
HAL Id: cea-02874103
https://cea.hal.science/cea-02874103

Submitted on 18 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching formal methods to future engineers
Catherine Dubois, Virgile Prévosto, Guillaume Burel

To cite this version:
Catherine Dubois, Virgile Prévosto, Guillaume Burel. Teaching formal methods to future engi-
neers. Third International Workshop and Tutorial, FMTea, Sep 2019, Porto, Portugal. pp.69-80,
�10.1007/978-3-030-32441-4_5�. �cea-02874103�

https://cea.hal.science/cea-02874103
https://hal.archives-ouvertes.fr


Teaching Formal Methods to Future Engineers

Catherine Dubois1, Virgile Prevosto2, and Guillaume Burel1

1 ENSIIE, Samovar, CNRS, Évry, France
{catherine.dubois, guillaume.burel}@ensiie.fr

2 Institut LIST, CEA, Université Paris-Saclay, Palaiseau, France
virgile.prevosto@cea.fr

Abstract. Formal methods provide systematic and rigorous techniques
for software development. We are convinced that they must be taught in
Software Engineering curricula. In this paper, we present a set of formal
methods courses included in a Software Engineering & Security track
of ENSIIE, École Nationale Supérieure d’Informatique pour l’Industrie
et l’Entreprise, a French engineering school delivering the « Ingénieur
de l’ENSIIE » degree (master level). These techniques have been taught
over the last fifteen years in our education programs in different formats.
One of the difficulty we encounter is that students consider these kinds
of techniques difficult and requiring much work and thus are inclined to
choose other courses when they can. Furthermore, students are strongly
focused on the direct applicability of the knowledge they are taught, and
they are not all going to pursue a professional career in the development
of critical systems. Our experience shows that students can gain confi-
dence in formal methods when they understand that, through a rigorous
mathematical approach to system specification, they acquire knowledge,
skills and abilities that will be useful in their professional future as Com-
puter Scientists/Engineers.

1 Introduction

Formal methods provide systematic and rigorous techniques for reliable software
development. Many industries developing critical systems have already adopted
formal methods with significant successes (see e.g. [14] for railway experience).
Knowing these techniques and methods helps enhancing the quality of software,
even in contexts were full-fledged formal verification is not employed. We are
thus convinced that formal methods must to be taught in Software Engineering
curricula whatever the professional orientation of the future engineers. In this
paper, we present a set of formal methods courses included in a Software Engi-
neering & Security track at ENSIIE, École Nationale Supérieure d’Informatique
pour l’Industrie et l’Entreprise, a French engineering school delivering the « In-
génieur de l’ENSIIE » degree (master level). These techniques have been taught
over the last fifteen years in our education programs in different formats, espe-
cially regarding hourly volumes and elective/compulsory nature. These formal
methods courses also reflect a long tradition of research in formal methods at
ENSIIE.



The paper is organised as follows. Section 2 presents ENSIIE, its curriculum
and specialised tracks. Section 3 quickly introduces the Software Engineering &
Security track, emphasizing the courses where formal methods play an important
role. Each of these courses is then detailed in a dedicated section (Sections 4, 5
and 6). We then conclude in Section 7.

2 ENSIIE

École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise (EN-
SIIE, https://www.ensiie.fr) is one of the oldest French institutions offering
a degree of Engineer (master level) in computer science. Since its creation in
1968, almost 3,000 engineers have graduated from this institution.

Like for the majority of engineering schools in France, most students are
admitted at ENSIIE through a selective entrance examination that requires at
least two years of preparation with an intensive program in Mathematics and
Physics (Classes Préparatoires aux Grandes Écoles in French, a very selective
curriculum for the first two years in college). ENSIIE hosts about 500 students
(around 150 new students per year for a 3-years curriculum).

Students follow a threefold curriculum3:

– Information Technology (40%): software engineering, systems and networks,
security, artificial intelligence, virtual reality, games and video gaming, ro-
botics, high performance computation;

– Applied Mathematics (30%): operational research, optimisation, data sci-
ence, machine learning, financial mathematics;

– Business organisation (30%): economy, finance, management, business or-
ganisation, entrepreneurship.

A considerable amount of time (11 months during the whole studies) is spent
working in companies or research laboratories, corresponding to 3 internships
distributed during the study period.

