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Sediment Fingerprinting in Fluvial Systems: Review of Tracers, Sediment Sources and Mixing Models

Suspended sediments in fluvial systems originate from a myriad of diffuse and point sources, with the relative contribution from each source varying over time and space. The process of sediment fingerprinting focuses on developing methods that enable discrete sediment sources to be identified from a composite sample of suspended material. This review identifies existing methodological steps for sediment fingerprinting including fluvial and source sampling, and critically compares biogeochemical and physical tracers used in fingerprinting studies. Implications of applying different mixing models to the same source data are explored using data from 41 catchments across Europe, Africa, Australia, Asia, and North and South America. The application of seven commonly used mixing models to two case studies from the US (North Fork Broad River watershed) and France (Bléone watershed) with local and global (genetic algorithm) optimization methods identified all outputs remained in the acceptable range of error defined by the original authors. We propose future sediment fingerprinting studies use models that combine the best explanatory parameters provided by the modified Collins (using correction factors) and Hughes (relying on iterations involving all

Introduction

The transport of sediment, and especially the fine sediment particles, can lead to a number of detrimental impacts for stream environments. Suspended sediment loads can lead to a decrease in water quality [START_REF] Lartiges | Composition, structure and size distribution of suspended particulates from the Rhine River[END_REF][START_REF] Papanicolaou | Soil fingerprinting in the Palouse basin, USA using stable carbon and nitrogen isotopes[END_REF]; a reduction of operational capacities in water supply facilities [START_REF] Morris | Reservoir sedimentation handbook[END_REF]; an alteration of channel morphology [START_REF] Wright | Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream[END_REF]; an increase in turbidity, restricting light penetration and thereby reducing primary production [START_REF] Wood | Biological Effects of Fine Sediment in the Lotic Environment[END_REF]; and the smothering of biotic habitats [START_REF] Richards | Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrates[END_REF]. Furthermore, fine sediment export may facilitate substantial transfers of carbon and nutrients [START_REF] Prosser | Largescale patterns of erosion and sediment transport in river networks, with examples from Australia[END_REF].

Suspended sediments originate from different sources, with the relative contribution from each source varying over time and space as a consequence of different erosional processes. Although several approaches to identify sediment sources exist, many approaches rely on visual estimates [START_REF] Reid | Rapid evaluation of sediment budgets[END_REF], modeling [START_REF] Foster | Modeling soil erosion and sediment[END_REF], long-term field records [START_REF] Gellis | Channel and hillslope processes revisited in the Arroyo de los Frijoles watershed near Santa Fe[END_REF], or traditional monitoring techniques. The latter employs an indirect approach and involves measurements of erosion activity, including those based on erosion pins to measure the rates of surface lowering [START_REF] Slattery | The application of mineral magnetic measurements to quantify within-storm variations in suspended sediment sources[END_REF][START_REF] Lawler | Downstream change in river bank erosion rates in the Swale-Ouse system, northern England[END_REF]; and erosion plots to document the rates of soil loss from surface sources (Motha et al. 2002). Indirect approaches also face many issues including: a) primary assumptions about the origin of sediment sources, b) difficulty in recording erosion rates due to the spatial variability, and c) inability of these approaches to estimate sediment delivery to the streams [START_REF] Walling | Tracing suspended sediment sources in catchments and river systems[END_REF]. A thorough review of the direct and indiect approaches to measure sediment mobilization can be found in [START_REF] Collins | Documenting catchment suspended sediment sources: problems, approaches and prospects[END_REF].

Sediment fingerprinting methods provide a direct approach for quantifying sources of sediment from individual river sections to watershed scale. The procedure involves characterizing the potential sediment sources by their diagnostic chemical and physical properties, and comparing these to the properties of transported fluvial material.

Figure 1 identifies the process common to the majority of sediment fingerprinting studies, even though the methods used for collecting samples (fluvial and source samples), preliminary analyses, number and type of tracers, statistical parameters to verify different tracers, and models to determine specific contribution from discrete sources may vary among techniques.

(Figure 1.) This paper builds on reviews of sediment fingerprinting studies from [START_REF] Collins | Documenting catchment suspended sediment sources: problems, approaches and prospects[END_REF]), [START_REF] Walling | Tracing suspended sediment sources in catchments and river systems[END_REF] and [START_REF] Davis | Sediment fingerprinting: Review of the method and future imrovements for allocating nonpoint source pollution[END_REF] by focusing on: 1) comparison of different fluvial sampling methods used in sediment tracing studies and their applicability for different hydrologic and morphologic river conditions; 2) describing the range of sediment properties used to assign a fingerprint and the potential to quantitatively identify discrete sources of sediment; 3) comparing the sources of suspended sediment from 41 watersheds around the globe; and 4) comparing the variability in output from applying a common dataset from two case studies to seven commonly used mixing models. This is the first study that compares the most prevalent mixing models (including the application of genetic algorithms) to an actual dataset to quantify variability in the output depending on the choice of mixing models.

