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Abstract. We investigate the evolution of competing languages, a subject where much previous literature
suggests that the outcome is always the domination of one language over all the others. Since coexistence
of languages is observed in reality, we here revisit the question of language competition, with an emphasis
on uncovering the ways in which coexistence might emerge. We find that this emergence is related to sym-
metry breaking, and explore two particular scenarios – the first relating to an imbalance in the population
dynamics of language speakers in a single geographical area, and the second to do with spatial hetero-
geneity, where language preferences are specific to different geographical regions. For each of these, the
investigation of paradigmatic situations leads us to a quantitative understanding of the conditions leading
to language coexistence. We also obtain predictions of the number of surviving languages as a function of
various model parameters.

1 Introduction

The dynamics of language evolution is one of many inter-
disciplinary fields to which methods and insights from
statistical physics have been successfully applied (see [1]
for an overview, and [2] for a specific comprehensive
review).

In this work we revisit the question of language coexis-
tence. It is known that a sizeable fraction of the more than
6000 languages that are currently spoken, is in danger of
becoming extinct [3–5]. In pioneering work by Abrams
and Strogatz [6], theoretical predictions were made to the
effect that less attractive or otherwise unfavoured lan-
guages are generally doomed to extinction, when contacts
between speakers of different languages become suffi-
ciently frequent. Various subsequent investigations have
corroborated this finding, emphasising that the simultane-
ous coexistence of competing languages is only possible in
specific circumstances [7,8], all of which share the common
feature that they involve some symmetry breaking mech-
anism [2]. A first scenario can be referred to as spatial
symmetry breaking. Different competing languages may
coexist in different geographical areas, because they are
more or less favoured locally, despite the homogenising
effects of migration and language shift [9–11]. A second
scenario corresponds to a more abstract internal sym-
metry breaking. Two or more competing languages may
coexist at a given place if the populations of speakers
of these languages have imbalanced dynamics [12–14].
Moreover, it has been shown that a stable population of
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bilinguals or multilinguals also favours the coexistence of
several languages [15–17].

The aim of the present study is to provide a quanti-
tative understanding of the conditions which ensure the
coexistence of two or more competing languages within
each of the symmetry breaking scenarios outlined above.
Throughout this paper, in line with many earlier stud-
ies on the dynamics of languages [6,8,9,11–17], and with
an investigation of grammar acquisition [18], we describe
the dynamics of the numbers of speakers of various lan-
guages by means of coupled rate equations. This approach
is sometimes referred to as ecological modelling, because
of its similarity with models used in theoretical ecology
(see e.g. [19]). From a broader perspective, systems of cou-
pled differential equations, and especially Lotka-Volterra
equations and replicator equations, are ubiquitous in game
theory and in a broad range of areas in mathematical
biology (see e.g. [20–22]).

The plan of this paper is as follows. For greater clarity,
we first consider in Section 2 the situation of several com-
peting languages in a single geographic area where the
population is well mixed. We address the situation where
internal symmetry is broken by imbalanced population
dynamics. The relevant concepts are reviewed in detail
in the case of two competing languages in Section 2.1,
and the full phase diagram of the model is derived. The
case of an arbitrary number N of competing languages is
then considered in Section 2.2 in full generality. The spe-
cial situation where the attractivenesses of the languages
are equally spaced is studied in Section 2.3, whereas
Section 2.4 is devoted to the case where attractivenesses
are modelled as random variables. Section 3 is devoted
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to the situation where coexistence is due to spatial sym-
metry breaking. We focus our attention onto the simple
case of two languages in competition on a linear array of
M distinct geographic areas. Language attractivenesses
vary arbitrarily along the array, whereas migrations take
place only between neighbouring areas at a uniform rate γ.
A uniform consensus is reached at high migration rates,
where the same language survives everywhere. This gen-
eral result is demonstrated in detail for two geographic
areas (Sect. 3.1), and generalised to an arbitrary number
M of areas (Sect. 3.2). The cases of ordered and ran-
dom attractiveness profiles are investigated in Sections 3.3
and 3.4. In Section 4 we present a non-technical discussion
of our findings and their implications. Two Appendices
contain technical details about the regime of a large num-
ber of competing languages in a single geographic area
(Appendix A) and about stability matrices and their
spectra (Appendix B).

2 Breaking internal symmetry: language
coexistence by imbalanced population
dynamics

This section is devoted to the dynamics of languages in a
single geographic area. As mentioned above, it has been
shown that two or more competing languages may coexist
only if the populations of speakers of these languages have
imbalanced dynamics [12–14]. Our goal is to make these
conditions more explicit and to provide a quantitative
understanding of them.

2.1 Two competing languages

We begin with the case of two competing languages. We
assume that language 1 is more favoured than language 2.
Throughout this work we neglect the effect of bilingual-
ism, so that at any given time t each individual speaks a
single well-defined language. Let X1(t) and X2(t) denote
the numbers of speakers of each language at time t, so
that X(t) = X1(t) + X2(t) is the total population of the
area under consideration.

The dynamics of the model is defined by the coupled
rate equations

dX1(t)

dt
= X1(t)( 1−X1(t)− qX2(t)︸ ︷︷ ︸+CX2(t)), (1)

dX2(t)

dt
= X2(t)( 1−X2(t)− qX1(t)︸ ︷︷ ︸−CX1(t)). (2)

The above equations are an example of Lotka-Volterra
equations (see e.g. [19,20]). The terms underlined by
braces describe the intrinsic dynamics of the numbers
of speakers of each language. For the sake of simplicity
we have chosen the well-known linear-minus-bilinear or
‘logistic’ form which dates back to Lotka [23] and is still
commonly used in population dynamics. The linear term
describes population growth, whereas the quadratic terms
represent a saturation mechanism.

The main novelty of our approach is the introduction
of the parameter q in the saturation terms. This imbal-
ance parameter is responsible for the internal symmetry
breaking leading to language coexistence. It allows for the
interpolation between two situations: when the saturation
mechanism only involves the total population, i.e., q = 1,
and when the saturation mechanism acts separately on the
populations of speakers of each language, q = 0, which is
the situation considered by Pinasco and Romanelli [12].
Generic values of q correspond to tunably imbalanced
dynamics.

The last term in each of equations (1), (2) describes
the language shift consisting of the conversions of single
individuals from the less favoured language 2 to the more
favoured language 1. In line with earlier studies [8,12–14],
conversions are triggered by binary interactions between
individuals, so that the frequency of conversions is propor-
tional to the product X1(t)X2(t). The reduced conversion
rate C measures the difference of attractivenesses between
the two languages.

For generic values of the parameters q and C, the rate
equations (1), (2) admit a unique stable fixed point. The
dynamics converges exponentially fast to the correspond-
ing stationary state, irrespective of initial conditions.
There are two possible kinds of stationary states:

• I. Consensus

The solution

X1 = 1, X2 = 0, X = 1 (3)

describes a consensus state where the unfavoured
language 2 is extinct. The inverse relaxation times
describing convergence toward the latter state are
the opposites of the eigenvalues of the stability
matrix associated with equations (1), (2). The reader
is referred to Appendix B.1 for details. These inverse
relaxation times read

ω1 = 1, ω2 = q + C − 1. (4)

The above stationary solution is thus stable when-
ever q + C > 1.
• II. Coexistence

The solution

X1 =
1− q + C

1− q2 + C2
, X2 =

1− q − C
1− q2 + C2

,

X =
2(1− q)

1− q2 + C2
(5)

describes a coexistence state where both languages
survive forever. This stationary solution exists when-
ever q + C < 1. It is always stable, as the inverse
relaxation times read

ω1 = 1, ω2 =
(1− q + C)(1− q − C)

1− q2 + C2
. (6)
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Fig. 1. Phase diagram of the model in the q–C plane. I:
consensus phase. II: coexistence phase.

Figure 1 shows the phase diagram of the model in the
q–C plane. There is a possibility of language coexistence
only for q < 1. The vertical axis (q = 0) corresponds
to the model considered by Pinasco and Romanelli [12],
where the coexistence phase is maximal and extends up
to C = 1. As the parameter q is increased, the coexistence
phase shrinks until it disappears at the point q = 1, corre-
sponding to the balanced dynamics where the saturation
mechanism involves the total population.