ENSIIE curriculum is organised in 6 semesters or 3 years. Semesters 1 and
2 (first year) form the common core of training with courses in the three main
areas previously cited - computer science and engineering, applied mathemat-
ics and management - and humanities. This first year has a bachelor level or
L3 level according to French educational system. Semesters 3, 4 and 5 mainly
correspond to elective technical courses (they are completed by management
and humanities). Students can freely choose their courses but specialised tracks
are proposed. Because of quotas imposed in some courses, the choices of a stu-
dent are accepted according to their academic results and personal professional
motivations. Semester 6 is dedicated to a 6 months internship leading to a dis-
sertation and a defence evaluated by a jury. These four last semesters end up
with a master level. During ENSIIE third year (Semesters 5 and 6), students
3 Course catalogue can be found at https://www.ensiie.fr/wp-content/uploads/

2018/05/ensiie_course_catalogue.pdf

https://www.ensiie.fr
https://www.ensiie.fr/wp-content/uploads/2018/05/ensiie_course_catalogue.pdf
https://www.ensiie.fr/wp-content/uploads/2018/05/ensiie_course_catalogue.pdf


can be enrolled in a research oriented Master (2nd year) in applied mathematics
or computer science by attending selected courses from the engineer and master
programs. In that case they may have a double degree.

Four specialised tracks are offered: Applied Mathematics (financial analysis,
statistics, data science, operational research), Software Engineering & Security
(SE & S) (software architecture, systems, formal methods, security), Numerical
Interactions (virtual & augmented reality, artificial intelligence), High Perfor-
mance Computing/Big Data (HPC architecture and operating system, clusters,
compilation, numeric simulation). In each track, there are also compulsory and
elective courses. Besides, there is also a free track in which students are allowed
to choose courses from the four previous tracks, composing a menu à la carte.

In the rest of the paper, we focus on the SE & S track. Most of the acronyms
for courses titles used in this paper stand for names in French. We decided to
keep them for a better matching with the official course catalogue.

3 Software Engineering & Security Track

Common core contains some courses related to basics in computer science4: im-
perative programming (C), database design, operating systems, functional pro-
gramming (OCaml), logic, Web programming (PHP, Javascript) and networks,
object oriented programming (Java, C++). Programming projects developed by
a team of several students accompany the previous courses.

At this stage, a first formal highlight is given with logic and functional pro-
gramming. The former course forms the basis for teaching formal methods while
the latter introduces students to types, induction, termination and correctness.

Let us focus now on Semesters 3 and 4 (Master 1 level) in SE & S track.
S3 courses are mainly compulsory: Agile Project Management, Advanced Func-
tional Programming (IPF), Formal languages, Software Validation and Verifica-
tion (VVL), Assembly Language and Compilation, Software Engineering (IGL).
Students can choose between Operational Research and a course about Security
and Protocols. The course entitled IGL introduces students to the principles
of Software Engineering and trains them in modelling with UML. It also pro-
vides some knowledge about model-driven engineering and quality collaborative
project management. Semester S4 is more flexible in the sense that students
have some choice, e.g. they can choose between a course about formal methods
(MFDLS) and a course about semi numerical algorithms. Then, they have the
choice between a course about models of computations (CAL) and a course about
the design of privacy-by-design applications. Until 2017, they could also take a
class about concurrency and verification by model checking (PVC). However, for
structural reasons, this course has not been taught during the last years, but it
will be proposed again in 2019-2020, in Semester 4, with a similar content.

Semester 5 (Master 2 level) proposes a large choice of courses. We focus
on PROG1 and PROG2 that, among others, belong to the SE & S track. The
4 In parenthesis appear the languages used to illustrate the different concepts.



former focuses on formal proof and formal semantics and the latter on abstract
interpretation and deductive verification.

