf R Cf

12 D. Ly et al.

We now have to define an appropriate relation R between a source context
Ĉ and an associated destination context C. They have the following differences.
First, the content of the destination execution memoryM is larger than its source
counterpart M̂ , because in addition to the memory of the source program, it
also stores the intermediate variables introduced by the instrumentation (those
generated by predicates and terms translation). M can thus be divided into two
distinct regions, the original program memory Mp and the monitor memory Mm,
such that no pointer value stored in Mp points to a location in Mm (because
the monitored program should not refer to the memory of the monitor). We call
this property separation and extend it to contexts.

Definition 1 (Context separation). A context C is separated into two sub-
contexts Cp and Cm (denoted C = Cp] Cm) if:

– E is the disjoint union of maps Ep and Em;
– the set of valid blocks in M is the disjoint union of those of Mp and Mm;
– any valid block in M , which is also valid in either Mp or Mm, has the same

content in Mp or Mm as in M ;
– no value in Mp is a pointer to a block in Mm.

Second, the destination context C includes an observation memory M . The
requirement for M is to be an accurate description of the monitored program
memory Mp. M is then said to represent Mp.

Definition 2 (Representation). An observation memory M represents an ex-
ecution memory M (denoted M .M) if:
∀τ, b, δ, M � τ @ b, δ =⇒ is valid(τ,M, b, δ) = true
∀τ, b, δ, load(τ,M, b, δ) = bvc ∧ v 6= Undef =⇒ is initialized(τ,M, b, δ) = true
∀b, bounds(M, b) = bounds(M, b)

where M � τ @ b, δ means that data of type τ may be safely accessed at (b, δ) in
M .

Third, in our memory model, blocks are identifiers. Therefore two memory
states may have the same content up to block permutation. This isomorphism
extends to environments and contexts.

Definition 3 (Isomorphism). Two execution memories M1 and M2 are iso-
morphic (denoted M1 ∼ M2) if there is a permutation σ on the set of blocks
such that ∀τ, b, δ, σ̃(load(τ,M1, b, δ)) = load(τ,M2, σ(b), δ), where σ̃ is the func-
tion over values (more precisely over value options) that applies σ to pointers:
Ptr(b, δ) 7→ Ptr(σ(b), δ).

Definition 4 (Context monitoring). The monitoring relation R between a

source context Ĉ and a destination context C is defined as follows: Ĉ R C iff
∃Cp, Cm, C = Cp] Cm and Ĉ ∼ Cp and M .Mp.

Verified Runtime Assertion Checking 13

5.2 Soundness Theorem

Theorem 1 (Soundness of program transformation). Let Ĉi �s s⇒ Ĉf be

the evaluation of a source program s, from initial context Ĉi to final context Ĉf ,

and Ci a destination context that monitors Ĉi, i.e. Ĉi �s s⇒ Ĉf and Ĉi R Ci.
Then JsKs evaluates from Ci to a final destination context Cf that monitors Ĉf ,

that is, ∃ Cf , Ci �s JsKs ⇒Mf ,Mf and Ĉf R Cf .

Proof. We proceed by induction on the evaluation of s. The proof is straightfor-
ward for all cases but that of logical assert(), which requires a specific lemma.
To give a flavor of the proof, we present the case of assignments. Throughout the
proof, we manipulate many execution contexts and their components (execution
and observation memories, and environments). In order to help relating them
together, we index them according to the intuitive notion of program point: the
initial context Ci is also C0; after execution of an atomic statement, the next
one is C1, and so on.