The model exhibits a continuous transition along the
phase boundary between both phases (q + C = 1). The
number X2 of speakers of the unfavoured language van-
ishes linearly as the phase boundary is approached from
the coexistence phase (see (5)), whereas the relaxation
time 1/ω2 diverges linearly as the phase boundary is
approached from both sides (see (4) and (6)).

For parameters along the phase boundary (q + C = 1),
the less attractive language still becomes extinct, albeit
very slowly. Equations (1), (2) here yield the power-law
relaxation laws

X1(t) ≈ 1 +
2C − 1

2Ct
,

X2(t) ≈ 1

2Ct
,

X(t) ≈ 1 +
1

t
, (7)

irrespective of initial conditions.

2.2 N competing languages

The above setting can be extended to the case of an arbi-
trary number N of competing languages in a given area.
Languages, numbered i = 1, . . . , N , are more or less favou-
red, depending on their attractivenesses Ai. The latter
quantities are assumed to be quenched, i.e., fixed once
for all. This non-trivial static profile of attractivenesses is
responsible for conversions of single individuals from less
attractive to more attractive languages.

Let X(t) be the total population of the area under con-
sideration at time t, and Xi(t) be the number of speakers

of language number i = 1, . . . , N . The dynamics of the
model are defined by the rate equations

dXi(t)

dt
= Xi(t)

(
1− (1− q)Xi(t)− qX(t)︸ ︷︷ ︸

+
∑
j

CjiXj(t)

)
. (8)

The terms underlined by braces describe the intrinsic
dynamics of the numbers of speakers of each language. The
novel feature here is again the presence of the parameter q,
which is responsible for imbalanced dynamics, allowing
thus the possibility of language coexistence. The last term
in (8) describes the conversions of single individuals. If
language i is more attractive than language j, there is a
net positive conversion rate Cji = −Cij from language j
to language i. For the sake of simplicity, we assume that
these conversion rates depend linearly on the differences of
attractivenesses between departure and target languages,
i.e.,

Cji = −Cij = Ai −Aj , (9)

in some consistent units.
Throughout this work we shall not pay any attention to

the evolution of the whole population X(t). We therefore
reformulate the model in terms of the fractions

xi(t) =
Xi(t)

X(t)
(10)

of speakers of the various languages, which sum up to
unity: ∑

i

xi(t) = 1. (11)

The reduction to be derived below is quite natural in
the present setting. It provides an example of the reduc-
tion of Lotka-Volterra equations to replicator equations,
proposed in [24] (see also [20–22]). In the present situ-
ation, for q < 1, which is precisely the range of q where
there is a possibility of language coexistence, the dynam-
ics of the fractions xi(t) obeys the following reduced rate
equations, which can be derived from (8):

dxi(t)

dt
= (1− q)X(t)xi(t)

×

(
Z(t)− xi(t) +

∑
j

cji xj(t)

)
, (12)

with

Z(t) =
∑
i

xi(t)
2, (13)

https://epjb.epj.org/


Page 4 of 18 Eur. Phys. J. B (2020) 93: 73

and where attractivenesses and conversion rates have been
rescaled according to

ai =
Ai

1− q
, (14)

cji =
Cji

1− q
= ai − aj . (15)

In the following, we focus our attention onto the sta-
tionary states of the model, rather than on its dynamics.
It is therefore legitimate to redefine time according to

t→ (1− q)
∫ t

0

X(t′) dt′, (16)

so that equations (12) simplify to

dxi(t)

dt
= xi(t)

(
Z(t)− xi(t) +

∑
j

cji xj(t)

)
. (17)

The rate equations (17) for the fractions of speak-
ers of the N competing languages will be the starting
point of further developments. The quantity Z(t) can
be alternatively viewed as a dynamical Lagrange mul-
tiplier ensuring that the dynamics conserves the sum
rule (11). The above equations belong to the class of repli-
cator equations (see e.g. [20–22]). Extensive studies of the
dynamics of this class of equations have been made in
mathematical biology, where the main focus has been on
systematic classifications of fixed points and bifurcations
in low-dimensional cases [24–29].

From now on, we focus on the stationary state of the
model for arbitrarily high values of the number N of com-
peting languages. The analysis of this goes as follows. The
stationary values xi of the fractions of speakers are such
that the right-hand sides of (17) vanish. For each language
number i, there are two possibilities: either xi = 0, i.e.,
language i gets extinct, or xi > 0, i.e., language i survives
forever. The non-zero fractions xi of speakers of surviving
languages obey the coupled linear equations

Z − xi +
∑
j

(ai − aj)xj = 0, (18)

where the parameter Z is determined by expressing that
the sum rule (11) holds in the stationary state. For generic
values of model parameters, there is a unique stationary
state, and the system relaxes exponentially fast to the
latter, irrespective of its initial conditions. The unique-
ness of the attractor is characteristic of the specific form
of the rate equations (17), (18), with skew-symmetric con-
version rates cij (see (15)). This has been demonstrated
explicitly in the case of two competing languages, stud-
ied in detail in Section 2.1. The problem is however more
subtle than it seems at first sight, as the number K of sur-
viving languages depends on model parameters in a non-
trivial way.

Fig. 2. Sketch of the attractiveness axis. Red symbols: K
surviving languages. Black symbols: N −K extinct languages.

2.3 The case of equally spaced attractivenesses

It is useful to consider first the simple case where the
(reduced) attractivenesses ai of the N competing lan-
guages are equally spaced between 0 and some maximal
value that we denote by 2g. Numbering languages in order
of decreasing attractivenesses, so that language 1 is the
most attractive and language N the least attractive, this
reads

ai = g
2N + 1− 2i

N
. (19)

We have ∑
i

ai = Ng. (20)

The parameter g is therefore the mean attractiveness.
The (reduced) conversion rates read

cji = 2g
j − i
N

, (21)

so that the fixed-point equations (18) take the form

Z − xi +
2g

N

∑
j

(j − i)xj = 0. (22)

Already in this simple situation the numberK of surviving
languages depends on the mean attractiveness g in a non-
trivial way.

Consider first the situation where all languages survive
(K = N). This is certainly true for g = 0, where there
are no conversions, so that the solution is simply xi =
1/N . There, all languages are indeed equally popular, as
nothing distinguishes them. More generally, as long as all
languages survive, the stationary solution obeying (22)
reads

xi =
1

N
+ g

N + 1− 2i

N
=

1

N
− g + ai (23)

for i = 1, . . . , N . The above solution ceases to hold when
the fraction of speakers of the least attractive language
vanishes, i.e., xN = 0. This first extinction takes place for
the threshold value

gN,N =
1

N − 1
(24)

of the mean attractiveness g.
Consider now the general case where only K among the

N languages survive. These are necessarily the K most
attractive ones, shown as red symbols in Figure 2.

https://epjb.epj.org/
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In this situation, (22) yields

xi =
1

K
+ g

K + 1− 2i

N
=

1

K
+ g

K − 2N

N
+ ai (25)

for i = 1, . . . ,K. The linear relationship between the
attractiveness ai of language i and the stationary frac-
tion xi of speakers of that language, observed in (23)
and (25), is a general feature of the model (see
Section 2.4). The fraction xK of speakers of the least
attractive of the surviving languages vanishes at the
following threshold mean attractiveness:

gN,K =
N

K(K − 1)
(26)

for K = 2, . . . , N .
The following picture therefore emerges for the station-

ary state of N competing languages with equally spaced
attractivenesses. The number K of surviving languages
decreases as a function of the mean attractiveness g, from
K = N (all languages survive) near g = 0 to K = 1
(consensus) as very large g. Less attractive languages
become extinct one by one as every single one of the
thresholds (26) is traversed, so that

K = N for 0 < g < gN,N ,
. . .

K (generic) for gN,K+1 < g < gN,K ,
. . .

K = 1 for gN,2 < g <∞.

(27)

Figure 3 illustrates this picture for 5 competing lan-
guages. In each of the sectors defined in (27), the sta-
tionary fractions xi of speakers of the surviving languages
are given by (25). They depend continuously on the mean
attractiveness g, even though they are given by different
expressions in different sectors. In particular, xi is flat,
i.e., independent of g, in the sector where K = 2i − 1.
The fraction x1 of speakers of the most attractive lan-
guage grows monotonically as a function of g, whereas all
the other fractions of speakers eventually go to zero.