We consider the following set of courses, VVL, MFDLS, CAL, PVC, PROG1,
PROG2 as the formal methods track or, shorter, the formal track. All of them are
42 hours long (including lectures, tutorials, lab sessions and exams), except VVL
which is only 21 hours long. As the number of students is quite low, lectures and
tutorials are usually mixed.
VVL introduces students to testing (both black- and white-box testing), and
proof of programs (Hoare Logic). Besides lectures and tutorial classes, lab ses-
sions are organized where students use Junit [5], PathCrawler [13] and the
Frama-C [12] platform (in particular its deductive verification WP plugin).
CAL, as its name suggests, focuses on calculability and presents several equiva-
lent philosophies and models for computation: Turing machines, partial recursive
functions, lambda-calculi. At this point, notions of complexity can be introduced.
Eventually, Gödel’s first incompleteness theorem is discussed. In order to make
these notions more concrete, lab sessions are organized, for example to imple-
ment Turing machines.
PVC is concerned with basic concepts of concurrent programming and verifica-
tion. With these lectures, students acquire in particular the main techniques to
verify dynamic properties of concurrent programs (deadlock freeness and more
advanced properties) using a model-checker, here SPIN.
We focus below on the three remaining courses, MFDLS, PROG1 and PROG25.

In Table 1, we can find the numbers of students that registered in the dif-
ferent courses we focus on in this paper. As mentioned above, the acronyms
are related to the French titles. Thus VVL stands for Software Validation and
Verification, MFDLS for Formal Methods for Reliable Systems, CAL for Models
of Computation, PVC for concurrency and model-checking, PROG1 for Formal
Proof and Semantics and PROG2 for Static Analysis. Finally, IGL stands for
Software Engineering, and IPF for Advanced Functional Programming. We can
see that these numbers are quite stable over years.

Semester Course T itle 2018 − 2019 2017 − 2018 2016 − 2017
S3 IGL 57 57 63
S3 IP F 64 69 67
S3 VVL 59 59 67
S4 MFDLS 25 29 32
S4 CAL 19 34 28
S4 PCV 29
S5 PROG1 17 20 15
S5 PROG2 19 18 15

Table 1. Numbers of students

5 The authors of this paper are teaching these courses.



As said before, IGL, IPF and VVL are compulsory courses for the SE & S
track. With a very few exceptions (because of the free track), students registered
in MFDLS and CAL have been enrolled in VVL in the previous semester. A
large number of students take both MFDLS and CAL (50% in 2018-2019). In
Semester 5, most of students taking PROG1 have taken MFDLS or at least
VVL. PROG1 and PROG2 are taught to the same students, except a very small
number of students taking only PROG1.

4 Formal Methods for Reliable Systems (MFDLS)

The course about software validation and verification (VVL) introduces students
to formal proofs of programs when programs are annotated with assertions (pre
and post-conditions, loop invariants and variants). It is their first encounter
with formal specifications. MFDLS makes them go further on that direction
with state-based formal methods like B [1] and Event-B [2] and the correct-
by-construction development process. The B method was used until spring 2019
when we decided on switch to Event-B. Focus is put on modelling and refinement.
We also introduce some security notions, more precisely the main control access
policies and show that security issues may also be formalised and integrated to
a functional model.

Why moving from B to Event-B while the B version was a well-oiled machine?
A first answer would be that Event-B being the recent variant of the B method,
it should be preferred for teaching newer generations of engineers. However, it is
not an easy task. Indeed, B is devoted to developing software with a very long life
cycle and it has demonstrated its capacities on large industrial projects (e.g. Paris
Meteor line 14) ), while Event-B is rather a language for modelling systems [14].
However, they share the same foundations: set theory, predicate language, state-
based method and refinement. We believe that Event-B refinement is easier and
more natural for beginners in formal methods than B refinement. They can
understand quite easily the so-called parachute paradigm [2] even if they have
difficulties when it comes to implementing it on examples. Finding good gluing
invariants remains a hard task, both in B and Event-B. Furthermore, Event-B,
with its rather weak language of actions (no if/while substitutions) helps sending
the message that modelling and programming are two very distinct activities.

The 2019 schedule is as follows (just replacing Event-B with B will give the
previous schedules). Usually, 2 sequences of 3h30 each are scheduled per week
on a period of 7 weeks. The first sequence contains an introduction to formal
methods and Event-B as well as a presentation of set theory (sets, relations,
functions). The second sequence is devoted to - pen and pencil - exercises from
simple models requiring only sets to models with sets and relations as variables.
For example, one exercice concerns a small system with users that register, log
in and log out, revisited with passwords and then with black-listed users. Then,
students have a hands-on sequence with Rodin (http://wiki.event-b.org)
and ProB (https://www3.hhu.de/stups/prob/) where they play with or im-
plement some of the models written previously. Faults may have been introduced