Fluvial and source soil sampling

Sediment fingerprinting studies rely on the collection of different types of fluvial sediments and may include river bed sediment (Olley et al. 2000;[START_REF] Dirszowsky | Bed sediment sources and mixing in the glacierized upper Fraser River watershed, east-central British Columbia[END_REF]Hughes et al. 2009;[START_REF] Evrard | Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment[END_REF], dam reservoir samples [START_REF] Foster | Sediment tracing and environmental history for two catchments, Karoo Uplands, South Africa[END_REF][START_REF] Nosrati | An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints[END_REF], floodplain surface (Collins et al. 2010) and, most commonly, samples of suspended load [START_REF] Mizugaki | Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan[END_REF][START_REF] Devereux | Suspended-sediment sources in an urban watershed[END_REF][START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF]. In some studies, soil samples were collected from spatially explicit watershed sources: from the top 0.5 cm [START_REF] Gellis | Sources, transport, and storage of sediment in the Chesapeake Bay Watershed[END_REF]), 2 cm [START_REF] Walling | Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK[END_REF]Hughes et al. 2009;Collins et al. 2010) or 5 cm [START_REF] Gruszowski | Sediment sources and transport pathways in a rural catchment, Herefordshire, UK[END_REF][START_REF] Minella | Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields[END_REF][START_REF] Devereux | Suspended-sediment sources in an urban watershed[END_REF] of the soil surface. Instead of collecting samples from different source types, Motha et al. (2002) and [START_REF] Mizugaki | Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan[END_REF] used a plot for each source type to simulate erosion process inside the plots, and Olley and Caitcheon (2000) used deposited finegrained sediments as source samples to average out local source area heterogeneity. In a recent study Wilkinson et al. (In press) found that the estimated contributions of spatial source areas within the large study catchments had narrower confidence intervals when source areas were defined using sediment from geologically distinct river tributaries, rather than using soil sampled from geological units in the catchment, since tributary sediment had less-variable geochemistry than catchment soils. Three primary methods used to collect suspended in-stream sediment samples across watersheds include point samples, time-integrated samples and automated collection of water samples.

Based on the type of instruments used, point sampling consists of two approaches; collecting hundreds of liters of stream water and extracting suspended sediment with a continuous flow centrifuge (e.g. [START_REF] Motha | Determining the sources of suspended sediment in a forested catchment in southeastern Australia[END_REF]Deverux et al. 2009); and in-situ dewatering techniques using portable centrifuge or filtration systems (e.g., Horowitz et al. 1989). The advantage of the former technique is that it prevents contamination by the successive samples collected. Time-integrated samplers based on a flow velocity reduction leading to the settling of particles within a trap [START_REF] Phillips | Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments[END_REF] have been widely adopted in sediment tracing research [START_REF] Walling | Tracing suspended sediment and particulate phosphorus sources in catchments[END_REF][START_REF] Hatfield | Fingerprinting upland sediment sources : particle size-specific magnetic linkages between soils, lake and suspended sediments[END_REF]Collins et al. 2010), These collect samples of suspended sediment during flow events, and effectively trap a representative sample of sediment with an effective particle size of <63µm [START_REF] Phillips | Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments[END_REF][START_REF] Russell | Suspended sediment sources in two small lowland agricultural catchments in the UK[END_REF]; they sample through the hydrograph including the rising and falling limbs. Automated water samplers are the more costly method but allow the collection of instantaneous samples, and therefore a better temporal resolution for characterizing suspended sediment flux. Comparisons among sampling strategies are outlined in Table 1, identifying the only two methods that provide data necessary to calculate hysteresis effects are time-integrated and automatic water samplers. Hysteresis impacts on the variation of suspended sediment loading in the falling and rising limb of an event [START_REF] Williams | Sediment concentration versus water discharge during single hydrologic events in rivers[END_REF]. Samples from time-integrated and automated water samplers can be representative of the whole watershed area because of their temporal integration of transported sediment during events, but require a longer period of time (>10 days) to collect samples. Point samplers have the benefit of quantifying the effect of discharge on sediment contribution from different sources. *in in-situ dewatering techniques enough quantity of samples can be collected **These samplers partially alleviate the hysteresis problem but trapping efficiency of the samplers might also change during the hydrograph, the effect of which has not been quantified.