When the number of languages N is large, the range
of values of g where the successive transitions take place
is very broad. The threshold at which a consensus is
reached, gN,2 = N/2, is indeed much larger than the
threshold at which the least attractive language disap-
pears, gN,N = 1/(N − 1). The ratio between these two
extreme thresholds reads N(N − 1)/2.

2.4 The general case

We now turn to the general case of N competing languages
with arbitrary reduced attractivenesses ai. Throughout
the following, languages are numbered in order of decreas-
ing attractivenesses, i.e.,

a1 ≥ a2 ≥ · · · ≥ aN ≥ 0. (28)

We shall be interested mostly in the stationary state of
the model. As already mentioned above, the number K

Fig. 3. Steady state for 5 competing languages with equally
spaced attractivenesses. The fractions xi of speakers of surviv-
ing languages are plotted against the mean attractiveness g
in each sector labelled by the number K = 1, . . . , 5 of sur-
viving languages. The threshold values g5,2 = 5/2, g5,3 = 5/6,
g5,4 = 5/12 and g5,5 = 1/4 are abbreviated as g2 to g5.

of surviving languages depends on model parameters in
a non-trivial way. The K surviving languages are always
the most attractive ones (see Fig. 2). The fractions xi
of speakers of those languages, obeying the fixed-point
equations (18), can be written in full generality as

xi =
1− S
K

+ ai (29)

for i = 1, . . . ,K, with

S =
K∑
i=1

ai. (30)

The existence of an explicit expression (29) for the solu-
tion of the fixed-point equations (18) in full generality is
a consequence of their simple linear-minus-bilinear form,
which also ensures the uniqueness of the attractor.

The number K of surviving languages is the largest
such that the solution (29) obeys xi > 0 for i = 1, . . . ,K.
Equivalently, K is the largest integer in 1, . . . , N such that

K−1∑
i=1

(ai − aK) < 1. (31)

Every single one of the differences involved in the sum is
positive, so that:

K = 1 : a1 − a2 > 1,
K = 2 : a1 + a2 − 2a3 > 1 > a1 − a2,
K = 3 : a1 + a2 + a3 − 3a4 > 1 > a1 + a2 − 2a3,
. . .

K = N : 1 > a1 + a2 + · · ·+ aN−1 − (N − 1)aN .

(32)

https://epjb.epj.org/
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From now on, we model attractivenesses as independent
random variables. More precisely, we set

ai = wξi, (33)

where w is the mean attractiveness, and the rescaled
attractivenesses ξi are positive random variables drawn
from some continuous distribution f(ξ) such that 〈ξ〉 = 1.
For any given instance of the model, i.e., any draw of
the N random variables {ξi}, languages are renumbered
in order of decreasing attractivenesses (see (28)).

For concreteness we assume that f(0) is non-vanishing
and that f(ξ) falls off more rapidly than 1/ξ3 at large ξ.
These hypotheses respectively imply that small values of ξ
are allowed with non-negligible probability and ensure the
convergence of the second moment

〈
ξ2
〉

= 1 + σ2, where

σ2 is the variance of ξ.
Some quantities of interest can be expressed in closed

form for all language numbers N . One example is the con-
sensus probability P, defined as the probability of reaching
consensus, i.e., of having K = 1 (see (32)). This reads

P = Prob {a1 − a2 > 1} = Prob {ξ1 − ξ2 > 1/w} . (34)

We have

P = N

∫ ∞
0

F (ξ)N−1f(ξ + 1/w) dξ, (35)

for all N ≥ 2, where

F (ξ) =

∫ ξ

0

f(ξ′) dξ′ (36)

is the cumulative distribution of ξ.
In forthcoming numerical and analytical investigations

we use the following distributions:

Uniform: f(ξ) = 1
2 (0 < ξ < 2),

Exponential: f(ξ) = e−ξ (ξ > 0).
(37)

We begin our exploration of the model by looking at the
dynamics of a typical instance of the model with N = 10
languages and a uniform distribution of attractivenesses
with w = 0.3. Figure 4 shows the time-dependent fractions
of speakers of all languages, obtained by solving the rate
equations (17) numerically, with the uniform initial condi-
tion xi(0) = 1/10 for all i. In this example there are K = 6
surviving languages. The plotted quantities are observed
to converge to their stationary values given by (29) for
i = 1, . . . , 6, and to zero for i = 7, . . . , 10. They are ordered
as the corresponding attractivenesses at all positive times,
i.e., x1(t) > x2(t) > · · · > xN (t). Some of the fractions
however exhibit a non-monotonic evolution. This is the
case for i = 5 in the present example.

Figure 5 shows the distribution pK of the number K of
surviving languages, for N = 10 (top) and N = 40 (bot-
tom), and a uniform distribution of attractivenesses for
four values of the product

W = Nw. (38)

Fig. 4. An instance of the model with N = 10, a uni-
form distribution of attractivenesses with w = 0.3, and
K = 6. Full curves: time-dependent fractions of speakers of
all languages, obtained by solving the rate equations (17)
numerically. Dashed lines: stationary fractions given by (29)
for i = 1, . . . , 6.

Table 1. Mean fraction 〈K〉 /N of surviving languages
for a uniform distribution of attractivenesses. Compar-
ison between numerically measured values for N = 10
and N = 40 (see Fig. 5) and the asymptotic analytical
prediction (39), for four values of W .

W N = 10 N = 40 Equation (39)

2 0.750 0.718 0.70711
4 0.541 0.510 0.5
10 0.356 0.326 0.31623
30 0.222 0.192 0.18257

This choice is motivated by the analysis of Appendix A.
Each dataset is the outcome of 107 draws of the attrac-
tiveness profile. The widths of the distributions pK are
observed to shrink as N is increased, in agreement with
the expected 1/

√
N behavior stemming from the law of

large numbers. The corresponding mean fractions 〈K〉 /N
of surviving languages are shown in Table 1 to converge
smoothly to the asymptotic prediction (A.35), i.e.,

〈K〉
N
→ 1√

W
, (39)

with 1/N corrections.
An overall picture of the dependence of the statistics

of surviving languages on the mean attractiveness w is
provided by Figure 6, showing the mean number 〈K〉 of
surviving languages against w, for N = 10 and uniform
and exponential attractiveness distributions. The plotted
quantity decreases monotonically, starting from the value
〈K〉 = N in the absence of conversions (w = 0), and con-
verging to its asymptotic value 〈K〉 = 1 in the w → ∞
limit, where consensus is reached with certainty. Its depen-
dence on w is observed to be steeper for the exponential
distribution. These observations are corroborated by the
asymptotic analysis of Appendix A. For the uniform dis-
tribution, (A.35) yields the scaling law 〈K〉 ≈ (N/w)1/2.

https://epjb.epj.org/
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Fig. 5. Distribution pK of the number K of surviving
languages, for N = 10 (top) and N = 40 (bottom) and a uni-
form distribution of attractivenesses for four values of W (see
legends).

Concomitantly, the consensus probability becomes size-
able for w ∼ N (see (A.33)). For the exponential distribu-
tion, (A.38) yields the decay law 〈K〉 ≈ 1/w, irrespective
of N , and the consensus probability is strictly independent
of N (see (A.36)).

3 Breaking spatial symmetry: language
coexistence by inhomogeneous
attractivenesses

As mentioned in Section 1, different competing languages
may coexist in distinct geographical areas, because they
are more or less favoured locally, despite the homogenising
effects of migration and language shift [9–11]. The aim of
this section is to provide a quantitative understanding of
this scenario. We continue to use the approach and the
formalism of Section 2. We however take the liberty of
adopting slightly different notations, as both sections are
entirely independent.

We consider the dynamics of two competing lan-
guages in a structured territory comprising several distinct

Fig. 6. Mean number 〈K〉 of surviving languages against mean
attractiveness w, for N = 10 and uniform and exponential
attractiveness distributions (see legend).

