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PREDICTION OF HIGH-RESOLUTION PORTAL IMAGES FOR TREATMENT VERIFICATION IN RADIOTHERAPY BY COUPLING MONTE CARLO SIMULATIONS TO NON PARAMETRIC BAYESIAN DENOISING

INTRODUCTION

In order to ensure safety and efficiency in the delivery of Intensity Modulated Radiotherapy (IMRT) treatments, amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) are now routinely used for dosimetric verifications. A straightforward way to do this is to compare the measured EPID image with a reference image which can be calculated in the treatment planning system (TPS). Among the various prediction models proposed to compute the reference image, Monte Carlo (MC) simulation is highly attractive due to its ability to predict accurately and directly the dose to the detector in a wide range of configurations, without requiring the conversion to dose in water [START_REF] R S Cufflin | An investigation of the accuracy of Monte Carlo portal dosimetry for 153 verification of IMRT with extended fields[END_REF]. However, MC remains to date so time consuming that MC computation of portal images with meaningful statistical uncertainty is only feasible for pixel sizes around 2 mm, which could lead to misinterpretations due to the loss of image resolution. To overcome this problem, we developed a new method to compute high resolution reference EPID images in reasonable computing times. This method is based on the denoising of MC calculated images with a non parametric Bayesian algorithm called DPGLM (for Dirichlet Process Generalized Linear Model) [START_REF] Hannah | Dirichlet process mixtures of generalized linear models[END_REF], particularly suited to very noisy images. In this study, an accurate model of an a-Si EPID was first developed and validated. Then, the performances of the denoising algorithm were assessed and compared to those obtained with IRON (Iterative Reduction Of Noise [START_REF] Fippel | Smoothing Monte Carlo calculated dose distributions by iterative reduction of noise[END_REF]), a denoising algorithm usually employed in radiotherapy. Finally, MC images of a head-and-neck treatment plan were computed and denoised, and then compared to acquired EPID images.

II. MATERIALS AND METHODS

II.1. EPID model development and validation

Experiments were carried out with a Siemens Optivue1000 EPID mounted on a Siemens ARTISTE linear accelerator (linac). The Optivue1000 is an a-Si flat panel device of 1024 × 1024 pixels of 0.39 × 0.39 mm² each, representing a 41 × 41 cm² active detection area. The PENELOPE MC code was used both to model the linac [START_REF] Lazaro-Ponthus | Commissioning of PENELOPE and GATE Monte 159 Carlo models for 6 and 18 MV photon beams from the Siemens Artiste linac[END_REF] (including a full description of the Siemens 160 leaf MLC) and the EPID. The EPID model consists of 13 layers described in terms of geometry and materials according to manufacturer's information. To mimic backscattering coming from structures surrounding the EPID, uniform water-equivalent slabs of varying thicknesses (from 1 to 70 mm) were added below this model and corresponding images were simulated for 10 × 10 and 20 × 20 cm² fields. By comparing profiles drawn in the inline and crossline directions on simulated and acquired images, a non-uniform map of water-equivalent slabs can be deduced. The final model was validated against experimental data for two configurations. First, portal images without phantom in the beam were acquired for different jaw defined field sizes (5 × 5, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 cm²) with the EPID positioned at a 100 cm source to detector distance (SDD). Second, a layered heterogeneous phantom (cf Figure 1) was placed in the beam, its entrance face located at 67.8 cm from the source. This phantom is made of two 30 × 30 × 5 cm 3 slabs of water equivalent material (1.04 g/cm 3 ), a 30 × 30 × 8 cm 3 slab of CIRS bone equivalent material (1.8 g/cm 3 ) and two 30 × 16 × 8 cm 3 slabs of CIRS lung equivalent material (0.3 g/cm 3 ), separated by a 3 cm air gap. For the model validation step, portal images were computed on a 256 × 256 pixel grid (pixel size: 1.6 mm) to decrease the simulation run time. Acquired and simulated images were then compared using a 2 % / 2 mm gamma-index, after normalization of the simulated images with respect to acquired images.

