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PREDICTION OF HIGH-RESOLUTION PORTAL IMAGESFOR TREATMENT
VERIFICATION IN RADIOTHERAPY BY COUPLING MONTE CARLO SIMULATIONS
TO NON PARAMETRIC BAYESIAN DENOISING

D. Lazaro-Ponthds, E. Barat, C. Le Loire¢, T. Dautreme’, T. Montagd, D. Patirt, L. Guérirf, A. Batall&
1CEA LIST, F-91191 Gif-sur-Yvette, Franc&entre F. Baclesse, F-14076 Caen Cedex, France.

. INTRODUCTION

In order to ensure safety and efficiency in thevdey of Intensity Modulated Radiotherapy (IMRTgétments,
amorphous silicon (a-Si) electronic portal imagidgvices (EPIDs) are now routinely used for dosiioetr
verifications. A straightforward way to do thists compare the measured EPID image with a referanage
which can be calculated in the treatment planniysgesn (TPS). Among the various prediction modetgppsed
to compute the reference image, Monte Carlo (M@)utation is highly attractive due to its ability predict
accurately and directly the dose to the detectom iwide range of configurations, without requiritte
conversion to dose in water [1]. However, MC rersdimdate so time consuming that MC computatiopoofal
images with meaningful statistical uncertainty idyofeasible for pixel sizes around 2 mm, which Iddead to
misinterpretations due to the loss of image regmiufTo overcome this problem, we developed a nethod to
compute high resolution reference EPID images aswoaable computing times. This method is basechen t
denoising of MC calculated images with a non patamé&ayesian algorithm called DPGLM (for Dirichlet
Process Generalized Linear Model) [2], particulauyted to very noisy images. In this study, aruezie model
of an a-Si EPID was first developed and validafElden, the performances of the denoising algorithenew
assessed and compared to those obtained with IR@fdt{ve Reduction Of Noise [3]), a denoising altion
usually employed in radiotherapy. Finally, MC imagef a head-and-neck treatment plan were computdd a
denoised, and then compared to acquired EPID images

. MATERIALSAND METHODS

.1 EPID model development and validation

Experiments were carried out with a Siemens Opfied® EPID mounted on a Siemens ARTISTE linear
accelerator (linac). The Optivuel000 is an a-Sigknel device of 1024 x 1024 pixels of 0.39 x MB82each,
representing a 41 x 41 cimétive detection area. Th&®ELOPEMC code was used both to model the linac [4]
(including a full description of the Siemens 16afI¢LC) and the EPID. The EPID model consists ofdygrs
described in terms of geometry and materials adegrd manufacturer’s information. To mimic backiseang
coming from structures surrounding the EPID, umfarater-equivalent slabs of varying thicknessesn(fil to

70 mm) were added below this model and correspgnuirages were simulated for 10 x 10 and 20 x 20 cm?
fields. By comparing profiles drawn in the inlinadacrossline directions on simulated and acquireages, a
non-uniform map of water-equivalent slabs can luded.

The final model was validated against experimedtdh for two configurations. First, portal imageghaut
phantom in the beam were acquired for different gefined field sizes (5 x 5, 10 x 10, 15 x 15, 2200xand

25 x 25 cm?) with the EPID positioned at a 100 amarse to detector distance (SDD). Second, a layered
heterogeneous phantom (cf Figure 1) was placethénbeam, its entrance face located at 67.8 cm frem
source. This phantom is made of two 30 x 30 x 5 stabs of water equivalent material (1.04 gicrma

30 x 30 x 8 crislab of CIRS bone equivalent material (1.8 gjcand two 30 x 16 x 8 chslabs of CIRS lung
equivalent material (0.3 g/cn separated by a 3 cm air gap. For the model atdid step, portal images were
computed on a 256 x 256 pixel grid (pixel size: inf) to decrease the simulation run time. Acquiaed
simulated images were then compared using a 2 ¥%h2gamma-index, after normalization of the simediat
images with respect to acquired images.

[.2. Denoising of portal images
11.2.1. IRON denoising method

The IRON denoising method relies on the minimizatid a criterion combining two terms: one accountior
the data adjustment and the other one encouragimgclirvature. But since the curvature penalty iIONRis
non-convex, a global minimum solution is not guéead. Another difficulty in the IRON method lies tihe
roughness of the non differentiable penalty. Mimation routines like conjugate gradient or quasivida
methods are known to be non optimal for such nomatmfunctions.

With a pixel size of about 2 mm, these algorithuificulties tend to be mitigated since the MC eddted dose
images can exhibit a convenient signal-to-noiséo rd6NR). In this situation, the initial point ohe

optimization, which is taken to be the MC datands “so far” from the desired solution. But thisnist the case
when one wants to respect the EPID’s physical @ikad (0.39 mm) in the MC simulations. We are falceck to
a much noisier environment for reasonable commuitatimes. Initialization through raw MC data camugh
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reveal the ill-behavior of the minimization routia@d extremely slow convergence to a local minimtitnis
initialization point’'s dependency may appear tresbime and this work aims at proposing a methodinga
this constraint.

