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I. INTRODUCTION 6 

In order to ensure safety and efficiency in the delivery of Intensity Modulated Radiotherapy (IMRT) treatments, 7 
amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) are now routinely used for dosimetric 8 
verifications. A straightforward way to do this is to compare the measured EPID image with a reference image 9 
which can be calculated in the treatment planning system (TPS). Among the various prediction models proposed 10 
to compute the reference image, Monte Carlo (MC) simulation is highly attractive due to its ability to predict 11 
accurately and directly the dose to the detector in a wide range of configurations, without requiring the 12 
conversion to dose in water [1]. However, MC remains to date so time consuming that MC computation of portal 13 
images with meaningful statistical uncertainty is only feasible for pixel sizes around 2 mm, which could lead to 14 
misinterpretations due to the loss of image resolution. To overcome this problem, we developed a new method to 15 
compute high resolution reference EPID images in reasonable computing times. This method is based on the 16 
denoising of MC calculated images with a non parametric Bayesian algorithm called DPGLM (for Dirichlet 17 
Process Generalized Linear Model) [2], particularly suited to very noisy images. In this study, an accurate model 18 
of an a-Si EPID was first developed and validated. Then, the performances of the denoising algorithm were 19 
assessed and compared to those obtained with IRON (Iterative Reduction Of Noise [3]), a denoising algorithm 20 
usually employed in radiotherapy. Finally, MC images of a head-and-neck treatment plan were computed and 21 
denoised, and then compared to acquired EPID images. 22 

II. MATERIALS AND METHODS 23 

II.1. EPID model development and validation 24 
Experiments were carried out with a Siemens Optivue1000 EPID mounted on a Siemens ARTISTE linear 25 
accelerator (linac). The Optivue1000 is an a-Si flat panel device of 1024 × 1024 pixels of 0.39 × 0.39 mm² each, 26 
representing a 41 × 41 cm² active detection area. The PENELOPE MC code was used both to model the linac [4] 27 
(including a full description of the Siemens 160 leaf MLC) and the EPID. The EPID model consists of 13 layers 28 
described in terms of geometry and materials according to manufacturer’s information. To mimic backscattering 29 
coming from structures surrounding the EPID, uniform water-equivalent slabs of varying thicknesses (from 1 to 30 
70 mm) were added below this model and corresponding images were simulated for 10 × 10 and 20 × 20 cm² 31 
fields. By comparing profiles drawn in the inline and crossline directions on simulated and acquired images, a 32 
non-uniform map of water-equivalent slabs can be deduced. 33 
The final model was validated against experimental data for two configurations. First, portal images without 34 
phantom in the beam were acquired for different jaw defined field sizes (5 × 5, 10 × 10, 15 × 15, 20 × 20 and 35 
25 × 25 cm²) with the EPID positioned at a 100 cm source to detector distance (SDD). Second, a layered 36 
heterogeneous phantom (cf Figure 1) was placed in the beam, its entrance face located at 67.8 cm from the 37 
source. This phantom is made of two 30 × 30 × 5 cm3 slabs of water equivalent material (1.04 g/cm3), a 38 
30 × 30 × 8 cm3 slab of CIRS bone equivalent material (1.8 g/cm3) and two 30 × 16 × 8 cm3 slabs of CIRS lung 39 
equivalent material (0.3 g/cm3), separated by a 3 cm air gap. For the model validation step, portal images were 40 
computed on a 256 × 256 pixel grid (pixel size: 1.6 mm) to decrease the simulation run time. Acquired and 41 
simulated images were then compared using a 2 % / 2 mm gamma-index, after normalization of the simulated 42 
images with respect to acquired images. 43 

II.2. Denoising of portal images 44 
  II.2.1. IRON denoising method 45 
The IRON denoising method relies on the minimization of a criterion combining two terms: one accounting for 46 
the data adjustment and the other one encouraging low curvature. But since the curvature penalty in IRON is 47 
non-convex, a global minimum solution is not guaranteed. Another difficulty in the IRON method lies in the 48 
roughness of the non differentiable penalty. Minimization routines like conjugate gradient or quasi-Newton 49 
methods are known to be non optimal for such non smooth functions. 50 
With a pixel size of about 2 mm, these algorithmic difficulties tend to be mitigated since the MC calculated dose 51 
images can exhibit a convenient signal-to-noise ratio (SNR). In this situation, the initial point of the 52 
optimization, which is taken to be the MC data, is not “so far” from the desired solution. But this is not the case 53 
when one wants to respect the EPID’s physical pixel size (0.39 mm) in the MC simulations. We are faced here to 54 
a much noisier environment for reasonable computation times. Initialization through raw MC data can thus 55 
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reveal the ill-behavior of the minimization routine and extremely slow convergence to a local minimum. This 56 
initialization point’s dependency may appear troublesome and this work aims at proposing a method relaxing 57 
this constraint. 58 