Fig. 7. An array of M = 6 geographical areas.

geographic areas. For definiteness, we assume that the
population of each area is homogeneous. We restrict our-
selves to the geometry of an array of M areas, where
individuals can only migrate along the links joining neigh-
bouring areas, as shown in Figure 7. We assume for
simplicity that the migration rates γ between neighbour-
ing areas are uniform, so that in the very long run single
individuals eventually perform random walks across the
territory. The relative attractivenesses of both compet-
ing languages are distributed inhomogeneously among the
various areas, so that the net conversion rate Cm from
language 2 to language 1 depends on the area number
m. Finally, in order to emphasise the effects of spatial
inhomogeneity on their own, we simplify the model by
neglecting imbalance and thus set q = 1.

Let Xm(t) and Ym(t) denote the respective numbers of
speakers of language 1 and of language 2 in area number
m = 1, . . . ,M at time t. The dynamics of the model is
defined by the coupled rate equations

dXm(t)

dt
= Xm(t)(1−Xm(t)− Ym(t) + CmYm(t))

+ γ(Xm+1(t) +Xm−1(t)− 2Xm(t)), (40)

dYm(t)

dt
= Ym(t)(1−Xm(t)− Ym(t)− CmXm(t))

+ γ(Ym+1(t) + Ym−1(t)− 2Ym(t)). (41)

The extremal sites m = 1 and m = M have only one
neighbour. The corresponding equations have to be mod-
ified accordingly. The resulting boundary conditions can
be advantageously recast as

X0(t) = X1(t), XM+1(t) = XM (t), (42)
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and similarly for other quantities. These are known as
Neumann boundary conditions.

The total populations Pm(t) = Xm(t) + Ym(t) of the
various areas obey

dPm(t)

dt
= Pm(t)(1− Pm(t))

+ γ(Pm+1(t) + Pm−1(t)− 2Pm(t)), (43)

irrespective of the conversion rates Cm. As a consequence,
in the stationary state all areas have the same popu-
lation, which reads Pm = 1 in our reduced units. The
corresponding stability matrix is given in (B.5). The popu-
lation profile Pm(t) therefore converges exponentially fast
to its uniform stationary value, with unit relaxation time
(ω = 1).

From now on we assume, for simplicity, that the total
population of each area is unity in the initial state. This
property is preserved by the dynamics, i.e., we have
Pm(t) = 1 for all m and t, so that the rate equations (41)
simplify to

dXm(t)

dt
= CmXm(t)(1−Xm(t))

+ γ(Xm+1(t) +Xm−1(t)− 2Xm(t)). (44)

The rate equations (44) for the fractions Xm(t) of
speakers of language 1 in the various areas provide another
example of the broad class of replicator equations (see
e.g. [20–22]). The above equations are the starting point
of the subsequent analysis. In the situation where lan-
guage 1 is uniformly favoured or disfavoured, so that the
conversion rates are constant (Cm = C), the above rate
equations boil down to the discrete Fisher-Kolmogorov-
Petrovsky-Piscounov (FKPP) equation [30,31], which is
known to exhibit traveling fronts, just as the well-known
FKPP equation in the continuum [32,33]. In the present
context, the focus will however be on stationary solutions
on finite arrays, obeying

CmXm(1−Xm) + γ(Xm+1 +Xm−1 − 2Xm) = 0. (45)

3.1 Two geographic areas

We begin with the case of two geographic areas connected
by a single link. The problem is simple enough to allow
for an explicit exposition of its full solution. The rate
equations (44) become

dX1(t)

dt
= C1X1(t)(1−X1(t)) + γ(X2(t)−X1(t)), (46)

dX2(t)

dt
= C2X2(t)(1−X2(t)) + γ(X1(t)−X2(t)). (47)

Because of the migration fluxes, for any non-zero γ it is
impossible for any of the languages to become extinct in
one area and survive in the other one. The only possibility
is that of a uniform consensus, where one and the same
language survives in all areas. The consensus state where
language 1 survives is described by the stationary solution

Fig. 8. Phase diagram in the C1–C2 plane of the model defined
on two geographic areas for γ = 1. I1: consensus phase where
language 1 survives. I2: consensus phase where language 2
survives. IIA and IIB: coexistence of both languages in both
areas. Black dashed line: C1 + C2 = 0 (none of the languages
is globally favoured).

X1 = X2 = 1. The corresponding stability matrix is

S
(1)
2 =

(
−C1 − γ γ

γ −C2 − γ

)
= −diag(C1, C2)− γ∆2,

(48)
where diag(. . . ) denotes a diagonal matrix (whose entries
are listed), whereas ∆2 is defined in (B.3). The stability
condition amounts to

C1 + C2 + 2γ > 0, C1C2 + γ(C1 + C2) > 0. (49)

Similarly, the consensus state where language 2 survives
is described by the stationary solution X1 = X2 = 0. The
corresponding stability matrix is

S
(0)
2 =

(
C1 − γ γ
γ C2 − γ

)
= diag(C1, C2)− γ∆2. (50)

The conditions for the latter to be stable read

C1 + C2 − 2γ < 0, C1C2 − γ(C1 + C2) > 0. (51)

Figure 8 shows the phase diagram of the model in the
C1–C2 plane for γ = 1. Region I1 is the consensus phase
where language 1 survives. It is larger than the quad-
rant where this language is everywhere favoured (i.e., C1

and C2 are positive), as its boundary (red curve) reads
C1C2 + γ(C1 + C2) = 0. Similarly, region I2 is the con-
sensus phase where language 2 survives. It is larger than
the quadrant where this language is everywhere favoured
(i.e., C1 and C2 are negative), as its boundary (blue curve)
reads C1C2−γ(C1 +C2) = 0. The regions marked IIA and
IIB are coexistence phases. These phases are located sym-
metrically around the line C1 +C2 = 0 (black dashed line)
where none of the languages is globally favoured. There,
the fractions X1 and X2 of speakers of language 1 in both
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areas vary continuously between zero on the blue curve
and unity on the red one, according to

IIA: X1 =
1

2
− γ

C1
−D, X2 =

1

2
− γ

C2
+D, (52)

IIB: X1 =
1

2
− γ

C1
+D, X2 =

1

2
− γ

C2
−D, (53)

with

D =

√
1

4
− γ2

C1C2
. (54)

We have therefore

X1 +X2 = 1− γ C1 + C2

C1C2
(55)

all over the coexistence phases IIA and IIB. The right-
hand-side equals 0 on the blue curve, 1 on the black dashed
line, and 2 on the red curve.

3.2 M geographical areas

From now on we consider the general situation of M geo-
graphic areas, as shown in Figure 7. The basic properties
of the model can be inferred from the case of two areas,
studied in Section 3.1. In full generality, because of migra-
tion fluxes, it is impossible for any of the languages to
become extinct in some areas and survive in some other
ones. The only possibility is that of a uniform consensus,
where one and the same language survives in all areas.

The consensus state where language 1 survives is
described by the uniform stationary solution where Xm =
1 for all m = 1, . . . ,M . The corresponding stability
matrix is

S
(1)
M = −diag(C1, . . . , CM )− γ∆M . (56)

Similarly, the consensus state where language 2 survives
corresponds to the stationary solution where Xm = 0 for
all m = 1, . . . ,M . The corresponding stability matrix is

S
(0)
M = diag(C1, . . . , CM )− γ∆M . (57)

These expressions respectively generalise (48) and (50).
If all the conversion rates Cm vanish, both the above

matrices read −γ∆M , whose spectrum comprises one van-
ishing eigenvalue (see (B.4)). In the regime where all the
conversion rates Cm are small with respect to γ, pertur-

bation theory tells us that the largest eigenvalues of S
(0)
M

and S
(1)
M respectively read C and −C, to leading order,

where

C = φ0 · diag(C1, . . . , CM )φ0 =
1

M

M∑
m=1

Cm. (58)

We therefore predict that the average conversion rate C
determines the fate of the system in the regime where

Fig. 9. The ordered profile of conversion rates defined in (59).

conversion rates are small with respect to γ. If language 1
is globally favoured, i.e., C > 0, the system reaches the
consensus where language 1 survives, and vice versa.

In the generic situation where the conversion rates Cm
are comparable to γ, their dispersion around their spatial

average C broadens the spectra of the matrices S
(1)
M and

S
(0)
M . As a consequence, the condition C > 0 (resp. C < 0)

is necessary, albeit not sufficient, for the consensus where
language 1 (resp. language 2) survives to be stable.

