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Abstract—Implementing an intuitive control law for an upper-
limb exoskeleton to perform force augmentation is a challenging
issue in the field of human-robot collaboration. The aim of this
study is to design an innovative approach to calibrate electromyo-
graphy (EMG) data in order to detect the intention to lift or put
down a charge while wearing an upper-limb exoskeleton. Based
on a low-cost EMG sensor bracelet placed around the arm (Myo
armband, Thalmics Lab, Ontario), a subject-specific mapping
procedure is implemented to discriminate motion intentions
during lifting tasks with a 1-DoF upper-limb exoskeleton. The
processing is divided into two main parts: (i) direction estimation
with an artificial neural network, and (ii) a model-based intensity
prediction. The mapping procedure has been tested on 7 healthy
participants with a precision of 96.9±3.1% for the classification
and a RMS Error of 3.8± 0.8N at the end effector. This study
opens up the way for fast-deployment applications involving
exoskeletons or cobots.

Index Terms—EMG, Exoskeleton, Calibration, Intention De-
tection

I. INTRODUCTION

Industrial workers are performing repetitive physical tasks,
which expose them to musculoskeletal disorders (MSD) [1].
MSD is a major public health issue, with an impact on
workers’ integrity and economics. Indeed, MSD are causing
both loss in productivity and high healthcare costs. According
to [2], MSD have led to the loss of 10 millions work days
in France in 2012, with an average cost of 21 ke per case
of MSD. A way to prevent MSDs could be to assist the
workers during forceful exertions, e.g. load carrying tasks, thus
relieving the strain they endure.

Exoskeletons could become a solution for industrial load
carrying. Although, exoskeletons can be backdrivable (see
sec. III-A), and they can help manipulating known and fixed

Fig. 1: Upper-limb exoskeleton

weights [3], the way they can handle various and unknown
charges in a efficient manner is yet to be achieved. The
knowledge of the user’s intention could help in this matter.
Surface EMG signal processing demonstrated reliability in
estimating the muscle force [4], and, consequently, it may be
a relevant bio-signal to capture the motion intention.

Given a context of industry-oriented application, an al-
gorithm based on a robust calibration process has to be
implemented in order to design a subject-specific intuitive-to-
use intention detection methodology to control an exoskeleton.
This calibration process has to be reliable and not time-
consuming to be operational.
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II. PREVIOUS WORKS

EMG signals have already been used to control robotic
devices [5], [6]. This biocybernetic approach uses EMG sig-
nals into two different manners: discretely or continuously.
The discrete-EMG method uses pattern recognition based on
handcrafted features and a classifier trained with them [7] or
some end-to-end neural networks [8]. The main inconvenience
of this method of intention detection is its lack of flexibility.
Indeed there is a trade-off between the panel of actions and the
cognitive charge/reliabilty of the classification, which depends
on the number of classes. In the case of a directionnal control,
one class may correspond to one direction with a fixed speed
[6].

On the other hand, a continuous-EMG method seems more
adequate but it also presents disadvantages. First of all, it is
more complex, due to the fact that the relations between the
features of the EMG signals and the movement are highly
non-linear [9]. In [10] a continuous 3D estimation of the
position of the hand is performed with the use of 9 electrodes
targeting specific muscles. Such precise requirements in the
placement of the electrodes complicate the deployment and
reinforce the user-dependent aspect of the method. In addition,
these methods are more adapted to teleoperation, as well as
prosthesis assistance rather than a situation where the torques
of the robot and the user influence each other. In the current
study, a mix of continuous and discrete approaches will be
used to evaluate the intentions of the user. The current study
is preliminary to torque control laws, and aims to relate user’s
intentions to a torque. Torque values will be used rather than
normalized EMG so that future implemented control laws will
assure the same behavior for each user.

Finally, EMG data is individual-specific and that is why
the signal processing requires to be calibrated. Different ways
to calibrate EMG signal processing have been proposed. The
calibration can be based on voluntary contraction to gather
data for classification tasks. Usually, data from all the classes
is recorded [11] but some works focus on recognizing one
situation against several others, like with a 1-class classifier
[12]. Another strategy is to use external load (i.e force sensors
or set of weights) [4]. This approach is adapted for certain con-
tinuous evaluation, but the use of force sensors increases the
cost and the complexity of the procedure and the positionning
of the sensors is usually critical. Others methods use external
motion capture technology to calibrate with continuous data
[13], however it does not enable to estimate the torque applied
by the individual. In this study, an upper-limb exoskeleton will
be used to collect data with reliable labels (class or torque
value). This enables to control precisely the type of movement
or effort made by the user.