II.2. Denoising of portal images

II.2.1. IRON denoising method

The IRON denoising method relies on the minimization of a criterion combining two terms: one accounting for the data adjustment and the other one encouraging low curvature. But since the curvature penalty in IRON is non-convex, a global minimum solution is not guaranteed. Another difficulty in the IRON method lies in the roughness of the non differentiable penalty. Minimization routines like conjugate gradient or quasi-Newton methods are known to be non optimal for such non smooth functions. With a pixel size of about 2 mm, these algorithmic difficulties tend to be mitigated since the MC calculated dose images can exhibit a convenient signal-to-noise ratio (SNR). In this situation, the initial point of the optimization, which is taken to be the MC data, is not "so far" from the desired solution. But this is not the case when one wants to respect the EPID's physical pixel size (0.39 mm) in the MC simulations. We are faced here to a much noisier environment for reasonable computation times. Initialization through raw MC data can thus reveal the ill-behavior of the minimization routine and extremely slow convergence to a local minimum. This 56 initialization point's dependency may appear troublesome and this work aims at proposing a method relaxing 57 this constraint. 58

II.2.2. Principles of the DPGLM denoising method 59

In the statistical interpretation of IRON criterion, the curvature penalty can also be seen as a kind of prior 60 term characterizing our degree of belief in a smooth dose deposit. This Bayesian rephrasing of the denoising 61 problem forms in that way the framework of the proposed approach. A key point of Bayesian methods is that 62 they give access to the estimation's uncertainty. Namely, we seek for whole set of solutions, expressed by 63 their posterior distribution, instead of looking for just a particular one. We retain for the dose estimate the 64 posterior mean -which minimizes the L2 risk -. As a side-effect, our method is able to propagate the whole 65 information present in the MC data. 66

Another characteristic of our approach is its nonparametric feature. Since the number of variables is huge in the 67 EPID's MC data denoising problem (n=1024 × 1024 pixels), it turns that it is convenient to the 68 as the estimation of a surface in R² which amounts to infer over a potentially infinite number 69 of parameters, leading to a so-called Bayesian nonparametric regression approach. All statistical material cannot 70 be expressed here and readers may refer to [START_REF] Hannah | Dirichlet process mixtures of generalized linear models[END_REF][START_REF] Hjort | Bayesian Nonparametrics[END_REF] to gain an insight into involved methodologies. We model the n 71 computed EPID's data (x i ,y i ) for i=1,…,n, where ݔ ∈ ܴ² stands for the pixel coordinates and y i for the pixel's 72 calculated dose. The method lies in estimating f(x,y), the join distribution of (x,y), from simulated points (x i ,y i ) in 73 a nonparametric way and to take for the denoised dose d(x) for all ݔ ∈ ܴ ଶ : 74 At each iteration (t) of the MCMC procedure, we are thus able to sample a denoised dose surface ݀ሺݔሻ ሺ௧ሻ . For T 82 samples, the posterior distribution is given by the set of ݀ሺݔሻ ሺ௧ሻ for t = 1,…,T, and the dose estimate (posterior 83 mean) is expressed as: 84

݀ ሺݔሻ = ܧ ሺݔ|ݕሻ = න ݕ . ݂ሺݔ|ݕሻ ݕ݀ =  ݕ . ݂ሺ,ݔ ݕሻ ݕ݀ ோ  ݂ሺ,ݔ ݕሻ ݕ݀ ோ ோ ( 
݀ መ ሺݔሻ ≈ 1 ܶ ݀ ሺݔሻ ሺ௧ሻ ் ௧ୀଵ (2) 
We can as well compute the posterior standard deviation or credible intervals from the collection ൛݀ሺݔሻ ሺ௧ሻ ൟ.

85

All parameters of the DPM prior distribution are also sampled at each iteration, assuming an additional degree of 86 hierarchy in the dose data model and putting vague priors on these parameters. 87

II.2.3. Denoising test case

88

Denoising effectiveness of the DPGLM algorithm was assessed on 1024 × 1024 images simulated for the 89 heterogeneous phantom irradiated by a 15 ×15 cm² field. MC calculations of phase space files (PSF) storing 50, 90 100, 500, 1000, 1700, 3000 and 5000 million photons were performed with associated statistical uncertainties of 91 better than 15, 10, 5, 3.5, 2, 1 and 0.7 % of the maximum dose. Portal images were then simulated using these 92 PSF and recycling particles with a splitting factor of 10, and they were then denoised with the DPGLM and 93 IRON algorithms. To assess performances of both algorithms, we calculated in a 600 × 600 pixel central area of 94 the image the fraction of pixels presenting a difference of more than 1 % of the maximum normalized dose, with 95 respect to the reference image. Due to computational time limitations linked to EPIDs MC calculations, the 96 choice of a common reference image remains a tricky issue since the image with the best statistical uncertainty 97 (0.7 %) is still too noisy to be taken as the reference. In order to avoid any bias in the comparison, we then 98 resorted to use a reference for each denoising method, namely the image with 0.7 % statistical uncertainty 99 denoised with the algorithm under test. The reference for raw MC image evaluation is the 0.7 % statistical 100 uncertainty MC image itself. 101