In the following we shall successively consider ordered
attractiveness profiles in Section 3.3 and random ones in
Section 3.4.

3.3 Ordered attractiveness profiles

This section is devoted to a simple situation where
the attractiveness profiles of both languages are ordered
spatially. More specifically, we consider the case where lan-
guage 1 is favoured in the K first (i.e., leftmost) areas,
whereas language 2 is favoured in the L last (i.e., right-
most) areas, with K ≥ L and K + L = M . For the
sake of simplicity, we choose to describe this situation by
conversion rates that have unit magnitude, as shown in
Figure 9:

Cm =

{
+1 for m = 1, . . . ,K,
−1 for m = K + 1, . . . ,M.

(59)

The symmetric situation where M is even and K = L =
M/2, so that C = 0, can be viewed as a generalisation of
the case of two geographic areas, studied in Section 3.1, for
C1 +C2 = 0, i.e., along the black dashed line of Figure 8.
Both languages play symmetric roles, so that no language
is globally preferred, and no consensus can be reached. As
a consequence, both languages survive everywhere, albeit
with non-trivial spatial profiles, which can be thought of
as avatars of the FKPP traveling fronts mentioned above,
rendered stationary by being pinned by boundary condi-
tions. The upper panel of Figure 10 shows the stationary
fraction Xm of speakers of language 1 against area num-
ber, for M = 20 (i.e., K = L = 10) and several γ. The
abscissa m − 1/2 is chosen in order to have a symmetric
plot. As one might expect, each language is preferred in
the areas where it is favoured, i.e., we have Xm > 1/2 for
m = 1, . . . ,K, whereas Xm < 1/2 for m = K + 1, . . . ,M .
Profiles get smoother as the migration rate γ is increased.
The width ξ of the transition region is indeed expected to
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Fig. 10. Stationary fraction Xm of speakers of language 1
against m− 1/2 in two cases of ordered attractiveness profiles
on an array of M = 20 areas, for several migration rates γ
(see legends). Top: symmetric situation where K = L = 10.
Bottom: asymmetric situation where K = 12 and L = 8.

grow as

ξ ∼ √γ. (60)

This scaling law is nothing but the large γ behaviour of
the exact dispersion relation

4γ sinh2 µ

2
= 1 (61)

(see (B.18)) between γ and the decay rate µ such that
either Xm or 1 −Xm falls off as e±mµ, with the natural
identification ξ = 1/µ.

The asymmetric situation where K > L, so that C =
(K − L)/M > 0, implying that language 1 is globally
favoured, is entirely different. The system indeed reaches
a consensus state where the favoured language survives,
whenever the migration rate γ exceeds some threshold
γc. This threshold, corresponding to the consensus state
becoming marginally stable, only depends on the inte-
gers K and L. It is derived in Appendix B and given by
the largest solution of (B.23).

This is illustrated in the lower panel of Figure 10, show-
ing Xm against m − 1/2 for K = 12 and L = 8, and
the same values of γ as on the upper panel. The corre-
sponding threshold reads γc = 157.265. The whole profile
shifts upwards while it broadens as γ is increased. It tends
uniformly to unity as γ tends to γc, demonstrating the
continuous nature of the transition where consensus is
formed.

The threshold migration rate γc assumes a scaling form
in the regime where K and L are large and comparable.
Setting

K =
1 + f

2
M, L =

1− f
2

M, (62)

so that the excess fraction f identifies with the average
conversion rate C, the threshold rate γc grows quadrati-
cally with the system size M , according to

γc ≈
M2

4g(f)2
, (63)

where g(f) is the smallest positive solution of the implicit
equation

tanh((1 + f)g(f)) = tan((1− f)g(f)), (64)

which is a rescaled form of (B.23).
The quadratic growth law (63) is a consequence of the

diffusive nature of migrations. The following limiting cases
deserve special mention.
For f → 0, i.e., K and L relatively close to each other
(K − L�M), we have

g(f) =
√

3f

(
1 +

27

35
f2 + · · ·

)
, (65)

yielding to leading order

γc ≈
M3

12(K − L)
. (66)

For f → 1, i.e., L � K, we have g(f) ≈ π/(4(1 − f)),
up to exponentially small corrections, so that

γc ≈
16L2

π2
. (67)

The situation considered in the lower panel of Figure 10,
i.e., M = 20, K = 12 and L = 8, corresponds to f = 1/5,
hence g = 0.799622814 . . . , so that

γc ≈ 0.390993606 . . .M2. (68)

This scaling result predicts γc ≈ 156.397 for M = 20, a
good approximation to the exact value γc = 157.265.
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3.4 Random attractiveness profiles

We now consider the situation of randomly disordered
attractiveness profiles. The conversion rates Cm are mod-
elled as independent random variables drawn from some
symmetric distribution f(C), such that 〈Cm〉 = 0 and〈
C2
m

〉
= w2.

The first quantity we will focus on is the consensus prob-
ability P. It is clear from a dimensional analysis of the rate
equations (45) that P depends on the ratio γ/w, the sys-
tem size M , and the distribution f(C). Furthermore, P
is expected to increase with γ/w. It can be estimated as
follows in the limiting situations where γ/w is either very
small or very large.

In the regime where γ � w (e.g. far from the center
in Fig. 8), conversion effects dominate migration effects.
There, a consensus where language 1 (resp. language 2)
survives can only be reached if all conversion rates Cm are
positive (resp. negative). The total consensus probability
thus scales as

P ≈ 1

2M−1
. (69)

Consensus is therefore highly improbable in this regime. In
other words, coexistence of both languages is overwhelm-
ingly the rule.

In the opposite regime where γ � w (e.g. in the vicin-
ity of the center in Fig. 8), migration effects dominate
conversion effects. There, we have seen in Section 3.2
that the average conversion rate defined in (58) essen-
tially determines the fate of the system. If language 1 is
globally favoured, i.e., C > 0, then the system reaches the
uniform consensus where language 1 survives, and vice
versa. Coexistence is therefore rare in this regime, as it
requires C to be atypically small. The probability Q for
this to occur, to be identified with 1−P, has been given a
precise definition in Appendix B by means of the expan-

sion (B.13) of DM = detS
(1)
M as a power series in the

Cm, and estimated within a simplified Gaussian setting.
In spite of the heuristic character of its derivation, the
resulting estimate (B.17) demonstrates that the consensus
probability scales as

P ≈ Φ(x), x =
γ

M3/2w
(70)

all over the regime where the ratio γ/w and the system
sizeM are both large. Furthermore, taking (B.17) literally,
we obtain the following heuristic prediction for the finite-
size scaling function:

Φheuristic(x) =
2

π
arctan(x

√
12). (71)

The scaling result (70) shows that the scale of the
migration rate γ which is relevant to describe the con-
sensus probability for a typical disordered profile of
attractivenesses reads

γ ∼M3/2w. (72)

Fig. 11. Finite-size scaling plot of the consensus probability
P against x = γ/M3/2. Symbols: data for M = 20 and uniform
(UNI) and Gaussian (GAU) conversion rate distributions with
w = 1. Thin black curve: guide to the eye pointing toward the
universality of the finite-size scaling function Φ entering (70).
Full green curve: heuristic (HEU) prediction (71).

This estimate grows less rapidly with M than the cor-
responding threshold for ordered profiles, which obeys a
quadratic growth law (see (63)). The exponent 3/2 of the
scaling law (72) can be put in perspective with the anoma-
lous scaling of the localisation length in one-dimensional
Anderson localisation near band edges. There is indeed
a formal analogy between the stability matrices of the
present problem and the Hamiltonian of a tight-binding
electron in a disordered potential, with the random con-
version rates Cm replacing the disordered on-site energies.
For the tight-binding problem, the localisation length is
known to diverge as ξ ∼ 1/w2 in the bulk of the spectrum,
albeit only as ξ ∼ 1/w2/3 in the vicinity of band edges [34–
38]. Replacing ξ by the system size M and remembering
that w stands for w/γ, we recover (72). The exponent 3/2
is therefore nothing but the inverse of the exponent 2/3
of anomalous band-edge localisation.