http://wiki.event-b.org
https://www3.hhu.de/stups/prob/


by the instructor. Sequence 4 is devoted to a formal approach of the semantics
of actions and proof obligations. It is also the occasion to review some concepts
from logic such as term, formula, free/bound occurrence of a variable and proof
rule. Sequence 5 is a lab session, where students learn how to do simple interac-
tive proofs with Rodin. At that time, around the middle of the course, students
are evaluated on their ability to manipulate set theory and write some models.
This pen-and-pencil evaluation takes place in Sequence 6 and is an hour long.
Refinement is then taught and practised during 2,5 sequences with again some
practice with Rodin and ProB. A peer-correction of the previous evaluation (de-
scribed in more details below) takes place meanwhile. For the rest of the course,
focus is put on security and control access policies (DAC, MAC and RBAC) with
lectures and tutorials. In particular, we study the RBAC encoding (invariants
mainly) done within B by Huynh et al. [10] and the combination of a functional
model and a security policy. In one of the last sequences, an industrial partner
visits us and gives a talk illustrating some real case studies (usually about trans-
portation systems), that motivate students a lot. This talk often opens not only
summer internships, but also (and more often) long internships in Semester 6.
During the last sequence (Seq. 12), students have to defend their project whose
subject has been given in the middle of the course.

The course is illustrated with many examples, from simple to more complex
(e.g. Bridge example is studied with the help of Abrial’s slides and some youtube
videos) giving them good patterns to reuse. We encourage both proof and anima-
tion though Rodin and ProB but we insist a lot on the differences with respect
to verification and validation.

The project has to be realized by 2-persons teams and usually a list of 3
subjects is proposed to the classroom. Most of the projects have security aspects:
secure management of medical records, voting system, DAC, ... They are usually
case studies inspired by research papers, e.g. in 2019 a reporting management
system inspired from [19] that integrates a control access policy close to RBAC
but with state-dependent access rights, or a simplified control air traffic control
system inspired from [11]. With the description of the system, a refinement plan
is proposed. The project is part of the evaluation for 50% of the final mark.
Students pass this course with very few exceptions.

Let us come back to the peer correction of the first evaluation that we have
been doing for 2 years now. For the moment we do not use any tool for that
purpose, so some manual manipulation of assignment papers are required to
ensure anonymity of both the corrector and the author. The main benefit for
the students is to understand that there are different acceptable solutions. For
the teacher it is more work because a solution sheet must be carefully prepared
and a double check is necessary. Furthermore, as we do the peer evaluation
during a class, the teacher is very much solicited and has to individually help
some correctors.

A recurrent difficulty for some students, both in B and in Event-B, is the
real nature of invariants and the link with proofs. They do understand proof
obligations corresponding to preservation of the invariants by the events. As



we noticed while reviewing projects, an informal requirement for a bike sharing
system like « A damaged bicycle can not be borrowed by any user » is usually
reflected in the pre-condition of an operation modeling the action of borrowing
a bike but it is more rarely part of the invariant. As said before in Section 1,
most of our students have a good background in mathematics. However we can
notice that we spend more time to practice set theory and more precisely rela-
tional operators because students have less knowledge about that field for some
years. We plan to use a set interpreter and an intensive individual training to
make it through. For this course, we do not see too much disparity in students’
mathematics background. The difference lies in their ability to abstraction.

5 Mechanized Formal Proof and Semantics (PROG1)

This course is equally divided into 2 modules, Mechanized Formal Proof (MFP)
and Semantics of Programming Languages (SPL) running in parallel, with one
sequence (3h30) for each one in a week. The 2 modules are independent, however
the common mathematical tool is the notion of inference rule for proving but
also for specifying semantics. Students pass this course with very few exceptions.

MFP is devoted to interactive proving and also automatic proving at an
introductory level. Thus, in this module we first step into the Coq interactive
theorem prover (https://coq.inria.fr/), used here as an environment to write
functional programs, specifications and proofs. We benefit from the fact that our
students have studied functional programming and practised OCaml (at least
in their common core for most of them), they are used to functions, recursive
functions, inductive data types, pattern matching, types and functions as first
class values. Hence, they can move from OCaml to Coq quite easily regarding
writing code. The first two sequences are hands on, students are introduced to
inductively defined predicates and proofs using tactics, up to proofs by induction.
At the end of these two sequences, a Coq project is assigned to the students:
usually functions on lists (from simple to more elaborate ones, e.g. a simplified
version of count-down, sorting function, queue implementation, set as interval
list). Projects are done by pairs and must be submitted at the end of the course
with a small report using coqdoc.

