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I INTRODUCTION

Even if the IMRT modality allows a more accuratéimddon of the target volume in radiotherapy, laleses are

still delivered around the tumour to organs at.risShidemiological studies [1] demonstrated the tieteship
between peripheral doses and second cancers or disaases. Many experimental studies measuring the
variation of the peripheral dose with the treatmgstameters have been undertaken [2]. Up to nowy, fesv
studies have been performed on out-of-field MoréelcC(MC) simulations. To our knowledg®lCNPXis the
only one MC code that has been used to simulatpdhipheral dose in radiotherapy [3]. Nowadaystehe thus

no specific and accurate tool predicting the peiphdoseOur aim is to develop a MC tool based on the
PENELOPEcode to compute the dose at the target volumetandrgans at risk in order to enable a decrease of
the peripheral dose by adapting the treatment'anpaters. This tool will be implemented in a Treaite
Planning System (TPS). In this paper we exposeitbevalidation step of the out-of-field MC calations,
using a comparison with measurements in a spdaifie water tank.

Il. MATERIALS AND METHODS
a. Experimental validation
i. Irradiation configuration

The irradiations have been performed at LNHB (FrelRdmary Standard Laboratory) oic& Saturne 4%near
accelerator for 6, 12 and 20 MV beam qualities. fdllewed the configuration of the IAEA 398 protoowhich
implies the use of a 10 x 10 cm? field, a skin acefdistance (SSD) of 90 cm and a measurementah epth
in water. The only difference with the irradiatioanditions proposed in this protocol is the use &drge water
phantom (60 x 30 x 30 cinspecially designed for this experiment. We comsid a symmetric situation so only
one side of the field has been explored.

ii. OSL dosimeter

Another aim of this experiment is to validate thee wf ALO;:C detectors Nanodots Landauer) and the
optically stimulated luminescence (OSL) techniqoe dut-of-field dose measurements. The OSL techmiqu
presents advantages over the thermoluminescemiiteeh(TL): no sample heating is required and thtector
can be read several times. Moreover, OSL measutsraenrelatively cheaper than TL measurements [5].

In this work, OSL dosimeters will be useful for thénical validation of the code on an anthropontocp
phantom. Measurements performed withnodotshave been compared to NE2571 ionization chambés (
measurements, considered as the reference data here
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Fig. 1 Energy response of the OSL in Air Ker. The ratio R/R, corresponds tthe rawresponse of the reader
divided by thi raw response coming from the Cobalt

Four main factors are appligd the raw reading of the rea: particular sensitivity for eacNanodot the
measured calibration factor, air calibration fa Dy /K4, COrrecting the fact that the calibration has beeme
in air whereas the measuremehts/e been perform in water and finally theenergy dependence correc
factor.

Indeed, we measured a high oestimation of the dose (by a factor 3 or 4) fortphdelonging to a low ener
range (< 100 keV) [i§. 1]. Consequently, we developed inergy dependence correction protc It combines
the results of the experimental owesponse curve witRENELOPEspectra calculatiorst measurement points.
The influence of this correction is described ia text par

b. Calculation tool

The tool we are developing Isased on the 2006 release PENELOPE[4]. This code has been parallelizec
save computation time by running the calculationacluster of 372 processors. The simulaticre run from
specific large Phee Space File (PS recorded in a 60 x 30 érplane located at 96m from the sourceafter the
jaws ofthe modelled accelerator. An additional comparisas been doi using the tally F6 cthe MCNPXMC
code, the unique MC code used for this kind of istwuntil now. A specific fature of MCNPX is the
availability of the DXTRANvariance reduction method. It is specially adaftethe calculation far from tr
primary beam and was testéd orde to assess the gain to be expected on theofefigld dose calculation
efficiency.

Il RESULTS
a. MC comparison

As results obtained for 6, 12nd 2(MV quality beams are quite similar, we have repbréa Fig. 2 he
experimental and calculated aftfield dose profiles obtained for 20 M\hese dose profiles have b
normalized to the maximum of dc.
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Fig. 2 Experimental and calculated MV dose profiles

As expected, PENELOPE and MCNPX resu in the field are in good agreement with OSL and
measurements (error < 3 %).

Out of the field PENELOPEdata are in good agreement with the IC measurerfrom the centre of the bea
up to most distant points (40n). The statistical uncertainty associated to the mostpperial points is quite lo
(~15 %) regarding tthe level of dosi The global mean error is about 3d#tween these twsets of results.

Unlike thePENELOPEcode, thaVICNPX calculations over-estimate more and mitre dose from 1cm from
the centre of the beam tioe further positions. The global mean error isuatsi % betweerMCNPXand the IC
values.

Consequently, compared MCNPX PENELOPEseems to be the best suitedsimulate the out-of-field dose
deposition with aigh level of accurac. To analyse the difference between the two MC codifferent cross-
sections libraries were tested in MCNPX withsignificant improvement in theesults. Discrepancies obsen
between both codes are still under investigati

b. OSL comparison

On Fig. 2, one can observe thacorrected OSLs always o-estimate the dos8&efore applying the correctio
the global mean error between OSL and IC measursnisraround .6 %, afte correctiol, it decreases to
1.1 %. Thisresult demonstrates the relevanc OSL dosimeters toneasure low doses in «of-field regions
and thus to vatiate the calculations of t MC calculation tool in a real IMRT configuration ti an
anthropomorphic phantom.

c. DXTRAN tests

PENELOPEsimulationsconducted in this stur are time consuming (more th& days of computatic on 48
processors for the whole water tank dose calculj. The code converges slowlyr these calculatiol because
of the low number of particlgsreser out-of-field. Preliminary results obtained abdlie use of DXTRAN ir
MCNPXshow an increase of the efficiency by a factor @. Therefore the implementation such a tool in
PENELOPE could significantly reducthe computation time of out-dield dose and make enable
implementation of our toah clinical practic.

V. CONCLUSIONS
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The comparison of the MC tool based on PENELOPI witasurements gives satisfying agreements for out-
of-field doses. The next step is the clinical validn with the OSL dosimeters within an anthropgohic
phantom and with an IMRT step-and-shoot treatméant.p

At the same time we are working on the acceleratibithe calculations. The implementation of redwati
variance techniques such as DXTRAN in the MC tdaludd be helpful by increasing calculation efficgrout
of the beam. This implementation is undergoing are will soon be able to give our first results bkt
acceleration of thPENELOPEcode.

Part of the work has been done within the framevadikURADOS WG9.
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