Figure 11 shows a finite-size scaling plot of the consen-
sus probability P against x = γ/M3/2. Data correspond
to arrays of length M = 20 with uniform and Gaussian
distributions of conversion rates with w = 1. Each data
point is the outcome of 106 independent realisations. The
thin black curve is a guide to the eye, suggesting that
the finite-size scaling function Φ is universal, i.e., inde-
pendent of details of the conversion rate distribution. It
has indeed been checked that the weak residual depen-
dence of data points on the latter distribution becomes
even smaller as M is further increased. The full green
curve shows the heuristic prediction (71), providing a
semi-quantitative picture of the finite-size scaling func-
tion. For instance, consensus is reached with probability
P = 1/2 and P = 2/3 respectively for x ≈ 0.18 and x ≈
0.33, according to actual data, whereas (71) respectively

predicts x = 1/
√

12 = 0.288675 . . . and x = 1/2.
Besides the value of the consensus probability P, the

next question is what determines whether or not the
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Fig. 12. Probability distribution of the average conversion
rate C for a Gaussian distribution of conversion rates with
w = 1. Black curves: total (i.e., unconditioned) distribution.
Red curves: distribution conditioned on consensus I1. Blue
curves: distribution conditioned on consensus I2. Green curves:
distribution conditioned on coexistence (II). Top: M = 2 and
γ = 0.351. Bottom: M = 10 and γ = 10.22.

system reaches consensus. In Section 3.2 it has been
demonstrated that the average conversion rate C defined
in (58) essentially determines the fate of the system in
the regime where migration effects dominate conversion
effects. It has also been shown that the consensus denoted
by I1, where language 1 survives, can only be stable for
C > 0, whereas the consensus denoted by I2, where lan-
guage 2 survives, can only be stable for C < 0. The above
statements are made quantitative in Figure 12, show-
ing the probability distribution of the average conversion
rate C, for a Gaussian distribution of conversion rates
with w = 1. The total (i.e., unconditioned) distribution
(black curves) is Gaussian. Red and blue curves show the
distributions conditioned on consensus. They are indeed
observed to live entirely on C > 0 for I1 and on C < 0 for
I2. Finally, the distributions conditioned on coexistence
(green curves, denoted by II) exhibit narrow symmetric
shapes around the origin. Values of the migration rate γ
are chosen so as to have three partial histograms with

equal weights, i.e., a consensus probability P = 2/3. This
fixes γ ≈ 0.351 for M = 2 (top) and γ ≈ 10.22 for M = 10
(bottom).

4 Discussion

An area of interest that is common to both physicists
and linguists concerns the evolution of competing lan-
guages. It was long assumed that such competition would
result in the dominance of one language above all its com-
petitors, until some recent work hinted that coexistence
might be possible under specific circumstances. We argue
here that coexistence of two or more competing languages
can result from two symmetry-breaking mechanisms – due
respectively to imbalanced internal dynamics and spatial
heterogeneity – and engage in a quantitative exploration
of the circumstances which lead to this coexistence. In this
work, both symmetry-breaking scenarios are dealt with on
an equal footing.

In the first case of competing languages in a single
geographical area, our introduction of an interpolation
parameter q, which measures the amount of imbalance
in the internal dynamics, turns out to be crucial for
the investigation of language coexistence. It is concep-
tually somewhat subtle, since it appears only in the
saturation terms in the coupled logistic equations used
here to describe language competition; in contrast to
the conversion terms (describing language shift from a
less to a more favoured language), its appearance is
symmetric with respect to both languages. For multiply
many competing languages, the ensuing rate equations
for the fractions of speakers are seen to bear a strong
resemblance to a broad range of models used in theo-
retical ecology, including Lotka-Volterra or predator-prey
systems.

We first consider the case where the N languages in
competition in a single area have equally spaced attrac-
tivenesses. This simple situation allows for an exact
characterisation of the stationary state. The range of
attractivenesses is measured by the mean attractiveness
g. As this parameter is increased, the number K of surviv-
ing languages decreases progressively, as the least favoured
languages successively become extinct at threshold values
of g. Importantly, the range of values of g between the
start of the disappearances and the appearance of con-
sensus grows proportionally to N2. There is therefore a
substantial amount of coexistence between languages that
are significantly attractive.

In the general situation, where the attractivenesses of
the competing languages are modelled as random variables
with an arbitrary distribution, the outcomes of numer-
ical studies at finite N are corroborated by a detailed
asymptotic analysis in the regime of large N . One of the
key results is that the quantity W = Nw (the product
of the number of languages N with the mean attractive-
ness w) determines many quantities of interest, including
the mean fractionR = 〈K〉 /N of surviving languages. The
relation between W and R is however non-universal, as it
depends on the full attractiveness distribution. This non-
universality is most prominent in the regime where the
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mean attractiveness is large, so that only the few most
favoured languages survive in the stationary state. The
number of such survivors is found to obey a scaling law,
whose non-universal critical exponent is dictated by the
specific form of the attractiveness distribution near its
upper edge.

As far as symmetry breaking via spatial heterogeneity
is concerned, we consider the paradigmatic case of two
competing languages in a linear array of M geographic
areas, whose neighbours are linked via a uniform migra-
tion rate γ. In the simplest situation of two areas, we
determine the full phase diagram of the model as a func-
tion of γ as well as the conversion rates ruling language
shift in each area. This allows us to associate different
regions of phase space with either consensus or coexis-
tence. Our analysis is then generalised to longer arrays of
M linked geographical regions. We first consider ordered
attractiveness profiles, where language 1 is favoured in
the K leftmost areas, while language 2 is favoured in the
L rightmost ones. If the two blocks are of equal size so
that no language is globally preferred, coexistence always
results; however, the spatial profiles of the language speak-
ers themselves are rather non-trivial. For blocks of unequal
size, there is a transition from a situation of coexistence
at low migration rates to a situation of uniform consen-
sus at high migration rates, where the language favoured
in the larger block is the only survivor in all areas. The
critical migration rate at this transition grows as M2. We
next investigate disordered attractiveness profiles, where
conversion rates are modelled as random variables. There,
the probability of observing a uniform consensus is given
by a universal scaling function of x = γ/(M3/2w), where
w is the width of the symmetric distribution of conversion
rates.

The ratio between migration and conversion rates
beyond which there is consensus – either with certainty
or with a sizeable probability – grows with the num-
ber of geographic areas as M2 for ordered profiles of
attractivenesses, and as M3/2 for disordered ones. The
first exponent is a consequence of the diffusive nature of
migrations, whereas the second one has been derived in
Appendix B.2 and related to anomalous band-edge scaling
in one-dimensional Anderson localisation. If geographical
areas were arranged according to a more complex geo-
metric structure, these exponents would respectively read
2d/ds and (4 − ds)/(2ds), with d and ds being the frac-
tal and spectral dimensions of the underlying structure
(see [39,40], and [41,42] for reviews).

Finally, we remark on another striking formal analogy
– that between the rate equations (17) presented here,
and those of a spatially extended model of competitive
dynamics [43], itself inspired by a model of interacting
black holes [44]. In the latter, the non-trivial patterns of
survivors on various networks and other geometrical struc-
tures were a particular focus of investigation, and led to
the unearthing of universal behaviour. We believe that a
network model of competing languages which combines
both the symmetry-breaking scenarios discussed in this
paper, so that every node corresponds to a geographical
area with its own imbalanced internal dynamics, might
lead to the discovery of similar universalities.
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Appendix A: Asymptotic analysis for a large
number of competing languages in a single
area

This Appendix is devoted to an analytical investigation of
the statistics of surviving languages in a single geographic
area, in the regime where the numbers N of competing
languages is large.

The properties of the attractiveness distribution of the
languages are key to determining whether coexistence or
consensus will prevail. In particular the transition to con-
sensus depends critically, and non-universally, on the way
in which the attractiveness distribution decays, as will be
shown below.

Statistical fluctuations between various instances of
the model become negligible for large N , so that sharp
(i.e., self-averaging) expressions can be obtained for many
quantities of interest.