Fingerprint properties (Tracers)

A variety of chemical and physical tracer techniques have been used to investigate the sources of sediment and nutrients to river systems. These tracing techniques all involve measuring of one or more parameters that provide a 'fingerprint' to distinguish one source of sediment from another.

For a parameter to be useful in tracing the source of sediment it needs to be both measurable and conservative such that:

 A tracer signal should be able to distinguish between sediments derived from different source areas;

 For a given source of sediment, which does not change with respect to time, a sediment tracer signal must also be constant in time or vary in a predictable way;

 For a given source of sediment, which does not change with respect to distance along a transport path, a sediment tracer signal must also be constant along this path or vary in a predictable way.

Tracers used in sediment fingerprinting studies include sediment color [START_REF] Grimshaw | Source identification for suspended sediments[END_REF]), color properties (Martínez-Carreras et al. 2010), plant pollen content [START_REF] Brown | The potential use of pollen in the identification of suspended sediment sources[END_REF], major and trace elemental composition [START_REF] Jenns | Investigating contemporary and historical sediment inputs to Slapton Higher Ley: an analysis of the robustness of source ascription methods when applied to lake sediment data[END_REF][START_REF] Miller | HISTORICAL TRENDS IN SEDIMENTATION RATES AND SEDIMENT PROVENANCE[END_REF], rare earth elements [START_REF] Zhang | Estimation of the detachment rate in eroding rills in flume experiments using an REE tracing method[END_REF], mineral magnetic characteristics [START_REF] Hatfield | Fingerprinting upland sediment sources : particle size-specific magnetic linkages between soils, lake and suspended sediments[END_REF]), clay mineralogy [START_REF] Motha | Determining the sources of suspended sediment in a forested catchment in southeastern Australia[END_REF], radionuclide characteristics [START_REF] Vanden Bygaart | Bomb-Fallout Cs-137 as a Marker of Geomorphic Stability in Dune Sands and Soils, Pinery Provincial Park, Ontario, Canada[END_REF][START_REF] Estrany | An investigation of soil erosion and redistribution in a Mediterranean lowland agricultural catchment using caesium-137[END_REF], organic matter content [START_REF] Peart | Using sediment properties as natural tracers for sediment source: two case studies from Hong Kong[END_REF]Walling et al. 1999), carbon and nitrogen stable isotope ratios [START_REF] Papanicolaou | Soil fingerprinting in the Palouse basin, USA using stable carbon and nitrogen isotopes[END_REF][START_REF] Rhoton | Identification of suspended sediment sources using soil characteristics in a semiarid watershed[END_REF], Compound Specific Stable Isotope (CSSI)

analysis [START_REF] Blake | Tracing crop-specific sediment sources in agricultural catchments[END_REF] and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) [START_REF] Poulenard | Infrared spectroscopy tracing of sediment sources in a small rural watershed (French Alps)[END_REF][START_REF] Evrard | Tracing sediment sources in a tropical highland catchment of central Mexico by using conventional and alternative fingerprinting methods[END_REF]).

An advantage of physical tracers including color, density and fine sediment dimensions is they are readily identifiable and easily measurable characteristics [START_REF] Davis | Sediment fingerprinting: Review of the method and future imrovements for allocating nonpoint source pollution[END_REF]). However, these tracers can be non-conservative and may change during transport. [START_REF] Grimshaw | Source identification for suspended sediments[END_REF] and [START_REF] Peart | Using sediment properties as natural tracers for sediment source: two case studies from Hong Kong[END_REF] successfully determined sediment origin using only color as a tracer, whereas [START_REF] Vanden Bygaart | Bomb-Fallout Cs-137 as a Marker of Geomorphic Stability in Dune Sands and Soils, Pinery Provincial Park, Ontario, Canada[END_REF] unsuccessfully used density as the sole tracer of sediment source due to large spatial variation in density values. More recently, [START_REF] Krein | The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed[END_REF] demonstrated that fractal dimension and particle color can provide a fast and easy approach to determine the origin of sediments and the amount, location and process of sediment storage. Inorganic tracers have been less successful for attributing specific soil-environmental processes than organic tracers because of the large number of potential inorganic tracers and processes that may influence the elemental composition of sediments during transport [START_REF] Davis | Sediment fingerprinting: Review of the method and future imrovements for allocating nonpoint source pollution[END_REF].