Case E assign. If s is an assignement l = e; then its translation is the
sequence l = e; initialize(&l);, and its evaluation is:

Ê, M̂i �e e⇒ v store(τ, M̂i, b̂, δ̂, v) = bM̂fc Ê, M̂i �lv l⇒ (̂b, δ̂)

Ê, M̂i �s l = e;⇒ M̂f

We want to prove the existence of a destination evaluation context Cf such that

Ci �s l = e; initialize(&l);⇒Mf ,Mf and Ĉf R Cf . Let us build an evaluation
derivation for Jl = e; Ks, and then prove preservation of R. We want to build a
derivation such as this one, for appropriate values of memory states:

store(τ,Mi, b, δ, v) = bM1c
E,Mi �e e⇒ v E,Mi �lv l⇒ (b, δ)

Ci �s l = e;⇒M1,M1

initialize(τ,M1, b, δ) = M2

C1 �s initialize(&l);⇒M2,M2

Ci �s l = e; initialize(&l);⇒M2,M2

Since Ĉi R Ci, Ci may be separated into Cpi] Cmi , with Ĉi ∼ Cpi . As a

consequence e evaluates to the same value in Ci as in Ĉi: Ci �e e⇒ v. Now, let
(b, δ) be the result of the left-value evaluation of l in the destination program:
Ci �lv l ⇒ b, δ. Define bM1c = store(τ,Mi, b, δ); this store operation is valid

for Mi, because the corresponding store is valid in the source memory M̂i, and
M̂i is isomorph to Mp

i , which is a subpart of Mi. M1 defines a destination
context C1; C1 can be separated as Cp1] Cm1 , with Cm1 = Cmi (since the only

memory operation was performed in the Mp part), and the isomorphism Ĉi ∼ Cpi
was preserved since the same store operation was performed in both contexts.
Therefore Ĉf ∼ Cp1 . The representation property, however, no longer holds:
indeed (b, δ) now contains initialized data, but this was not reported to the
observation memory M1 = Mi. Now, if we define M2 = initialize(τ,M1, b, δ) and

M2 = M1, the representation property is restored: Ĉ2 R C2.

14 D. Ly et al.

Case E logical assert. If s is a logical assertion, the evaluation judgement
is Ĉi �s logical assert(p);⇒ M̂f , with premise Ĉi �p p⇒ true.

The generated code is: {mkdecl (JpKp.res); JpKp.code; assert(JpKp.res); }. Let
Ci be an initial destination evaluation context, and C1 the context after allo-
cation of JpKp.res. By applying the soundness lemma 2 we get ∃C2 s.t. C1 �s

JpKp.code ⇒ Mf ,M and C2 �e JpKp.res ⇒ int(true). The evaluation derivation
of JpKp.code may then be completed by using the rules for C-like assertion and
for code block. Preservation of R follows from lemma 1.

Lemma 1 (Preservation of context monitoring by predicate transla-

tion). Let p be a predicate, Ĉ a source context, and Ci and Cf destination con-

texts. If Ci �s JpKp⇒Mf and Ĉ R Ci, then Ĉ R Cf .

Proof. (sketch) The code generated by predicate translation does not modify the
observation memory (it only reads from it). Moreover, since the only assignments
performed in the generated code write to result variables, any modification of the
execution memory takes place in the monitoring part of the execution memory
(the Mm in the definition of R), leaving the program part untouched. This
ensures preservation of R.

Lemma 2 (Soundness of predicates translation). Let Ĉ �p p ⇒ b be the

evaluation of a predicate p; let C, Ci and M be such that Ĉ R (C,M) and
Ci = alloc vars(JpKp.res, C).

Then ∃Cf s.t. Ci �s JpKp.code⇒Mf ,M and Cf �e JpKp.res⇒ int(b) (where
int() is the usual encoding from boolean to integers, mapping false on 0 and true
on 1).

Proof. We prove lemma 2 by induction on p’s evaluation. Base cases of the
induction correspond to predicates such as validity, initialization, or term com-
parison; these cases are proved using a lemma expressing the soundness of terms
translation, which is very similar to lemma 2 both conceptually and technically.
Therefore, we do not prove it here. To give an intuition of the proof on other
cases (logical connectives), we present one of the two cases for disjunction.