Let us begin with the simplest situation where all
languages survive. When the number N of competing lan-
guages is large, the condition for this to occur assumes a
simple form. Consider the expression (29) for xN . The law
of large numbers ensures that the sum S converges to

W = Nw, (A.1)

whereas aN is relatively negligible. The condition that all
the N competing languages survive therefore takes the
form of a sharp inequality at large N , i.e.,

W < 1. (A.2)

All over this regime, the expression for xN simplifies to

lim
N→∞

NxN = 1−W. (A.3)

The above analysis can be extended to the general
situation where the numbers N of competing languages
and K of surviving ones are large and comparable, with
the fraction of surviving languages,

R =
K

N
, (A.4)
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taking any value in the range 0 < R < 1.
The rescaled attractiveness of the least favoured surviv-

ing language, namely

η = ξK , (A.5)

turns out to play a key role in the subsequent analysis. Let
us introduce for further reference the truncated moments
(k = 0, 1, 2)

Ik(η) =

∫ ∞
η

ξk f(ξ) dξ. (A.6)

First of all, the relationship between R and η becomes
sharp in the large-N regime. We have indeed

R = Prob {ξ > η} = 1− F (η) = I0(η). (A.7)

The limits of all quantities of interest can be similarly
expressed in terms of η. We have for instance

lim
N→∞

S = W I1(η), (A.8)

for the sum introduced in (30). The marginal stability
condition, namely that language number K is at the verge
of becoming extinct, translates to

W =
1

I1(η)− ηI0(η)
. (A.9)

The asymptotic dependence of the fraction R of surviv-
ing languages on the rescaled mean attractiveness W is
therefore given in parametric form by (A.7) and (A.9).
The identity

dR

dW
= − f(η)

RW 2
(A.10)

demonstrates that R is a decreasing function of W , as it
should be.

When the parameter W reaches unity from above, the
model exhibits a continuous transition from the situation
where all languages survive. The parameter η vanishes
linearly as

η ≈W − 1, (A.11)

with unit prefactor, irrespective of the attractiveness dis-
tribution. The fraction of surviving languages departs
linearly from unity, according to

R ≈ 1− f(0)(W − 1). (A.12)

In the regime where W � 1, the fraction R of surviving
languages is expected to fall off to zero. As a consequence
of (A.7), R � 1 corresponds to the parameter η being
close to the upper edge of the attractiveness distribution
f(ξ). This is to be expected, as the last surviving lan-
guages are the most attractive ones. As a consequence, the

form of the relationship between W and R for W � 1 is
highly non-universal, as it depends on the behavior of the
distribution f(ξ) near its upper edge. It turns out that the
following two main classes of attractiveness distributions
have to be considered.

• Class 1: Power law at finite distance
Consider the situation where the distribution f(ξ)
has a finite upper edge ξ0, and either vanishes or
diverges as a power law near this edge, i.e.,

f(ξ) ≈ Aα(ξ0 − ξ)α−1. (A.13)

The exponent α is positive. The density f(ξ) diverges
near its upper edge ξ0 for 0 < α < 1, whereas it
vanishes near ξ0 for α > 1, and takes a constant value
f(ξ0) = A for α = 1.
In the relevant regime where η is close to ξ0, the
expressions (A.7) and (A.9) simplify to

R ≈ Aα

∫ ξ0

η

(ξ0 − ξ)α−1dξ

≈ A(ξ0 − η)α, (A.14)

1

W
≈ Aα

∫ ξ0

η

(ξ − η)(ξ0 − ξ)α−1dξ

≈ A

α+ 1
(ξ0 − η)α+1. (A.15)

Eliminating η between both above estimates, we
obtain the following power-law relationship between
W and R:

R ≈
(
A(α+ 1)α

Wα

)1/(α+1)

. (A.16)

In terms of the original quantities K and w, the
above result reads

K ≈
(
A(α+ 1)αN

wα

)1/(α+1)

. (A.17)

Setting K = 1 in this estimate, we predict that the
consensus probability P becomes appreciable when

w ∼ N1/α. (A.18)

• Class 2: Power law at infinity
Consider now the situation where the distribution
extends up to infinity, and falls off as a power law,
i.e.,

f(ξ) ≈ Bβξ−β−1. (A.19)

The exponent β is larger than 2, in order for the first
two moments of ξ to be convergent.
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In the relevant regime where η is large, the expres-
sions (A.7) and (A.9) simplify to

R ≈ Bβ

∫ ∞
η

ξ−β−1dξ

≈ Bη−β , (A.20)

1

W
≈ Bβ

∫ ∞
η

(ξ − η)ξ−β−1dξ

≈ B

β − 1
η−(β−1). (A.21)

Eliminating η between both above estimates, we
obtain the following power-law relationship between
W and R:

R ≈
(

(β − 1)β

BW β

)1/(β−1)

. (A.22)

In terms of the original quantities K and w, the
above result reads

K ≈
(

(β − 1)β

BwβN

)1/(β−1)

. (A.23)

Setting K = 1 in this estimate, we predict that the
consensus probability P becomes appreciable when

w ∼ N−1/β . (A.24)

We now summarise the above discussion. In the regime
where W � 1, the fraction R of surviving languages falls
off as a power law of the form

R ∼ 1

Wλ
, (A.25)

where the positive exponent λ varies continuously, accord-
ing to whether the distribution of attractivenesses extends
up to a finite distance or infinity (see (A.16), (A.22)):

Class 1: λ =
α

α+ 1
(α > 0, 0 < λ < 1),

Class 2: λ =
β

β − 1
(β > 2, 1 < λ < 2).

(A.26)

In the marginal situation between both classes mentioned
above, comprising e.g. the exponential distribution, the
decay exponent sticks to its borderline value

λ = 1. (A.27)

The decay law R ∼ 1/W might however be affected by
logarithmic corrections.

Another view of the above scaling laws goes as follows.
When the number of languages N is large, the number
of surviving languages decreases from K = N to K = 1
over a very broad range of mean attractivenesses. The

condition for all languages to survive (see (A.2)) sets the
beginning of this range as

wmin ≈
1

N
. (A.28)

The occurrence of a sizeable consensus probability P sets
the end of this range as

wmax ∼ Nµ, (A.29)

where the exponent µ > −1/2 varies continuously, accord-
ing to (see (A.18), (A.24)):

Class 1: µ =
1

α
(α > 0, µ > 0),

Class 2: µ = − 1

β
(β > 2, −1/2 < µ < 0). (A.30)

In the marginal situation between both classes, the above
exponent sticks to its borderline value

µ = 0. (A.31)

The extension of the dynamical range, defined as the
ratio between both scales defined above, diverges as

wmax

wmin
∼ Nµ+1. (A.32)

We predict in particular a linear divergence for the expo-
nential distribution (µ = 0) and a quadratic divergence for
the uniform distribution (µ = 1). This explains the quali-
tative difference observed in Figure 6. The slowest growth
of the dynamical range is the square-root law observed for
distributions falling off as a power-law with β → 2, so that
µ = −1/2.

To close, let us underline that most of the quanti-
ties met above assume simple forms for the uniform and
exponential distributions (see (37)).

• Uniform distribution
The consensus probability (see (35)) reads

P =

(
1− 1

2w

)N
. (A.33)

For large N , this becomes P ≈ exp(−N/(2w)),
namely a function of the ratio w/N , in agreement
with (A.29) and (A.30), with exponent µ = 1, since
α = 1.
The truncated moments read

I0(η) = 1− η

2
, I1(η) = 1− η2

4
. (A.34)

We thus obtain

R =
1√
W
, (A.35)
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with exponent λ = 1/2, in agreement with (A.16)
and (A.26) for α = 1.

• Exponential distribution
The consensus probability reads

P = e−1/w, (A.36)

irrespective of N , in agreement with (A.29), with
exponent µ = 0 (see (A.31)).
The truncated moments read

I0(η) = e−η, I1(η) = (1 + η)e−η. (A.37)

We thus obtain

R =
1

W
, (A.38)

with exponent λ = 1, in agreement with (A.27).

Appendix B: Stability matrices and their
spectra

B.1 Generalities

This Appendix is devoted to stability matrices and their
spectra. Let us begin by reviewing some general back-
ground (see e.g. [45] for a comprehensive overview).
Consider an autonomous dynamical system defined by a
vector field E(x) in N dimensions, i.e., by N coupled
first-order equations of the form

dxm(t)

dt
= Em{xn(t)}, (B.1)

with m,n = 1, . . . , N , where the right-hand sides depend
on the dynamical variables {xn(t)} themselves, but not
explicitly on time.