Sediment geochemistry has been widely used to identify the spatial sources of sediments delivered to waterways (Olley et al. 2000;[START_REF] Hardy | Geochemical tracing and spatial evolution of the sediment bed load of the Romaine River, Quebec, Canada[END_REF][START_REF] Weltje | Sediment-budget modelling of multi-sourced basin fills: application to recent deposits of the western Adriatic mud wedge (Italy)[END_REF]. Rock types, through soil formation and weathering, have a profound influence on the geochemical properties of their soils and accordingly the geochemical characteristics of their eroded sediments [START_REF] Klages | Suspended solids carried by the Gallatin River of southwestern Montana: II. Using minerology for inferring sources[END_REF]Olley et al. 2001). Different underlying parent rock materials frequently results in spatial sources with distinct geochemical compositions (Olley et al. 2001;Motha et al. 2002;[START_REF] Douglas | Sediment source identification and residence times in the Maroochy River estuary, southeast Queensland, Australia[END_REF]. Sediments eroded from soils derived from a particular rock type often maintain these distinct geochemical properties during sediment generation and transport processes (Hughes et al. 2009). If sediments generated from parental rock types have distinguishable major or trace elemental compositions then sources of transported sediment can be determined [START_REF] Collins | Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn river basins, United Kingdom[END_REF][START_REF] Collins | Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers[END_REF][START_REF] Caitcheon | Sediment delivery from Moreton Bay's main tributaries: a multifaceted approach to identifying sediment sources[END_REF]) by characterizing and comparing the signature of suspended sediment samples and samples from the source areas (Hughes et al. 2009).

A [START_REF] Walling | Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK[END_REF], and can be used as a geogenic radionuclide tracer.

Beryllium-7 is cosmogenic in origin through the spallation of nitrogen and oxygen atoms in the upper atmosphere by cosmic rays. Beryllium-7 ( 7 Be) is useful to discriminate surface soils from deeper layers as it is commonly concentrated in the upper 5 mm of the soil profile [START_REF] Zapata | The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments[END_REF].

Unlike 210 Pb and137 Cs, 7 Be can confirm the relative importance of recently mobilized surface materials due to its very short half-life of 53 days.

Nitrogen and carbon stable isotopes have shown greater potential sensitivity for detecting sediment sources than total elemental composition, and therefore a powerful tool for identifying soil origin [START_REF] Fox | An un-mixing model to study watershed erosion processes[END_REF]. The stable isotopic signature of nitrogen (δ 15 N) is a soil property proportional to the 15 N/ 14 N isotopic ratio; similarly the carbon stable isotopic signature (δ 13 C) is proportional to the 13 C/ 12 C isotopic ratio. The carbon to nitrogen atomic ratio C/N is the ratio of total atomic carbon to nitrogen The dependence of δ 15 N, δ 13 C, and C/N on vegetative cover and management, support the argument that the biogeochemical signature of eroded-soil will reflect specific erosion processes [START_REF] Fox | The Use of Carbon and Nitrogen Isotopes to Study Watershed Erosion Processes[END_REF]).

The mineral magnetic properties of soils that are related to the underlying geology and soil type include low-and high-frequency magnetic susceptibility (χ lf , χ hf ), frequency depended susceptibility (χ fd ) anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM), high-field remanent magnetization (HIRM), and saturated isothermal remanent magnetization (SIRM). The advantages of using magnetic tracers to determine discrete sediment sources are: a) the measurement methods are not time-and cost-intensive, b) their potential to discriminate a sample using non-destructive techniques, and c) their high sensitivity to subtle changes in a range of environmental settings [START_REF] Maher | Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications[END_REF]). The disadvantages of magnetic properties is that they are highly particle size-dependent [START_REF] Hatfield | Fingerprinting upland sediment sources : particle size-specific magnetic linkages between soils, lake and suspended sediments[END_REF]) and are not linearly additive [START_REF] Lees | Mineral magnetic properties of mixtures of environmental and synthetic materials: linear additivity and interaction effects[END_REF]).