Case E or2. The considered predicate evaluation is Ĉ �p p1 ∨ p2 ⇒ b,

with premises Ĉ �p p1 ⇒ false and Ĉ �p p2 ⇒ b. Let us build a derivation for
Jp1 ∨ p2Kp.code (defined Figure 9). We start from context Ci as defined by the
lemma’s hypothesis, and build step by step every memory state the generated
code is going through. Let C1 = alloc vars(Jp1Kp.res, Ci). By induction hypoth-
esis on p1 (instantiating Ci with C1), there exists C2 s.t. C1 �s Jp1Kp.code ⇒
M2,M and C2 �e Jp1Kp.res ⇒ 0 (since p1 evaluates to false). Now, let C5 =
alloc vars(Jp2Kp.res, C2). By induction on p2, there exists C5 = (E5,M6) s.t.

C5 �s Jp2Kp.code ⇒ M6,M and C6 �e Jp2Kp.res ⇒ int(b). Finally, let us define
the following memories and associated contexts:

M7 = store(int,M6, E6(JpKp.res), 0, int(b))

C8 = dealloc vars(Jp2Kp.res, C7) C9 = dealloc vars(Jp1Kp.res, C8)

Verified Runtime Assertion Checking 15

Let us prove that C9 satisfies the expected properties for the Cf of the proof
goal. Using the above definition, we can derive the following derivation for
Jp1 ∨ p2Kp.code (in this derivation tree, for lack of space, the res field is ab-

breviated to r, code to c, and M is omitted):

C1 �s Jp1Kp.c⇒M2

C2 �e Jp1Kp.r ⇒ 0

C5 �s Jp2Kp.c⇒M6

C6 �lv JpKp.r ⇒ (E6(JpKp.r), 0)

C6 �e Jp2Kp.r ⇒ int(b)

C6 �s JpKp.r = Jp2Kp.r ⇒M7

C5 �s Jp2Kp.c; JpKp.r = Jp2Kp.r ⇒M7

C2 �s else block ⇒M8

C2 �s if (. . .) then . . . else . . .⇒M8

C1 �s Jp1Kp.c; if. . .⇒M8

Ci �s Jp1 ∨ p2Kp.c⇒M9

All that is left to do now is to prove C9 �e JpKp.res ⇒ int(b). This follows
from the definitions of M7, C8 and C9: M7 results from storing int b at location
(E6(JpKp.res), 0) therefore C7 �e JpKp.res⇒ int(v); since C8 and C9 are obtained
by deallocating variables other than JpKp.res, this evaluation also holds for C9:
C9 �e JpKp.res⇒ int(b).

6 Related Work

More and more languages include a notion of contract. Design-by-contract is
one of the main features of Eiffel [22], contracts have been introduced in Java
through JML [18] in 1999, in Ada 2012 [1], and the C++ standardization commit-
tee considered contracts for C++ 20, although this new feature has been finally
deferred to a later standard. In Eiffel, assertions are Boolean expressions written
in the programming language. In Ada 2012, it is also the case, but the language
has been extended with quantified expressions to allow bounded universal and
existential quantification. These new expressions have been inspired by Spark, a
well-defined subset of Ada, extended to express contracts for static and dynamic
verification.

Zhang et al. [33] studies verified runtime checking in the context of Spark:
the checks to be performed are however not explicitly stated as assertions in the
source language, but are implicit (e.g. division by zero). The authors provide a
formalization and proofs using the Coq proof assistant [3]. Cheon [6] formalizes
runtime assertion checking of JML, but provides no proof of soundess, while
Lehner [19] formalizes the semantics of a large subset of JML and proves in
Coq an algorithm that checks assignable clauses at runtime. Such clauses are
memory properties that do not require memory observation. As our work focuses
on memory observation, it is related but complementary to these works. Indeed,
in the context of Java and Ada, even runtime checks for out-of-bounds accesses
are related to arithmetic inequalities. In the case of C, however, as the bounds
of an array are not attached to the array itself, out-of-bound access corresponds
to an invalid access to the memory, and is therefore handled in ACSL by the

16 D. Ly et al.

predicate \valid. More generally, the formal verification efforts on languages
such as Eiffel, Java, Ada and Spark do not consider such properties because the
design of the language prevents most memory problems that can arise in the
context of C.