11.2.2. Principles of the DPGL M denoising method

In the statistical interpretation of the IRON crit#n, the curvature penalty can also be seen asdadf prior
term characterizing our degree of belief in a siabdse deposit. This Bayesian rephrasing of theidiemny
problem forms in that way the framework of the mregd approach. A key point of Bayesian methodbas t
they give access to the estimation’s uncertaingmblly, we seek for the whole set of solutions, esped by
their posterior distribution, instead of looking for just a padiar one. We retain for the dose estimate the
posterior mean — which minimizes the L2 risk —. &side-effect, our method is able to propagatewthele
information present in the MC data.

Another characteristic of our approach is its noapeetric feature. Since the number of variabldwuige in the
EPID’s MC data denoising problem=1024 x 1024 pixels), it turns out that it is consmt to consider the
problem as the estimation of a continuous surfa¢® iwhich amounts to infer over a potentially infenttumber
of parameters, leading to a so-callalyesian nonparametric regressiapproach. All statistical material cannot
be expressed here and readers may refer to [@,d&dib an insight into involved methodologies. Wedel then
computed EPID’s data(icyi) fori=1,...n, wherex; € R? stands for the pixel coordinates a}?dor the pixel's

calculated dose. The method lies in estimat{rg), the join distribution ofxy), from simulated pointS(‘,yi) in

a nonparametric way and to take for the denoisséd(®) for all x € R?:

Jlx,y) d
4 =FEOW = [ v foldy = by J&Y) &y 1)
R Jp fOoy) dy
Nonparametrics arise from the choice of a Diricttedbcess Mixture (DPM) for prior specification dietjoint
densityf(x,y). Roughly, the DPM structure involves an open-endember of components which relies only on
the dataset and DPM parameters.

From the elicited prior and datai ,@/i), we want to compute the posterior distributibx, y1x,, vy, ..., Xn, ¥n)

and conditional expectatiom (x) = E (y|x, Xy, V1, ..., Xn, ¥n). The exact computation of the posterior is
intractable and we use a Markov Chain Monte-Cavi@C) approximation scheme (Gibbs sampler) to draw
samples from the target distribution.

At each iterationt] of the MCMC procedure, we are thus able to saraplenoised dose surfadéx)®. ForT
samples, the posterior distribution is given by $keeofd(x)® fort = 1,...T, and the dose estimate (posterior
mean) is expressed as:

d () ~ %z d ()® )
t=1

We can as well compute the posterior standard tiemiar credible intervals from the collectie(x)®}.

All parameters of the DPM prior distribution are@asampled at each iteration, assuming an addititagaee of
hierarchy in the dose data model and putting vaiges on these parameters.

11.2.3. Denaising test case

Denoising effectiveness of the DPGLM algorithm wassessed on 1024 x 1024 images simulated for the
heterogeneous phantom irradiated by a 15 x15 @it MC calculations of phase space files (PSH)jrgicb0,
100, 500, 1000, 1700, 3000 and 5000 million photware performed with associated statistical unaiés of
better than 15, 10, 5, 3.5, 2, 1 and 0.7 % of tagimum dose. Portal images were then simulatedjusiase
PSF and recycling particles with a splitting factdr10, and they were then denoised with the DPGariM
IRON algorithms. To assess performances of bothritgns, we calculated in a 600 x 600 pixel cendirgla of
the image the fraction of pixels presenting a déffece of more than 1 % of the maximum normalizeskdavith
respect to the reference image. Due to computdtiima limitations linked to EPIDs MC calculationthe
choice of a common reference image remains a tiigkye since the image with the best statisticabrtainty
(0.7 %) is still too noisy to be taken as the refee. In order to avoid any bias in the comparises,then
resorted to use a reference for each denoising adethamely the image with 0.7 % statistical undetya
denoised with the algorithm under test. The refegefor raw MC image evaluation is the 0.7 % stiatit
uncertainty MC image itself.

11.2.4. Application to a head-and-neck treatment plan

The portal image associated to one of the beants inse head-and-neck IMRT treatment plan was sitadla
with an associated statistical uncertainty of dttan 5 % and was denoised with DPGLM and IRON.




105 1. RESULTS

106 [11.1. EPID model development and validation

107  The model for the Optivuel000 EPID that best matadeerimental data includes two kinds of non-unifo
108 layers of water-equivalent material beneath théag8rs model: a 50 mm water layer of 16 x 33 creftered in
109 (x=0 cm, y=-4 cm) (the Y axis refers to the inlidieection) and anywhere else a 30 mm water layedfilEBs
110 drawn through acquired and simulated images irctbssline direction are shown on Figure 2, for glarhages
111  without and with phantom in the beam, respectiv2l).gamma-index values are also given in TablehksE
112 results demonstrate the need to include in the hadmrrection for backscatter to accurately pregirtal
113 images in any configuration, especially for larigddf sizes.