Sources of sediment

The development of fingerprinting techniques has enabled discrimination of diverse point and diffuse sources of sediment, including forest roads [START_REF] Madej | Erosion and sediment delivery following removal of forest roads[END_REF][START_REF] Gruszowski | Sediment sources and transport pathways in a rural catchment, Herefordshire, UK[END_REF][START_REF] Minella | Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields[END_REF], graveled roads [START_REF] Motha | Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia[END_REF]), arable lands (Walling et al. 1999;[START_REF] Walling | Integrated assessment of catchment suspended sediment budgets: a Zambian example[END_REF], pasture lands [START_REF] He | Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach[END_REF]Collins et al. 1997a;[START_REF] Owens | Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model[END_REF], forest floor [START_REF] Mizugaki | Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan[END_REF], sub-surface areas [START_REF] Russell | Suspended sediment sources in two small lowland agricultural catchments in the UK[END_REF][START_REF] Walling | Tracing suspended sediment and particulate phosphorus sources in catchments[END_REF], channel banks [START_REF] Slattery | Fingerprinting suspended sediment sources using mineral magnetic measurements-A quantitative approach[END_REF], landslides [START_REF] Nelson | Sediment sources in an urbanizing, mixed land-use watershed[END_REF], gully walls [START_REF] Krause | Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia[END_REF]) and urban sources [START_REF] Carter | Fingerprinting suspended sediment sources in a large urban river system[END_REF].

Pastured lands (grassland topsoils) have been documented as one of the highest contributors to suspended sediment transport in UK [START_REF] He | Determination of suspended sediment provenance using caesium-137, unsupported lead-210 and radium-226: a numerical mixing model approach[END_REF]Collins et al. 1997a;[START_REF] Owens | Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model[END_REF][START_REF] Gruszowski | Sediment sources and transport pathways in a rural catchment, Herefordshire, UK[END_REF]Collins et al. 2010) due to soil deformation and compaction as a result of high livestock densities [START_REF] Pietola | Effects of trampling by cattle on the hydraulic and mechanical properties of soil[END_REF]. However, studies in France [START_REF] Evrard | Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment[END_REF],

Australia (Motha et al. 2002) and Iran [START_REF] Nosrati | An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints[END_REF]) show low soil erosion potential from pasturelands as a result of higher vegetative cover that retards both sediment detachment and transport. Site-specific issues such as unvegetated surfaces during high precipitation, increased slope, and reduced soil organic matter content can accelerate erosion processes from cultivated fields.

The importance of roads as sites of sediment origin, deposition and transport has been widely acknowledged [START_REF] Wemple | Forest roads and geomorphic process interactions, Cascade Range, Oregon[END_REF][START_REF] Ramos-Scharrón | Measurement and prediction of natural and anthropogenic sediment sources[END_REF][START_REF] Sheridan | Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generation rates from unsealed forest roads: Validation against in-situ erosion measurements[END_REF], and their contribution to sediment loads exacerbated by their connectivity within drainage systems [START_REF] Croke | Gully initiation and road-to-stream linkage in a forested catchment, southeastern Australia[END_REF][START_REF] Motha | Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia[END_REF]. A range of sediment tracers have been used to successfully discriminate different types of roads as sediment sources including forest roads (Motha et al. 2002;[START_REF] Mizugaki | Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan[END_REF], street residue [START_REF] Devereux | Suspended-sediment sources in an urban watershed[END_REF], farm tracks [START_REF] Edwards | Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK[END_REF]Collins et al. 2010), unpaved roads or unmetalled roads (Collins et al. 2010;[START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF]) and paved roads or metalled roads [START_REF] Gruszowski | Sediment sources and transport pathways in a rural catchment, Herefordshire, UK[END_REF].

The relative importance of channel banks as sediment sources to drainage systems will vary among watersheds due to geology and sediment type, hydrology, channel morphology and dimensions, and riparian land-use pressures (Collins et al. 2010). In south-eastern Australian, channel sources have been documented to contribute up to 90% of the total sediment yield [START_REF] Olley | Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity[END_REF][START_REF] Wallbrink | Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137Cs and 210Pb[END_REF][START_REF] Wasson | The recent history of erosion and sedimentation on the Southern Tablelands of southeastern Australia: sediment flux dominated by channel incision[END_REF][START_REF] Caitcheon | The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers[END_REF][START_REF] Olley | The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia[END_REF]).

In the UK, [START_REF] Walling | Tracing suspended sediment sources in catchments and river systems[END_REF] suggested channel banks typically contributed 50% of transported sediment load. In contrast, channel bank sources to suspended load have also been found to be minimal (e.g. [START_REF] Chapman | Particulate phosphorus transport by sub-surface drainage from agricultural land in the UK. Environmental significance at the catchment and national scale[END_REF][START_REF] Russell | Suspended sediment sources in two small lowland agricultural catchments in the UK[END_REF][START_REF] Walling | Integrated assessment of catchment suspended sediment budgets: a Zambian example[END_REF], highlighting the importance of local conditions in regulating channel bank contributions.