As runtime checking is costly, most approaches rely on an optimization phase,
based on static analysis. Zhang et al. propose and verify such a phase. It is also
the case for our approach and prior work [21]. Such optimizations are thus related
to the verification of static analysis [14].

Our contribution targets the C language, the Frama-C framework, the ACSL
specification language and the E-ACSL plug-in. In particular we focus on mem-
ory properties. In Frama-C, the plug-in RTE [11] generates ACSL assertions for
runtime errors, and the E-ACSL plug-in can translate these assertions into C
code. As C++ includes C, in the long term, the work presented in this paper
could contribute to the verified compilation of a future standard of C++ includ-
ing contracts. It is interesting to note that a recent language, Rust, that aims
at combining the high-efficiency of C with strong guarantees, does not include
contracts. As there is an interest in formally verifying that the type system of
Rust indeed provides strong guarantees [15], that the Rust language also provides
unsafe pointers, and there exist Rust libraries to provide rudimentary support to
express contracts, our contribution may be interesting in the context of future
iterations of Rust.

We aim at extending the proposed approach to consider a larger subset of
E-ACSL, such as support of mathematical integers and their translation using
a library such as GMP. It makes the correctness of such a library a related
topic [24]. One of the strength of Frama-C is the use of the common ACSL
language by all plug-ins. For the verification of RAC, it means reusing existing
formalizations of ACSL designed in the context of the verification of deductive
verification [10] for our extended source language. Finally, the E-ACSL plug-in
currently does not support the translation of axiomatized predicates. A possible
verified extension of E-ACSL could be based on the work of Tollitte et al. [30].

7 Conclusion

Runtime assertion checking of memory related properties for a mainstream lan-
guage like C is a complex task involving various program transformation steps
with additional recording of memory block metadata in a non-trivial dedicated
observation memory model. This work makes a significant step toward a for-
mally proved runtime assertion checker. We have presented a formalization of
the underlying program transformation for a representative programming lan-
guage with dynamic memory allocation and proved the soundness of the resulting
verification verdicts. Future work includes an extension of the present proof to
a real-life language like C, as well as a formalization and a mechanized proof of
the runtime assertion checker in the Coq proof assistant [3].

Verified Runtime Assertion Checking 17

References

1. Ada reference manual, 2012 edition, http://www.ada-auth.org/standards/
ada12.html

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and Verification: The Spec# Experience. Commun. ACM (Jun 2011)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development;
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

4. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning 43 (2009)

5. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: An-
nual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO 2011). pp. 213–223. IEEE Computer Society (2011)

6. Cheon, Y.: A runtime assertion checker for the Java Modeling Language. Ph.D.
thesis, Iowa State University (2003)

7. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. Software Engineering Notes 31 (2006)

8. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Formal Methods for Industrial Case Studies (FMICS). Springer (2012)

9. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for
static and dynamic analysis of C programs. In: Symposium on Applied Computing
(SAC). ACM (2013)

10. Herms, P.: Certification of a Tool Chain for Deductive Program Verifica-
tion. (Certification d’une chaine de vérification déductive de programmes).
Ph.D. thesis, University of Paris-Sud, Orsay, France (2013), https://tel.
archives-ouvertes.fr/tel-00789543

11. Herrmann, P., Signoles, J.: Annotation generation: Frama-C’s RTE plug-in, http:
//frama-c.com/download/frama-c-rte-manual.pdf

12. ISO/IEC 9899:1999: Programming languages – C (1999)

13. Jakobsson, A., Kosmatov, N., Signoles, J.: Fast as a shadow, expressive as a
tree: optimized memory monitoring for C. Science of Computer Programming 132
(2016)

14. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A
Formally-Verified C Static Analyzer. SIGPLAN Not. 50(1), 247–259 (2015).
https://doi.org/10.1145/2775051.2676966

15. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Rustbelt: Securing the foun-
dations of the rust programming language. Proc. ACM Program. Lang. 2(POPL)
(2017). https://doi.org/10.1145/3158154

16. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Aspects of Computing 27 (2015)

17. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for run-
time assertion checking of C programs. In: RV. LNCS, vol. 8174, pp. 328–333.
Springer (2013)

18. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006). https://doi.org/10.1145/1127878.1127884

19. Lehner, H.: A Formal Definition of JML in Coq and its Application to Runtime
Assertion Checking. Ph.D. thesis, ETH Zurich (2011)

http://www.ada-auth.org/standards/ada12.html
http://www.ada-auth.org/standards/ada12.html
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1127878.1127884

18 D. Ly et al.

20. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning 41(1), 1–31
(2008), http://xavierleroy.org/publi/memory-model-journal.pdf

21. Ly, D., Kosmatov, N., Loulergue, F., Signoles, J.: Soundness of a dataflow analysis
for memory monitoring. In: Workshop on Languages and Tools for Ensuring Cyber-
Resilience in Critical Software-Intensive Systems (HILT). ACM (2018)

22. Meyer, B.: Eiffel: The Language. Prentice-Hall (1991)
23. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a

program. In: International Conference on Virtual Execution Environments (VEE
2007). pp. 65–74. ACM (2007)

24. Rieu-Helft, R., Marché, C., Melquiond, G.: How to Get an Efficient yet Veri-
fied Arbitrary-Precision Integer Library. In: Verified Software. Theories, Tools,
and Experiments (VSTTE). LNCS, vol. 10712, pp. 84–101. Springer (2017).
https://doi.org/10.1007/978-3-319-72308-2 6

25. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a
fast address sanity checker. In: USENIX Annual Technical Conference (USENIX).
USENIX Association (2012)

26. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with
bit-precision. In: USENIX Annual Technical Conference. pp. 17–30. USENIX
(2005)

27. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language, http:
//frama-c.com/download/e-acsl/e-acsl.pdf

28. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool
for safety and security of C programs. tool paper. In: Competitions, Usability,
Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES) (2017)

29. Sullivan, M., Chillarege, R.: Software defects and their impact on system availabil-
ity: a study of field failures in operating systems. In: Fault Tolerant Computing
(FTCS). IEEE (1991)

30. Tollitte, P.N., Delahaye, D., Dubois, C.: Producing certified functional code from
inductive specifications. In: Certified Programs and Proofs (CPP). pp. 76–91.
LNCS, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
35308-6 9

31. Vorobyov, K., Kosmatov, N., Signoles, J.: Detection of security vulnerabilities in C
code using runtime verification: an experience report. In: Tests and Proofs (TAP).
Springer (2018)

32. Vorobyov, K., Signoles, J., Kosmatov, N.: Shadow state encoding for efficient mon-
itoring of block-level properties. In: International Sympoisum on Memory Manage-
ment (ISMM). ACM (2017)

33. Zhang, Z., Robby, Hatcliff, J., Moy, Y., Courtieu, P.: Focused Certification of an
Industrial Compilation and Static Verification Toolchain. In: Software Engineer-
ing and Formal Methods (SEFM). LNCS, vol. 10469, pp. 17–34. Springer (2017).
https://doi.org/10.1007/978-3-319-66197-1 2

http://xavierleroy.org/publi/memory-model-journal.pdf
https://doi.org/10.1007/978-3-319-72308-2_6
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-642-35308-6_9
https://doi.org/10.1007/978-3-319-66197-1_2

	Verified Runtime Assertion Checking for Memory Properties