To summarize, the discrete-to-continuous approach pre-
sented in this study contributes from the point of view of
practical implementation (using an exoskeleton both to label
and as an excitation vector for identification). It is not only
more flexible than a fully discrete method, but also it has much
more potential of practical deployment than a fully continuous
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Fig. 2: Representation of the DHM parameters [14]

TABLE I: Table of the DHM parameters [14]

αi di ri θi
Frame 1 0 0 rshoulder θ1

Frame 2 +
π

2
dshoulder 0 θ2

Frame 3 0 Larm 0 θ3 = 1.5 ∗ θ2
Frame 4 −

π

2
Lelbow 0 θ4

Frame 5 0 Lforearm 0 0

approach. Consequently, a low-cost surface EMG device will
be used to foresee a practical use-case. More specific additions
to the state of the art will be given in next sections of the
current article.

III. SYSTEM SPECIFICATIONS

A. Exoskeleton

The exoskeleton used in this study is an under-actuated
upper-body backdrivable type (Fig. 1). Each side consists
of two segments (upper-arm and forearm) and four joints.
Two of the joints are passive (θ1 and θ4) and the other two
are proportionally linked and powered by the same actuator
(θ3 = 1.5 ∗ θ2 [15] (Fig. 2 and Tab. I) . The end effector
of the exoskeleton, that pulls the hand upward, is attached
to the user’s palm of the hand by a strap. Backdrivability is
”the nature that when the force is added to the output axis, the
output axis is moved by this force and this motion is conveyed
to the input axis and the input axis is moved by this motion in
the case of actuators or power transmitting mechanism” [16].

During the interaction, human and robotic forearm dynamics
are coupled, which can be modeled as follows [17]:

{
MrΘ̈r + brΘ̇r + τFNL

+Qr(Θr) = τr − τi

MhΘ̈h + J t
hFe + bhΘ̇h +Qh(Θh) = τh + τi

(1)

Where τi is the equivalent interaction torque between human
and robot limbs, τr - the robot torque, τh - the human joint



torque and M - the matrix of inertia, b - the viscosity, τFNL

- the non-linear friction and Q the gravity torque. Fe are the
external forces applied to the human and J t

h - the jacobian of
the human. The subscripts r and h denote similar quantities
related to robot and human systems, respectively. We are
considering a quasi static interaction and we compensate the
effect of gravity on the robot (Backdrivability ensures that
FNL is low [3]), which give us:

τh = −τ + J t
hFe +Qh(Θh) (2)

with :
τr = τ +Qr(Θr) + τFNL

(3)

B. EMG Recording
The methodology of intention detection is expected to be

functional, easy to deploy, low-cost, operational in real-time
and be capable of securing homogeneity between individuals.
Homogeneity in our case means that, despite the fact that the
features of the EMG signals vary depending on the user, our
methodology should output the same value of intensity for
equal intentions of different users.

The Myo-Armband (Thalmic Labs, Ontario) meets the
previous specifications. The armband was positioned around
the arm to capture biceps and triceps muscle activities. The
Armband is composed of eight pairs of dry electrodes. We
optimized the longitudinal placement to maximize the EMG
signal empirically. The raw output of the armband is a zero-
mean signal coded over 8 bit, it has no unit and is comprised
between -126 and +127.

C. Algorithm
One could first consider using a calibration matrix as for the

calibration of a 6-axis force-torque sensor. But, in this case,
the non-linearity due to the model and due to EMG saturation
leads to a complex and unstable parameter identification
process. That is why a new algorithm is proposed here, more
robust and simple, than the classical method. It is a mix of
continuous and discrete methods. The discrete part enables to
choose between continuous sub-parts similarly to [12]. The
continuous sub-parts are simpler to calibrate than one using a
fully continuous method. The continuous part brings flexibility
and is designed to estimate the intention intensity. While the
discrete part determines the intention direction. Moreover,
this hybrid method also has the advantage of being directly
exploitable for a control law. This methodology estimates
the user’s intentions as a torque instead of a percentage of
maximum contraction in order to have a user-independent
output.