Then we come back to logic with a reminder of natural deduction for first
order logic and a highlight on intuition/classical settings. A quick presentation
(which is just a reminder for most students) of pure lambda-calculus and simply
typed lambda-calculus (STLC) is done. We then link both worlds by present-
ing the Curry-Howard (CH) isomorphism. This isomorphism is illustrated on
STLC and minimal natural deduction. A blackboard proof is done, describing
a process/algorithm to go from a natural deduction proof to a STLC term and
back. It is checked on simple examples inside Coq. Then extensions are stud-
ied (pairs/conjunction and sum types/disjunction). We do not go further in the
Barendregt cube [3], but we insist on the idea that when logical features are
added, the language is extended too. Presenting all this lasts 3 sequences with
lectures and tutorials. The part about CH isomorphism is considered as diffi-

https://coq.inria.fr/


cult by students. To make it more concrete, we plan to make them implement
the production of the lambda term by enriching the tactical prover provided in
Chapter 16 of [8].

In the last sequence, students are introduced to automated theorem provers
(that they have already encountered in the proof part of VVL when they used
the WP Frama-C plugin). We quickly have a look at the DPLL algorithm and
implement, during a short lab session, an SMT solver by combining glucose6 as
a SAT solver and glpsol (a tool from the library GLPK 7) as a solver for linear
arithmetic8.

An exam is organized at the end of the module and the project is part of the
evaluation for 50% of the final mark.

The previous module is complemented by a module (SPL) about semantics
of programming languages. Students are taught dynamic operational semantics
with small step and big step format. Different programming paradigms are revis-
ited (because they have all been practised in other courses in previous semesters).
Sequence 1 starts with a language of arithmetic expressions with variables, il-
lustrating the notions of evaluation and environment. Then, we build on this
language to formalize the semantics of a small imperative language leading to
the notion of execution. Besides tutorials, practical sessions allow students to im-
plement interpreters for the previous languages in OCaml. Then, we move on to a
small functional language (Mini-ML) allowing for the introduction of lambda ab-
stractions, closures, and call-by-name vs. call-by-value. Here again, a lab session
is organized to develop an OCaml interpreter for Mini-ML, and we also investi-
gate the notion of higher order abstract syntax. A tutorial is usually organized to
study other features such as inheritance (using Featherweight Java following the
presentation in [17]) or blocks (where locations are introduced). The module ends
with a presentation of the K system (http://k-framework.org/) [18], which
is an environment for specifying and animating formal semantics, followed by a
practical session about this system, going back to the previous simple imperative
language.

An exam is organized at the end of the module. Students have to submit the
results of some practical sessions, which will account for 30% of the final mark.
The main difficulty that the students encounter is the handling of inductive
rules that describe the semantics. Although inductive systems are taught already
since the logic course of the common core, the students struggle in linking their
intuition of the behaviour of programming languages with the design of inductive
rules.

6 https://www.labri.fr/perso/lsimon/glucose/
7 https://www.gnu.org/software/glpk/
8 The lab session text is at the following url http://web4.ensiie.fr/~guillaume.

burel/download/PR_TP.pdf

http://k-framework.org/
https://www.labri.fr/perso/lsimon/glucose/
https://www.gnu.org/software/glpk/
http://web4.ensiie.fr/~guillaume.burel/download/PR_TP.pdf
http://web4.ensiie.fr/~guillaume.burel/download/PR_TP.pdf


6 Static analysis and Deductive Verification (PROG2)

The course contains 6 sequences (3h30 each), giving a brief overview of static
analysis and abstract interpretation. It uses a fairly classical minimal imperative
language (assignment, test and while loop) as illustration. In parallel students
have to work on a project detailed below. Students pass this course with very
few exceptions.