A number of fingerprinting studies have developed methods to successfully discriminate geological sources of sediment rather than sources originating from different land-uses. For example, [START_REF] Walling | Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK[END_REF] To summarize the range of tracing techniques, their applicability and success in discriminating among sources, Table 2 presents data from twenty five published sediment fingerprinting studies covering 47 watersheds from Europe, Africa, Australia, Asia, and North and South America. [START_REF] Wallbrink | Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137Cs and 210Pb[END_REF][START_REF] Caitcheon | The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers[END_REF][START_REF] Olley | The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia[END_REF]Wilkinson et al. In press).

-Upland sub-surface sources (construction sites and roads) can supply a disproportionately high amount of sediment to drainage systems. (e.g., [START_REF] Devereux | Suspended-sediment sources in an urban watershed[END_REF][START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF]).

-Magnetic tracers are used in 8 out of 20 studies, and in 6 of these studies they were identified as among the best tracers to differentiate source material. These tracers are used only in studies with a high sub-soil contribution (e.g. Russel et al., 2001;Gruzowski et al., 2001) and not in catchments where the main sediment supply is surface soils (e.g. Walling et al., 1999;[START_REF] Motha | Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia[END_REF].

-Caesium-137 ( -The use of N, C, P, δ 15 N and δ 13 C to discriminate between sources among land uses was succe ssf ul d espite their potentially unconservative behavior (e.g. δ 15 N and δ 13 C) during transport.

-Achieving discrimination among land use source s b ased on chemical elements such as REE or metals is poorly studied, and should be urgently addressed in future fingerprinting studies.

Figure 2 summarizes the data from Table 2 and indicates that sub-surface erosion accounts for between 2 to 76%, and typically 15 to 30% of suspended loads. A composite of sources originating from surface erosion processes are the dominant contributor of sediment to drainage systems in all watersheds with values of 70 to 85% commonly estimated (Figure 2). Although the contribution from sub surface erosion (particularly channel banks), changes among systems (as discussed in section 4), their importance as eroded material (sources) and its vicinity to storage (sinks) in catchment budget system makes this the most difficult source to quantify in catchment-scale sediment fingerprinting (see Parsons 2012).

(Figure 2.) 5 Mixing models

In geochemical tracing studies the relative contribution of source material to suspended sediment is usually estimated using a multivariate mixing model. The literature describes many different mathematical forms of mixing models (e.g., Collins et al. 1997a;[START_REF] Rowan | Uncertainty estimation in fingerprinting suspended sediment sources[END_REF][START_REF] Motha | Determining the sources of suspended sediment in a forested catchment in southeastern Australia[END_REF][START_REF] Evrard | Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment[END_REF]. In all mixing models, the objective is to determine the source component proportions (x) in the suspended sediment samples by minimizing the errors (Table 3).

The relative contribution of each source category must satisfy the following constraints:

a-The fraction of source contributions must lie between 0 and 1:

b-the percentage source contributions must sum to unity:

Table 3. Commonly used mixing models and their modifications. To make the parameters of each model more comparable, all parameters have been given consistent symbols. Where:

= concentration of fingerprint property (i) in sediment samples; = concentration of fingerprint property (i) in source category (j); = percentage contribution from source category (j); = particle size correction factor for source category (j); = organic matter content correction factor for source category (j); = tracer discriminatory weighting or tracer specific weighting;

= weighting representing the within-source variability of fingerprint property (i) in source category (j); = variance of the measured values of tracer i in source area j; = the total number of samples for an individual source; n = number of fingerprint properties; m = number of sediment source categories.

The modified Collins model algorithm (Collins et al. 2010) uses the same approach as the original version (Collins et al. 1997b) to optimize the estimates of the relative contributions from the potential sediment sources, but it includes additional property weightings and a different definition for the parameter. In the modified model, a weighting ( ) was incorporated to reflect the within-source variability of individual tracer properties and ensure that the fingerprint property values for a particular source characterized by the smallest standard deviation exerted the greatest influence upon the optimized solutions (Collins et al. 2010). The parameter in Collins (1997) is a tracer-specific weighting that can be calculated from the inverse of the root of the variance for each tracer in all sources. The parameter in the modified Collins is a tracer discriminatory weighting based on the percentage of the source classified correctly using discriminant function analysis.

The Hughes mixing model (Hughes et al. 2009) is modified from Olley and Caitcheon (2000).