  II.2.2. Principles of the DPGLM denoising method 59 
In the statistical interpretation of the IRON criterion, the curvature penalty can also be seen as a kind of prior 60 
term characterizing our degree of belief in a smooth dose deposit. This Bayesian rephrasing of the denoising 61 
problem forms in that way the framework of the proposed approach. A key point of Bayesian methods is that 62 
they give access to the estimation’s uncertainty. Namely, we seek for the whole set of solutions, expressed by 63 
their posterior distribution, instead of looking for just a particular one. We retain for the dose estimate the 64 
posterior mean – which minimizes the L2 risk –. As a side-effect, our method is able to propagate the whole 65 
information present in the MC data. 66 
Another characteristic of our approach is its nonparametric feature. Since the number of variables is huge in the 67 
EPID’s MC data denoising problem (n=1024 × 1024 pixels), it turns out that it is convenient to consider the 68 
problem as the estimation of a continuous surface in R² which amounts to infer over a potentially infinite number 69 
of parameters, leading to a so-called Bayesian nonparametric regression approach. All statistical material cannot 70 
be expressed here and readers may refer to [2, 5] to gain an insight into involved methodologies. We model the n 71 
computed EPID’s data (xi,yi) for i=1,…,n, where ��	 ∈ �² stands for the pixel coordinates and yi for the pixel’s 72 

calculated dose. The method lies in estimating f(x,y), the join distribution of (x,y), from simulated points (xi,yi) in 73 

a nonparametric way and to take for the denoised dose d(x) for all � ∈ ��: 74 

�	��	 = �	��|�	 = 	� �	.		���|�		�� = 	� �	. ���, �		���
� ���, �	 	����

 (1) 

Nonparametrics arise from the choice of a Dirichlet Process Mixture (DPM) for prior specification of the joint 75 
density f(x,y). Roughly, the DPM structure involves an open-ended number of components which relies only on 76 
the dataset and DPM parameters. 77 
From the elicited prior and data (xi,yi), we want to compute the posterior distribution ���, �|��, �� , … , �� , ��	 78 

and conditional expectation ����	 = ���|�, ��, ��, … , �� , ��	. The exact computation of the posterior is 79 
intractable and we use a Markov Chain Monte-Carlo (MCMC) approximation scheme (Gibbs sampler) to draw 80 
samples from the target distribution. 81 

At each iteration (t) of the MCMC procedure, we are thus able to sample a denoised dose surface ���	��	. For T 82 
samples, the posterior distribution is given by the set of ���	��	 for t = 1,…,T, and the dose estimate (posterior 83 
mean) is expressed as: 84 

��	��	 ≈ 1
���	��	��	

�

���
 (2) 

We can as well compute the posterior standard deviation or credible intervals from the collection ����	��	 . 85 
All parameters of the DPM prior distribution are also sampled at each iteration, assuming an additional degree of 86 
hierarchy in the dose data model and putting vague priors on these parameters. 87 

  II.2.3. Denoising test case 88 
Denoising effectiveness of the DPGLM algorithm was assessed on 1024 × 1024 images simulated for the 89 
heterogeneous phantom irradiated by a 15 ×15 cm² field. MC calculations of phase space files (PSF) storing 50, 90 
100, 500, 1000, 1700, 3000 and 5000 million photons were performed with associated statistical uncertainties of 91 
better than 15, 10, 5, 3.5, 2, 1 and 0.7 % of the maximum dose. Portal images were then simulated using these 92 
PSF and recycling particles with a splitting factor of 10, and they were then denoised with the DPGLM and 93 
IRON algorithms. To assess performances of both algorithms, we calculated in a 600 × 600 pixel central area of 94 
the image the fraction of pixels presenting a difference of more than 1 % of the maximum normalized dose, with 95 
respect to the reference image. Due to computational time limitations linked to EPIDs MC calculations, the 96 
choice of a common reference image remains a tricky issue since the image with the best statistical uncertainty 97 
(0.7 %) is still too noisy to be taken as the reference. In order to avoid any bias in the comparison, we then 98 
resorted to use a reference for each denoising method, namely the image with 0.7 % statistical uncertainty 99 
denoised with the algorithm under test. The reference for raw MC image evaluation is the 0.7 % statistical 100 
uncertainty MC image itself. 101 

  II.2.4. Application to a head-and-neck treatment plan 102 
The portal image associated to one of the beams used in a head-and-neck IMRT treatment plan was simulated 103 
with an associated statistical uncertainty of better than 5 % and was denoised with DPGLM and IRON. 104 
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III. RESULTS 105 

III.1. EPID model development and validation 106 
The model for the Optivue1000 EPID that best matches experimental data includes two kinds of non-uniform 107 
layers of water-equivalent material beneath the 13 layers model: a 50 mm water layer of 16 × 33 cm², centered in 108 
(x=0 cm, y=-4 cm) (the Y axis refers to the inline direction) and anywhere else a 30 mm water layer. Profiles 109 
drawn through acquired and simulated images in the crossline direction are shown on Figure 2, for portal images 110 
without and with phantom in the beam, respectively. 2D gamma-index values are also given in Table I. These 111 
results demonstrate the need to include in the model a correction for backscatter to accurately predict portal 112 
images in any configuration, especially for large field sizes. 113 