This process could be divided into two parallel blocks (Fig.
3): the first one is implemented to detect the direction of
the action thanks to a classification designed in sec. IV. The
second one is designed to estimate the intensity (see sec.V).

IV. DIRECTION ESTIMATION

A. Design
To detect the direction of the intention, an artificial neural

network was designed for a four-class classification: rest,

EMG
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Fig. 3: General Approach (IntensityB and IntensityT corre-
spond respectively to the intensity of the Biceps activation
and Triceps activation)

(a) Class Rest (b) Class Triceps

(c) Class Biceps (d) Class Co-contraction

Fig. 4: Description of the four different classes

elbow extension i.e. triceps activation, elbow flexion i.e. biceps
activation, and co-contraction. The co-contraction class has
been dissociated from the others and did not play a role in the
discrimination of the direction of intended movement. These
four classes represent the main actions at the elbow joint (1
DoF).

The present approach is using time windows that were fed to
an artificial neural network similarly to [8]. Unlike with other
classification approaches like [7], [18], there was no need to
handcraft features. The final architecture of the network can be
seen on Fig. 5. The general idea was inspired by architectures
from computer vision like the VGG net [19]. The convolutions
were used to extract features from a sample and then the fully
connected layers act as a classifier. In computer vision 2D
convolutions are used, but in this case, for a time varying signal
it is more relevant to use 1D convolutions and parallelize the
processing over the 8 channels. The fact that the convolutions
were parallelized helped to both reduce the number of trainable
parameters (around 3000) and gain in generalization.

A time window of 30 samples was used, or 150 ms given
the sampling rate of the sensors, and it was decided not to
use overlapping windows to create the database from 30-
second recordings in order to reduce the risk of overfitting.
Our database consisted of 800 samples for each participant. A
drop-out layer was used to avoid over-fitting.

The Network was implemented with Keras (Python deep
learning library), the Adam optimizer was used for training
[20], and the loss chosen was the categorical cross-entropy
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Fig. 5: Architecture of the neural network

(eq. (6)). Rectified Linear Units (ReLU) (eq. (4)) were used
as activation function between the layers except for the last
one, which was a softmax activation (eq. (5)).

fReLU (x) =

{
0 if x < 0

x else
(4)

fsoftmax(xi) =
exi∑M
c=1 e

xc

(5)

floss(p) = −
M∑
i=1

yo,i ∗ log(po,i) (6)

• M is the number of class
• y is a binary indicator (0 or 1) if class label i is the correct

classification for observation o
• p is the predicted probability observation o is of class i

B. Training

To train the network designed in the previous section, 2 30-
second-long data samples for each class were recorded. These
recordings were used to create our training dataset and testing
dataset (one recording per class for each).

The recording went as follows, twice, with rest between the
steps :

• 30 seconds of biceps contraction at various intensities
(see sec. V-C)

• 30 seconds of triceps contraction at various intensities
(see sec. V-C)

• 30 seconds of rest
• 30 seconds of co-contraction at various intensities
The Table II displays the results for the 7 participants

calculated with eq. (7). For each participant, only their own
training data and testing data were used. An average precision

TABLE II: Precisions (eq. (7)) obtained on the testing sets

Person 1 2 3 4 5 6 7
Precision 0.999 0.969 0.992 0.928 0.999 0.924 0.974

of 96.9±3.1% was obtained. For this validation the placement
of the electrode was the same as for the training.

Prec =
1

Nclasses
∗

Nclasses∑
i=1

ntrue positive,i

ntrue positive,i + ntrue negative,i

(7)
Where ntrue positive,i is the number of instances of the class i
correctly estimated, ntrue negative,i is the number of instances
estimated as the class i wrongfully and Nclasses is the number
of classes.

V. INTENSITY ESTIMATION

In this section a way to extract a notion of intensity of the
intention from the raw EMG signals is proposed. The value
obtained in the end was expressed in a force unit, and therefore
was not user-dependent (do not depend on, for example, the
skin conductivity of each participant).

A. Pre processing

First, the rectified signals were summed from all the sensors
(eqs. (8) and (9)). The spatial information was lost but it was
already exploited by the classification part. Also, this enabled
to take advantage of the cross-talk effect which increased the
measure range. Indeed, when the electrode placed right upon
the muscle saturated, the ones next to it were still able to sense
changes in the intensity of the muscle activation.