This model applies a Monte Carlo approach based on replicate samples (not their mean) and runs random iterations to obtain the lowest error. Fundamental differences are evident between the 2009), model provides additional statistical power by adding a term that divides the variance term in the denominator by m j (the number of samples in a source area). This is particularly useful when using commonly found elemental tracers that occur in very low concentrations.

Genetic algorithms and mixing models

It has been suggested that local optimization tools (e.g. Excel solver) are not appropriate to represent global solutions (Collins et al. 2010;[START_REF] Collins | Quantifying fine-grained sediment sources in the River Axe catchment, southwest England: application of a Monte Carlo numerical modelling framework incorporating local and genetic algorithm optimisation[END_REF]. In sediment fingerprinting studies, these methods are not able to find the best optimum sediment contribution minimizing mixing model errors. To overcome this problem, [START_REF] Collins | Quantifying fine-grained sediment sources in the River Axe catchment, southwest England: application of a Monte Carlo numerical modelling framework incorporating local and genetic algorithm optimisation[END_REF]) proposed a revised modeling approach comparing the results of both local and global (genetic algorithm) optimization tools to determine the uncertainties with the following goodness of fit (GOF) equation:

Genetic algorithms (GA) were developed as a stochastic search technique based on biological processes of natural selection and the survival of the fittest. The advantages of GA as one of the most powerful optimization methods are its applicability to non-convex, highly non-linear and complex problems [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF], its ability to generate more than one optimum solution, and its independency from restrictive assumptions. To explore the output differences from the application of GA to the datasets in this study, we used the GAtool in MATLAB to compute sediment contribution of mixing models as objective functions. GA parameters were set up as follows: population size = 50, cross over ratio = 0.5, mutation rate = 0.1, number of iterations = 10,000 and the use of a single point cross over function along with a uniform selection procedure. Chromosome set-ups were computed based on the number of sources (i.e. three and four sources for North Fork Broad River catchment and Bléone catchments, respectively). As described in [START_REF] Collins | Quantifying fine-grained sediment sources in the River Axe catchment, southwest England: application of a Monte Carlo numerical modelling framework incorporating local and genetic algorithm optimisation[END_REF] different values can be extracted from iterations of GAs including mean and median of all iterations using (i) conventional random repeat sampling as applied in this study or (ii) Latin hypercube sampling (LHS) method.

Comparison of mixing models

In this section, we use data from two sediment fingerprinting case studies in the North Fork Broad River (NFBR, USA) watershed [START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF] and Bléone River watershed in France [START_REF] Evrard | Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment[END_REF]) to compare differences in relative contribution of sediment sources generated by applying the seven mixing models listed in Table 3. There are some fundamental differences between these two studies; fluvial sampling sites in the NFBR watershed were located at the end of the system, whereas sampling sites in the Bléone watershed were distributed as a continuum along the Bléone River and Bès River, resulting in sampling location as an important parameter. Sampling design was also influenced by differing objectives;

discriminating sediment sources based on land-use in the NFBR watershed, whereas in the Bléone watershed the objective was to discriminate geologic soil types.

North Fork Broad River watershed

North Fork Broad River (NFBR) is located in the Piedmont region of Georgia (USA) and drains an area of 182 km 2 . A total of 99 soil samples from three different land-uses were collected, consisting of 37 samples from potentially erodible bank faces; 32 samples from construction sites and unpaved roads; and 30 samples from pasture areas. Sediment samples were also collected from six different storm events (see Figure 3). [START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF] analyzed 21 tracers including 15 trace elements (Be, Mg, Al, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Pb, and U), four total organic and inorganic elements (C, N, O, and S), stable isotope of N (δ 15 N), and a radionuclide isotope ( 137 Cs). Using discriminant function analysis (DFA) and removing nonconservative tracers based on their concentrations in stream sediment, four sediment fingerprint properties ( 137 Cs, δ 15 N, Cr, U) were selected as inputs into the mixing models (Table 4). 

Bléone watershed

The Bléone watershed is a 907 km² mountainous subalpine watershed located in the Durance River district in south-eastern France. A total of 18 soil samples from four different geologic units were collected, consisting of 8 samples from Black marl; 6 from Marl-limestone sites; 2 from Quaternary deposits and 2 from Conglomerate. Riverbed sediment was collected from three sites along the Bléone River, and at two sites along the Bès River and their origin was calculated using the seven mixing models listed in Table 3. In both the NFBR and Blèon watersheds, the Motha and Slattery mixing models provide similar results for the relative contribution of source sediments using both local and global optimization.