The first sequence recalls notions about operational semantics (which in the-
ory have been seen by the students in their previous courses) and introduces the
notion of control-flow graphs, concrete execution traces and collecting seman-
tics. The second sequence defines the main grounding blocks of static analysis:
lattices and fixpoints, with examples of forward and backward analyses as well
as over- and under- approximations. We then move on to Galois connections and
insertions and define abstract execution over the sign domain. Widening is seen
in the fourth sequence (together with narrowing) and illustrated over intervals.
Finally, we present reduced product by showing how the combination of sign
and parity information can give more precise results than each piece seen in iso-
lation. The last sequence is dedicated to the presentation of the Eva plugin [7]
of Frama-C [12] and a lab session were students use Eva to prove the absence of
runtime errors in small C functions, usually extracted from open-source libraries
(see for instance https://gitlab.com/vprevosto/stan/wikis/2018-2019/tp
for the exercises given this year).

The most important message we try to convey is that it is possible to obtain
correct, mathematically backed results about programs, including ones written
in real-world languages (hence the last course). As an aside, we also put for-
ward the importance of having precise definitions of the semantics of the various
programming languages elements one is working with.

Generally speaking, students do not have a very strong background in logic,
which is particularly seen during the lecture on Galois connections and insertions
that is usually felt as particularly difficult to grasp.

The main frame of the course is quite stable since the last few years. A small
change in the lectures organization has been made possible by the relatively small
numbers of students taking the course. While each sequence is formally divided
into a lecture followed by a tutorial session, in practice, giving an exercise as soon
as the corresponding notion has been introduced proved very beneficial. A more
radical change would be to move from pen and paper exercises to lab sessions
where they would have to implement these notions, e.g. in OCaml, Why3 or Coq.
Such a change would however imply a huge preparation beforehand, and even if
students tend to prefer programming rather than doing more theoretical exercises
it is not completely clear whether these activities will help them understanding
better the theoretical notions that are presented. Indeed a two hours session is
very short for proposing something in Coq, or even Why3. On the other hand,
an exercise in OCaml would make them focus on an implementation, leaving out
the proofs that it is correct. Furthermore, such exercises might interfere with the
projects that are described in the next paragraph.

https://gitlab.com/vprevosto/stan/wikis/2018-2019/tp


In parallel to the main course, students are asked to work in pairs on a project,
consisting in first reading a research article and summarizing it during a short
presentation to the whole class, and second doing some software development
related to the article. There are usually two categories of subjects for the projects.
For each of them, one or two individual subjects are selected, depending on the
number of students enrolled in the course. All in all, at most 2 or 3 groups
are working on the same subject. The first category is based on an article about
static analysis or abstract interpretation and the associated assignment typically
consists in implementing the algorithm described in the paper. After many years,
where we asked the implementation to take the form of a Frama-C plug-in (or
in one occasion of a new domain for Eva), we chose this year to restrict the
task to a simple academic language similar to the one presented in the lectures
(https://gitlab.com/vprevosto/stan). While letting the students interact with a
real framework can be more formative, the complexity of Frama-C’s API was a
big hurdle to pass before being confronted to the static analysis itself. The two
articles this year were Antoine Miné’s A New Numerical Abstract Domain Based
on Difference-Bound Matrices [15] and David Monniaux’ and Laure Gonnord’s
Cell Morphing: from Array Programs to Array-free Horn Clauses [16], the latter
being probably a bit too ambitious.

The second category is dedicated to deductive verification, with an article
on program proofs and a subject consisting in implementing, specifying and
proving a small algorithm. Again, this year we shifted from imposing the use of
the WP plug-in of Frama-C (and thus a C implementation) to propose Why3
[9], so that students do not have to fight C’s idiosyncrasies in addition to think
about the best way to write their function contracts and loop invariants. The two
articles were Ghost for Lists: A Critical Module of Contiki Verified in Frama-C
by Allan Blanchard, Nikolai Kosmatov and Frédéric Loulergue [6], and Secure
Information Flow by Self-Composition by Gilles Barthe, Pedro D’Argenio and
Tamara Resk [4]. For the former, the associated subject was the basic operations
of the skip list data structure, while for the latter it consisted in the Kruskal
algorithm for computing maximal spanning trees over graphs.