Table I. Comparison of gamma-index values obtained for the different configurations. 114 

Field size (cm²) 

 Images without phantom  Images with phantom 
 Without  

backscatter correction 
With 

backscatter correction 
 With  

backscatter correction 
5 x 5  99.4 % 99.4 %  99.4 % 
10 x 10  95.0 % 98.4 %  98.1 % 
15 x 15  − 97.4 %  97.5 % 
20 x 20  57.2 % 95.4 %  96.1 % 
25 x 25  24.6 % 93.1 %  − 

 

 

   

Figure 1. Description of the 
heterogeneous phantom.  

Figure 2. Profiles for acquired (blue) and simulated (red) portal images in the crossline 
direction, for the configuration without phantom (left) and with phantom (right). 

III.2. Denoising of portal images 115 

  III.2.1. Denoising test case 116 
As expected, we experienced slow convergence for the IRON algorithm for low SNR images. Note that, due to 117 
the large amount of variables, we resorted to use a limited-memory Broyden, Fletcher, Goldfarb, Shanno 118 
algorithm (LM-BFGS) [6]. Despite the needs of significant computing requirements, the structure of DPGLM 119 
algorithm makes it suitable for parallelization contrary to the LM-BFGS optimization algorithm. As a 120 
consequence, the effective computation times are similar for both methods. 121 
 122 

 

 
Figure 3. Fraction of pixels failing the 1 % difference test 

for MC images (raw data), images denoised with IRON and 
with DPGLM. 

Figure 4. Central profiles drawn through the reference image, 
the MC image, the image denoised with IRON and the image 

denoised with DPGLM, for a 100 million photons PSF. 
 123 
Figure 3 summarizes the fraction of pixels which fail the 1 % criterion. In all cases, the interest of using any of 124 
the denoising algorithms is evident, even for MC images with a high SNR. IRON and DPGLM exhibit similar 125 
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performances for images with a statistical uncertainty better than 2 %. At lower SNR, the statistical basis of 126 
DPGLM offers more robustness with respect to noise. This allows maintaining below 2 % the fraction of pixels 127 
failing the chosen dose criterion for images with a statistical uncertainty lower than 5 %. Obtaining the same 128 
image quality with IRON would require a PSF about three times larger. We also observe on the profiles shown 129 
in Figure 4 that DPGLM produces smoother images than IRON while preserving edges in high-gradient dose 130 
regions. These results demonstrate that it is possible to reach image quality compatible with clinical 131 
interpretation for PSF storing between 100 (10 % statistical uncertainty) and 500 million photons (5 % statistical 132 
uncertainty) with DPGLM. For instance, the computation of the simulated image on 100 processors (2.26 GHz) 133 
of our Linux cluster lasts in half an hour when running 100 million photons from the PSF and 2,5 hours when 134 
running 500 million photons. In the same configurations, DPGLM denoising on 1024 × 1024 images necessitates 135 
1,5 hour. The complete computation of the portal image takes 2 hours and 4 hours for 100 and 500 million 136 
photons, respectively. Shorter MC simulation times were observed for smaller field sizes. 137 

  III.2.2. Head-and-neck treatment plan 138 
The acquired image and its reference image calculated by combining MC simulation and DPGLM denoising are 139 
shown on Figure 5. Profiles drawn along the white line on the acquired image, the undenoised MC image, the 140 
MC image denoised with IRON and DPGLM are compared on Figure 6. Here again, DPGLM produces 141 
smoother images than IRON and allows direct comparison with the acquired image at the same resolution. 142 

  
Figure 5. Acquired EPID image (left) and associated simulated image 
after denoising with DPGLM (right), for the head-and-neck treatment 

beam. 

Figure 6. Profiles drawn through the acquired 
image, the MC image undenoised, the MC image 

denoised with IRON and with DPGLM. 

IV. DISCUSSION AND CONCLUSION 143 

This study shows that the combination of MC simulations with efficient denoising methods enables the accurate 144 
computation of high-resolution portal images for computational burden now compatible with clinical settings 145 
and acceptable for TPS. Particularly, in a context of low SNR, DPGLM reveals interesting performances. In 146 
addition, some features of the proposed method have not been fully investigated. Among them, based on a 147 
nonparametric regression approach, DPGLM is able to interpolate the dose deposit at any coordinates of the 148 
portal image’s plane. This could offer flexibility in the choice of final image resolution. Another key feature of 149 
the approach lies in the uncertainty estimation over the whole image. This could bring enhanced information 150 
which can help in practical situations to determine credible intervals containing the desired dose image. 151 
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