EMGrectif = abs(EMGi) (8)

EMGrectif,sum =

8∑
i=1

EMGrectif,i (9)

Then the EMGrectif,sum signal is filtered through a low-
pass filter [21]. This filter is to be used in a real-time
application, and, in the end, we want to use it for the command
of a robotic device in a context of co-manipulation. So it has
to have a low response time and little overshoot. Root mean
square (RMS) and Mean filters are often used for smoothing
an EMG signal [22], but there is a trade-off between response
time and smoothing effect. When the size of the window is
larger, the output is smoother but we introduce a greater lag.
A Butterworth filter of order 2 and a 2 Hz cutoff frequency
was chosen,and adapted to real-time with a sliding window
approach, as it answered to our specifications.

B. Modeling

To ensure consistency among users, the model linking
torque and low-pass filtered EMG presented in [23] will be
used. And this would enable to design a user-independent
control law despite using EMG signals.



τ = ua ∗ e(c−b∗u) (10)

τ being the modeled torque, u the EMG signal and a,b and
c the parameters to be determined for the biceps and triceps
separately from calibration.

In the original article this model was calibrated in a con-
trolled environment, there was one electrode placed precisely
over the biceps and with the high sampling frequency (1
kHz) and the reference data was obtained by restraining the
movements of the arm of the participants so that the load cell
would record precisely the torque of the elbow. In this case, the
use of this model is extended to two antagonist muscles, and
with approximately-placed lower-sampling-rate electrodes.

C. Mapping

The first stage of the mapping aimed to obtain the torque
maxima and corresponding processed EMG for the activation
of the Biceps (elbow flexion or lifting gesture) and Triceps
(elbow extension or putting down gesture). For this part, the
arm of the exoskeleton was controlled with a PD-position-
control law, with a high proportional gain, in order to have a
stiff behavior and be in a quasi-static state.

We proceeded as follow, with a rest between each step:
• 5 seconds of biceps maximum contraction
• 5 seconds of triceps maximum contraction
• 6 steps of 8 seconds going gradually from 0 to 80% of

biceps maximum contraction
• 6 steps of 8 seconds going gradually from 0 to 80% of

triceps maximum contraction
To get the biceps maxima the participant grabbed the end

of the arm and forced against the robot arm upward (Fig. 4c)
as hard as he/she can and held it for a 5-second acquisition.
The same approach was used for the Triceps maxima, except
that the participant put his/her fist on the end of arm and
pushed down (Fig. 4b). With this first stage, the value of
the maximum torque the participant was able to apply on
the actuator was obtained. These values were used to design
torque step protocol: the robot applied levels of torques from
gravity compensation up to 80 % of the maximum and the
user had to resist these torques. Each step lasted 8 seconds
and was separated by a 1-second linear transition. This torque
step protocol will ensure the precise levels of contraction are
maintained by the participants.

Then, the first step for the Biceps part and the first two for
the triceps part were removed from the data of the torque step
protocol. Indeed these steps did not allow sufficient exertions
from the participant (it was closer to a resting state). Data
from the maxima of Biceps and Triceps were concatenated
with their respective data from the torque step protocol. These
concatenated data have been used as training data for the
biceps activation and triceps activation classes (see sec. IV-B).

Finally, the parameters were estimated with a Levenberg-
Marquardt non-linear regression [24]. For clarity, the results
are presented for only one participant in Fig. 6. Two sets of
three parameters were obtained, to characterize the activity of

Fig. 6: Result of the regression for one participant for the
mapping of the extension movement
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Fig. 7: Modeled torque with eq. (10) depending on EMG
values, with the parameters of each participant

the biceps and the triceps. During the operating phase, the
set of parameters to be used will depend on the classification
phase, i.e. if it is an upward or downward movement intention.
On Fig. 6, 7, 8a and 8b the torque is expressed at the actuator.

On Fig. 7 the torque obtained using the parameters from the
mapping and eq. (10) was plotted. The model was plotted up
to the maximum processed EMG recorded for each participant
(see sec. VI). First of all, EMG characteristics appeared quite
heterogeneous between participants, which highlighted the
need of a user-specific mapping. Secondly, for one of the
participant, the graph is drastically decreasing at one point.
This may be due to co-contraction phenomenon during the
recording. A way to avoid that would be to check the level of
co-contraction and asked the participant to redo the sample if
it is above a certain threshold.