114 Table|. Comparison of gamma-index values obtained for tfferdint configurations.
Images without phantom Images with phantom
Without With With
Field size (cm?) backscatter correction backscatter correction backscatter correction
5x5 99.4 % 99.4 % 99.4 %
10x 10 95.0 % 98.4 % 98.1 %
15x 15 - 97.4 % 97.5 %
20x 20 57.2% 95.4 % 96.1 %
25x 25 24.6 % 93.1 % -
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Figure 1. Description of the Figure 2. Profiles for acquired (blue) and simulated (redt@dmages in the crossline

heterogeneous phantom. direction, for the configuration without phantoraff) and with phantom (right).
115 [11.2.  Denoising of portal images
116 [11.2.1. Denoising test case

117  As expected, we experienced slow convergence ®IRION algorithm for low SNR images. Note that, doe
118 the large amount of variables, we resorted to udenied-memory Broyden, Fletcher, Goldfarb, Shanno
119 algorithm (LM-BFGS) [6]. Despite the needs of sfgr@int computing requirements, the structure of DRIG
120  algorithm makes it suitable for parallelization tany to the LM-BFGS optimization algorithm. As a
121 consequence, the effective computation times angéagifor both methods.
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Figure 3. Fraction of pixels failing the 1 % difference test Figure 4. Central profiles drawn through the reference image,
for MC images (raw data), images denoised with IR@d a the MC image, the image denoised with IRON and tregam
with DPGLM. denoised with DPGLM, for a 100 million photons PSF.
123

124 Figure 3 summarizes the fraction of pixels whicihttae 1 % criterion. In all cases, the interestusing any of
125 the denoising algorithms is evident, even for MGg®as with a high SNR. IRON and DPGLM exhibit simila
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performances for images with a statistical uncetyabetter than 2 %. At lower SNR, the statistibakis of
DPGLM offers more robustness with respect to noi$es allows maintaining below 2 % the fractionpikels
failing the chosen dose criterion for images witbtatistical uncertainty lower than 5 %. Obtainthg same
image quality with IRON would require a PSF abduté times larger. We also observe on the proditesvn

in Figure 4 that DPGLM produces smoother images iRON while preserving edges in high-gradient dose
regions. These results demonstrate that it is plessio reach image quality compatible with clinical
interpretation for PSF storing between 100 (10 &tistcal uncertainty) and 500 million photons (Sstatistical
uncertainty) with DPGLM. For instance, the compiotatof the simulated image on 100 processors (&P&)

of our Linux cluster lasts in half an hour whenming 100 million photons from the PSF and 2,5 houngn
running 500 million photons. In the same configianas, DPGLM denoising on 1024 x 1024 images netassi
1,5 hour. The complete computation of the portehgm takes 2 hours and 4 hours for 100 and 5000omilli
photons, respectively. Shorter MC simulation timese observed for smaller field sizes.

111.2.2. Head-and-neck treatment plan
The acquired image and its reference image catilay combining MC simulation and DPGLM denoisimg a
shown on Figure 5. Profiles drawn along the white lon the acquired image, the undenoised MC imtge,
MC image denoised with IRON and DPGLM are compaoedFigure 6. Here again, DPGLM produces
smoother images than IRON and allows direct corsparivith the acquired image at the same resolution.

40000

—— Experiment
-+ RawData

—IRON

—DPGLM

35000

30000

25000

20000

15000

Image intensity

10000

5000

o

Acquiredimage DPGLM-MC image L 4 2 0 2 + s 8

x (cm)

Figure 5. Acquired EPID image (left) and associated simulateaye Figure 6. Profiles drawn through the acquired

after denoising with DPGLM (right), for the headdameck treatment  image, the MC image undenoised, the MC image
beam. denoised with IRON and with DPGLM.

V. DiscussioN AND CONCLUSION

This study shows that the combination of MC simiala with efficient denoising methods enables theusate
computation of high-resolution portal images fompatational burden now compatible with clinicaltisefs
and acceptable for TPS. Particularly, in a contéfxtow SNR, DPGLM reveals interesting performandes.
addition, some features of the proposed method mavebeen fully investigated. Among them, basedaon
nonparametric regression approach, DPGLM is ablmterpolate the dose deposit at any coordinatethef
portal image’s plane. This could offer flexibilitg the choice of final image resolution. Anothey Keature of
the approach lies in the uncertainty estimationrdkie whole image. This could bring enhanced infafon
which can help in practical situations to deternéredible intervals containing the desired dosegea
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