Assume the above dynamical system has a fixed point
{xm}, such that Em{xn} = 0 for all m. Small deviations
{δxm(t)} around the fixed point {xm} obey the linearised
dynamics given by the stability matrix S, i.e., the N ×N
matrix defined by

Sm,n =
∂Em
∂xn

, (B.2)

where right-hand sides are evaluated at the fixed point.
The fixed point is stable, in the strong sense that small
deviations fall off exponentially fast to zero, if all eigen-
values λa of S have negative real parts. In this case, if
all the λa are real, their opposites ωa = −λa > 0 are the
inverse relaxation times of the linearised dynamics. In par-
ticular, the opposite of the smallest eigenvalue, simply
denoted by ω, characterises exponential convergence to
the fixed point for a generic initial state. If some of the λa
have non-zero imaginary parts, convergence is oscillatory.

The analysis of fixed points and bifurcations in low-
dimensional Lotka-Volterra and replicator equations has
been the subject of extensive investigations [24–29] (see
also [20–22]).

B.2 Array models

The remainder of this Appendix is devoted to the stabil-
ity matrices involved in the array models considered in
Section 3, for an arbitrarily large number M of geograph-
ical areas. All those stability matrices are related to the
symmetric M ×M matrix

∆M =


1 −1 0 . . .
−1 2 −1 . . .
. . . . . . . . . . . .
. . . −1 2 −1
. . . 0 −1 1

 , (B.3)

representing (minus) the Laplacian operator on a linear
array of M sites, with Neumann boundary conditions.
References [46,47] provide reviews on the Laplacian and
related operators on graphs.

The eigenvalues λa of ∆M and the corresponding nor-
malised eigenvectors φa, such that ∆Mφa = λaφa and
φa · φb = δab, read

λa = 4 sin2 aπ

2M
,

φa,m =

√
2

(1 + δa0)M
cos

(2m− 1)aπ

2M
(B.4)

(a = 0, . . . ,M − 1). The vanishing eigenvalue λ0 = 0

corresponds to the uniform eigenvector φ0,m = 1/
√
M .

Let us begin by briefly considering the simple example
of the stability matrix

SM = −1− γ∆M (B.5)

of the rate equations (43) for the total populations Pm(t).
Its eigenvalues are −1− γλa. The smallest of them is −1,
so that the inverse relaxation time is given by ω = 1, as
announced below (43).

Let us now consider the stability matrices

S
(1)
M = −diag(C1, . . . , CM )− γ∆M ,

S
(0)
M = diag(C1, . . . , CM )− γ∆M (B.6)

respectively defined in (56) and (57), and corresponding
to both uniform consensus states for an arbitrary profile of
conversion rates Cm. The ensuing stability conditions have
been written down explicitly in (49) and (51) for M = 2.
It will soon become clear that it is virtually impossible
to write them down for an arbitrary size M . Some infor-
mation can however be gained from the calculation of the
determinants of the above matrices. They only differ by a
global sign change of all the conversion rates Cm, so that

it is sufficient to consider S
(1)
M . It is a simple matter to

realise that its determinant reads

DM = detS
(1)
M = (−γ)M (uM+1 − uM ), (B.7)
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where um is a generalised eigenvector solving the following
Cauchy problem:

− (Cm + 2γ)um + γ(um+1 + um−1) = 0, (B.8)

with initial conditions u0 = u1 = 1. We thus obtain
recursively

γu2 = C1 + γ,

−D1 = C1, (B.9)

γ2u3 = C1C2 + γ(2C1 + C2) + γ2,

D2 = C1C2 + γ(C1 + C2), (B.10)

γ3u4 = C1C2C3 + γ(2C1C2 + 2C1C3 + C2C3)

+ γ2(3C1 + 2C2 + C3) + γ3,

−D3 = C1C2C3 + γ(C1C2 + 2C1C3 + C2C3)

+ γ2(C1 + C2 + C3), (B.11)

and so on. The expression (B.10) for D2 agrees with the
second of the conditions (49) and with the equation of the
red curve in Figure 8, as should be. The expression (B.11)
for D3 demonstrates that the complexity of the stability
conditions grows rapidly with the system size M .

Random arrays

In the case of random arrays, considered in Section 3.4,
the conversion rates Cm are independent random variables
such that 〈Cm〉 = 0 and

〈
C2
m

〉
= w2.

The regime of most interest is where the conversion
rates Cn are small with respect to γ. In this regime,
the determinant DM can be expanded as a power series
in the conversion rates. The um solving the Cauchy
problem (B.8) are close to unity. Setting

um = 1 + u(1)m + u(2)m + · · · , (B.12)

where the u
(1)
m are linear and the u

(2)
m quadratic in the Cn,

we obtain after some algebra

(−)MDM = γM−1(X + Y + . . . ), (B.13)

where

X =
M∑
n=1

Cn, Y =
1

2γ

M∑
m,n=1

|n−m|CmCn (B.14)

are respectively linear and quadratic in the Cn. We have

〈X〉 = 〈Y 〉 = 〈XY 〉 = 0,

σ2
X =

〈
X2
〉

= Mw2,

σ2
Y =

〈
Y 2
〉

=
M2(M2 − 1)w4

12γ2
. (B.15)

In Section 3.4 we need an estimate of the probability Q
that C = X/M is atypically small. Within the present set-
ting, it is natural to define the latter event as |X| < |Y |.
The corresponding probability can be worked out proviso

we make the ad hoc simplifying assumptions – that defi-
nitely do not hold in the real world – that X and Y are
Gaussian and independent. Within this framework, the
complex Gaussian random variable

ζ =
X

σX
+

iY

σY
(B.16)

has an isotropic density in the complex plane. We thus
obtain

Q =
2

π
arctan

σY
σX
≈ 2

π
arctan

M3/2w

γ
√

12
. (B.17)

Ordered arrays

The aim of this last section is to investigate the spectrum

of the stability matrix S
(1)
M associated with the ordered

profile of conversion rates given by (59).
In this case, the generalised eigenvector um solving

the Cauchy problem (B.8) can be worked out explic-
itly. We have Cm = 1 for m = 1, . . . ,K, and therefore
um = aemµ + be−mµ, where µ > 0 obeys the dispersion
relation

4γ sinh2 µ

2
= 1. (B.18)

The initial conditions u0 = u1 = 1 fix a and b, and so

um =
cosh(2m− 1)

µ

2

cosh
µ

2

(m = 0, . . . ,K + 1). (B.19)

Similarly, we have Cm = −1 for m = K + `, with ` =
1, . . . , L, and therefore um = αei`q + βe−i`q, where 0 <
q < π obeys the dispersion relation

4γ sin2 q

2
= 1. (B.20)

Matching both solutions for m = K and K + 1 fixes α
and β, and so

um =
cosh(2K + 1)

µ

2
sin `q − cosh(2K − 1)

µ

2
sin(`− 1)q

cosh
µ

2
sin q

(m = K + `; ` = 0, . . . , L+ 1). (B.21)

Inserting the latter result into (B.7), we obtain the fol-

lowing expression for the determinant of S
(1)
M , with M =

K + L:

DM = 2(−γ)M

×
(

tanh
µ

2
sinhKµ cosLq − tan

q

2
coshKµ sinLq

)
.

(B.22)
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The vanishing of the above expression, i.e.,

tanh
µ

2
tanhKµ = tan

q

2
tanLq, (B.23)

signals that one eigenvalue of the stability matrix S(1)

vanishes. In particular, the consensus state where lan-
guage 1 survives becomes marginally stable at the thresh-
old migration rate γc, where the largest eigenvalue of S(1)

vanishes. Equation (B.23) amounts to a polynomial equa-
tion of the form PK,L(γ) = 0, where the polynomial PK,L
has degree K+L−1 = M−1. All its zeros are real, and γc
is the largest of them. The first of these polynomials read

P2,1 = γ2 − 2γ − 1,

P3,1 = 2γ3 − 2γ2 − 4γ − 1,

P4,1 = 3γ4 − 9γ2 − 6γ − 1,

P3,2 = γ4 − 10γ3 − 7γ2 + 2γ + 1. (B.24)
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