7 Conclusion

We presented in this paper a formal track offered to students engaged in a
Software Engineering & Security curriculum in an engineering school. This has
been happening for more than 15 years with variants. Some of our students who
have followed this set of courses have a job where they use formal methods every
day but a lot of them do not. We interviewed a few of the latter about benefits
they got from this formal track in their professional life while they do not apply
formal methods directly9. To quote one of them, « I think that all the notions
we learn about analysis of a program, its source code, and its behaviour, allow
us to better understand what we are developing, to better understand what is
9 Answers can be found at http://web4.ensiie.fr/~dubois/interviews_FMTEA19.

pdf

http://web4.ensiie.fr/~dubois/interviews_FMTEA19.pdf
http://web4.ensiie.fr/~dubois/interviews_FMTEA19.pdf


happening when we write this or that instruction in our code. ». And to quote
another one « Formal methods gave me rigor in software design ». We believe
that this formal track gives a solid basis to students who want to continue down
the formal direction (Phd or job relying on formal methods) because it covers
a large panel of techniques for specification and verification. For those who go
to more traditional development, this formal track gives them rigor, rigor and
rigor. This also gives them, when the time comes, the memory that formal tools
exist and can help them in a more reliable development.

We would like to thank all the colleagues who participated or participate
to that set of formal courses. We cite some of them (in any order): S. Blazy,
R. Laleau, J. Signoles, X. Urbain, P. Courtieu, F. Gervais, G. Berthelot, A.
Mammar, T. Le Gall, R. Rioboo, C. Mouilleron, D. Watel, J. Falampin, C.
Métayer, N. Kushik, A. Djoudi. Finally, we mention and thank late P. Facon
who introduced a course at ENSIIE about formal specification with VDM in the
late 90s and thus opened a specific route.

References

1. J. Abrial. The B-book - assigning programs to meanings. Cambridge University
Press, 2005.

2. J. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

3. H. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125–154, 1991.

4. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252,
2011.

5. S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp, and C. Stein. JUnit 5
User Guide. https://junit.org/junit5/docs/current/user-guide/.

6. A. Blanchard, N. Kosmatov, and F. Loulergue. Ghosts for lists: A critical module
of contiki verified in frama-c. In NFM, volume 10811 of Lecture Notes in Computer
Science, pages 37–53. Springer, 2018.

7. S. Blazy, D. Bühler, and B. Yakobowski. Structuring abstract interpreters through
state and value abstractions. In A. Bouajjani and D. Monniaux, editors, Verifica-
tion, Model Checking, and Abstract Interpretation - 18th International Conference,
VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings, volume 10145 of
Lecture Notes in Computer Science, pages 112–130. Springer, 2017.

8. C. Dubois and V. Ménissier-Morain. Apprentissage de la programmation avec
OCaml. Hermès Sciences, 2004.

9. J. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In M. Felleisen
and P. Gardner, editors, Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages
125–128. Springer, 2013.

10. N. Huynh, M. Frappier, A. Mammar, R. Laleau, and J. Desharnais. A formal
validation of the RBAC ANSI 2012 standard using B. Sci. Comput. Program.,
131:76–93, 2016.

https://junit.org/junit5/docs/current/user-guide/


11. A. Jarrar and Y. Balouki. Formal modeling of a complex adaptive air traffic control
system. CASM, 6:6, 2018.

12. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c:
A software analysis perspective. Formal Asp. Comput., 27(3):573–609, 2015.

13. N. Kosmatov, N. Williams, B. Botella, and M. Roger. Structural unit testing as
a service with pathcrawler-online.com. In SOSE, pages 435–440. IEEE Computer
Society, 2013.

14. T. Lecomte, D. Déharbe, É. Prun, and E. Mottin. Applying a formal method in
industry: A 25-year trajectory. In S. A. da Costa Cavalheiro and J. L. Fiadeiro,
editors, Formal Methods: Foundations and Applications - 20th Brazilian Sympo-
sium, SBMF 2017, Recife, Brazil, November 29 - December 1, 2017, Proceedings,
volume 10623 of Lecture Notes in Computer Science, pages 70–87. Springer, 2017.

15. A. Miné. A new numerical abstract domain based on difference-bound matrices.
CoRR, abs/cs/0703073, 2007.

16. D. Monniaux and L. Gonnord. Cell morphing: From array programs to array-free
horn clauses. In SAS, volume 9837 of Lecture Notes in Computer Science, pages
361–382. Springer, 2016.

17. B. C. Pierce. Types and programming languages. MIT Press, 2002.
18. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal

of Logic and Algebraic Programming, 79(6):397–434, 2010.
19. I. Vistbakka and E. Troubitsyna. Towards Integrated Modelling of Dynamic Access

Control with UML and Event-B. arXiv e-prints, May 2018.


	Teaching Formal Methods to Future Engineers