II.2.4. Application to a head-and-neck treatment plan 102

The portal image associated to one of the beams used in a head-and-neck IMRT treatment plan was simulated 103 with an associated statistical uncertainty of better than 5 % and was denoised with DPGLM and IRON. 104

III. RESULTS

105

III.1. EPID model development and validation 106

The model for the Optivue1000 EPID that best matches experimental data includes two kinds of non-uniform 107 layers of water-equivalent material beneath the 13 layers model: a 50 mm water layer of 16 × 33 cm², centered in 108 (x=0 cm, cm) (the Y axis refers to the inline direction) and anywhere else a 30 mm water layer. Profiles 109 drawn through acquired and simulated images in the crossline direction are shown on Figure 2, for portal images 110 without and with phantom in the beam, respectively. 2D gamma-index values are also given in Table I. These 

III.2. Denoising of portal images 115

III.2.1. Denoising test case 116

As expected, we experienced slow convergence for the IRON algorithm for low SNR images. Note that, due to 117 the large amount of variables, we resorted to use a limited-memory Broyden, Fletcher, Goldfarb, Shanno 118 algorithm (LM-BFGS) [START_REF] Liu | On the Limited Memory Method for Large Scale Optimization[END_REF]. Despite the needs of significant computing requirements, the structure of DPGLM 119 algorithm makes it suitable for parallelization contrary to the LM-BFGS optimization algorithm. As a 120 consequence, the effective computation times are similar for both methods. 121 122 

IV. DISCUSSION AND CONCLUSION 143

This study shows that the combination of MC simulations with efficient denoising methods enables the accurate 144 computation of high-resolution portal images for computational burden now compatible with clinical settings 145 and acceptable for TPS. Particularly, in a context of low SNR, DPGLM reveals interesting performances. In 146 addition, some features of the proposed method have not been fully investigated. Among them, based on a 147 nonparametric regression approach, DPGLM is able to interpolate the dose deposit at any coordinates of the 148 portal image's plane. This could offer flexibility in the choice of final image resolution. Another key feature of 149 the approach lies in the uncertainty estimation over the whole image. This could bring enhanced information 150 which can help in practical situations to determine credible intervals containing the desired dose image. 151

V.

1 )

 1 Nonparametrics arise from the choice of a Dirichlet Process Mixture (DPM) for prior specification of the joint 75 density f(x,y). Roughly, the DPM structure involves an open-ended number of components which relies only on 76 the dataset and DPM parameters. 77From the elicited prior and data (x i ,y i ), we want to compute the posterior distribution ݂ሺ,ݔ ݔ|ݕ ଵ , ݕ ଵ , … , ݔ , ݕ ሻ 78 and conditional expectation ݀ መ ሺݔሻ = ,ݔ|ݕ‪ሺܧ ݔ ଵ , ݕ ଵ , … , ݔ , ݕ ሻ. The exact computation of the posterior is 79 intractable and we use a Markov Chain Monte-Carlo (MCMC) approximation scheme (Gibbs sampler) to draw 80 samples from the target distribution. 81
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 1 Figure 1. Description of the heterogeneous phantom.
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 2 Figure 2. Profiles for acquired (blue) and simulated (red) portal images in the crossline direction, for the configuration without phantom (left) and with phantom (right).
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 3 Figure 3. Fraction of pixels failing the 1 % difference test for MC images (raw data), images denoised with IRON and with DPGLM.
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 45 Figure 4. Central profiles drawn through the reference image, the MC image, the image denoised with IRON and the image denoised with DPGLM, for a 100 million photons PSF. 123 Figure 3 summarizes the fraction of pixels which fail the 1 % criterion. In all cases, the interest of using any of 124 the denoising algorithms is evident, even for MC images with a high SNR. IRON and DPGLM exhibit similar 125
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 6 Figure 6. Profiles drawn through the acquired image, the MC image undenoised, the MC image denoised with IRON and with DPGLM.