VI. EXPERIMENTAL TESTING

Seven participants were asked to contribute to the experi-
ment. There were six men and one woman, all of them aged
from 20 to 35 and in good health. After calibration (sec. IV
and V), to test the present procedure, the following setup
was proposed. During one minute, each participant performed
varying torques in the 2 directions available. The exoskeleton
was resisting them, like for the maxima recordings (see sec.



V-C). The fusion of the classification and intensity evaluation
was realized as follow : the classes Biceps and Triceps were
used to sign the intensity, positive and negative respectively.
If a rest class is detected we assign the intensity the value 0.
At the moment, the co-contraction class was handled in the
the maner as the rest class

On the Fig. 8a raw data obtained from one participant are
presented. The class is obtained by taking the most likely
output of the classifier, without threshold on the confidence
score. It can be observed that the class (in green) presents
important variations at the transitions. It can be explained by
how the dataset was designed. Indeed, the whole spectrum
of possibilities for each class were represented and at low
intensities the differences became very subtle. For example, a
low intensity co-contraction sample would have a signal very
similar to a low intensity biceps contraction only or even a rest
state. A way to stabilize the classification could be to consider
one of the classes as the default state, rest in the present study,
and put a threshold on the confidence score for the other to
be accepted.

The processed results of 1 participant in Fig. 8b are pre-
sented. The estimated torque was used for the value and
the class information to get the sign, i.e. positive for biceps
class and negative for triceps, 0 otherwise, to calculate the
estimated torque. An error of classification between the classes
could lead to important mismatch and discontinuities of the
estimation. Subsequently, the role of the classifier is crucial.
One disadvantage associated to the classifier is the capacity to
consider low intensity movements, e.g. areas where the clas-
sifier was hesitant on Fig. 8a resulted in small discontinuities
on Fig. 8b.

In Table III, RMS errors were calculated. They were ex-
pressed in Newton at the end-effector. Indeed, in this study
the actuator’s torque was used as the reference but results
were converted for comparison purposes. We can see that,
during the test experiment, an error of 3.8± 0.8N on average
was obtained, which is acceptable for applications focused on
force augmentation for heavy load carrying. If we compare the
results with [25], by converting their results as a force in the
palm, they obtained on average 2.0± 0.2N . The current error
is twice as important but the use a load cell was bypassed and
it did not require a precise set up of EMG electrodes.

TABLE III: Errors obtained during the validation experiment

Person 1 2 3 4 5 6 7
RMS τmotor (N.m) 0.0371 0.0621 0.0415 0.0387 0.0619 0.0478 0.0433

RMS Fendeffector (N) 2.953 4.943 3.303 3.080 4.927 3.804 3.446

VII. CONCLUSIONS AND FUTURE WORK

In this article, an algorithm of intention detection oriented
on the assistance for load carrying was presented. A new cal-
ibration method was proposed using a backdrivable exoskele-
ton that is time-efficient and practical. This research opens
perspectives in industrial use cases. The current experiment

(a) Raw results, in blue the torque of the actuator, in red and
cyan the torque estimated from EMG (if the biceps is activated
or if it is the triceps), and in green the most likely class (0 =
rest, 1 = triceps, 2 = biceps, 3 = co-contraction)

(b) Processed results, in blue the torque of the actuator, in red
the estimated torque from the EMG signal

Fig. 8: Results of the test for one of the 7 participants

showed that our methodology enabled to estimate the torque
produced by a user.

The future of this project lays in exploring the possibility
of a unified classifier which would help avoid manual subject-
specific adjustment, i.e. a network trained on several partic-
ipants which would be able to process data of new users.
This would improve the time efficiency aspect of the proposed
method. In addition, the robustness to the re-positioning of the
armband between two sessions has to be formally evaluated.
Moreover, the precision of our results could be improved by
increasing the acquisition rate of EMG electrodes.

The calibration procedure presented in the current study
has been performed in static conditions. As the load carry-
ing assistance will be provided by the exoskeleton during
dynamical tasks, it is expected that the control law will be
efficient for dynamic tasks with low velocity [26]. However,
with high dynamics tasks stability issues will probably need
to be addressed by the control law. Other researches will
consist in implementing controllers based on the output of
this module of intention detection, and experimenting on the
effect of the assistance of our exoskeleton in carrying various
loads at various speeds. Despite the heterogeneous aspect of
EMG signals, the proposed calibration method will ensure
the reproduction of the same behavior of the controllers with
different users.
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