In the Bléone watershed, the use of GA and local optimization methods with the Landwehr and modified Landwehr models were not able to predict similar source contributions for sediments, whereas these models gave identical results using both GA and local optimization in the NFBR watershed.

Goodness of fit results

The accuracy of source contribution values resulting from the application of 7 mixing models and two optimization methods can be tested with goodness-of-fit (GOF) values (Table 6). 

  categorized the River Calm watershed (UK) into three dominant rock types including; Cretaceous/Eocene with 20% contribution, Triassic with 42% and Permian with 26.5%. In Australia,Olley and Caitcheon (2000) found sediments in the Darling-Barwon watershed were mostly derived from sedimentary and granitic bed rock areas and less (<5%) from basalt-derived component of cultivated areas, andWilkinson et al. (2012) measured sediment source contribution from surface and sub-surface soils of Granitoid, Mafic and sedimentary rock in 5 river locations and concluded that most of the fine sediment loss in the study area was derived from subsurface soil sources. Similarly,[START_REF] Evrard | Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment[END_REF],[START_REF] Evrard | Tracing sediment sources in a tropical highland catchment of central Mexico by using conventional and alternative fingerprinting methods[END_REF] and[START_REF] Navratil | Temporal variability of suspended sediment sources in an alpine catchment combining river/rainfall monitoring and sediment fingerprinting[END_REF] successfully compared the contribution of four geological sources to river bed sediment and suspended sediment respectively, within the Bléone watershed (France).

  Collins and Hughes models. Firstly, the Collins method uses mean value for each tracer parameter pertaining to each specific source type, whereas the Hughes method uses all individual source samples in the Monte Carlo procedure. Second, correction factors (e.g., particle size) are applied only in the Collins method. The Landwehr model, used by Devereux et al. (2010), provides a more statistically powerful model as it uses a normalized standard deviation from multiple sources rather than directly relating the values of individual variables. A modified version of the Landwehr model, used by Gellis et al. (

  Advantages and differences of global optimization (Genetic Algorithms) compared to local optimization methods can be listed as follows: a) unlike local methods, the GA uses the objective itself, not the derivative information; b) the inherent random property of GA helps avoid local optima; c) when there are multiple solution points, it is impossible for local optimization methods to find the solution because they cannot jump over to a global solution; and d) through numerous variables global optimization is possible. Collins et al. (2010) compared the performance of both local and global (genetic algorithm) optimization techniques, demonstrating that GA based on random initial values minimized the objective functions compared to local searching techniques.

(

  Figure 4.) Contrary to the NFBR watershed, we cannot assess the stability of each mixing model in Bléone watershed as the sampling locations change along both Bès and Bléone Rivers. All mixing models generate different percentages of contributions using both local optimization and genetic algorithm optimization methods in the Bléone watershed (as also reported in NFBR). The use of GA optimization produces a wider range of sediment source contributions than using local methods. For example, at site BE7 of the Bès River (light grey), Black marl and Quaternary deposits are identified as the main sediment supply using local optimization methods. In contrast, almost all suspended sediments are identified as originating from Marl-limestone sources when using the modified Collins and Landwehr models with GA optimization, with the Collins, Hughes, Motha and Slattery mixing models recording both the quaternary deposit and black marl as the dominant sediment sources.

  using a local optimisation method than using a modified Collins mixing model. The use of GA in the modified Collins mixing model, improved accuracy to 61% within the catchment with more source samples (NFBR with 99 source samples in 3 sources), compared with local optimisation with a 55.7% goodness-of-fit. In the catchment with fewer sources (Bleon with 18 source samples in 4 sources), local optimization was the more powerful method for calculating elements available for sediment fingerprint measurements. Radionuclide tracers are the most powerful tracers to distinguish soils from different land uses, but need expensive instruments.Our review of 25 sediment fingerprinting studies identified land-use and geology as the most prevalent discriminators of sediment sources. The relative importance of sediment sources to drainage systems should vary among different catchments due to the contrasts in geology, watershed morphology, hydrology, connectivity of river systems, human interference and many more factors. This inherent variability translates to a reliance on the final step of all sediment fingerprinting studies; computing the contribution of different sediment sources via mixing models. Using a common dataset, we have shown that different mixing models can identify different relative contributions of sediment sources, but that the range of values among models are within an acceptable range of errors (i.e. relative error, mean squared error etc.) in objective functions reported by the original authors. Based on GOF, the modified Collins and Hughes mixing models are the most powerful models to estimate the source contribution to transported sediments. Also, global optimization methods must be carefully applied when using the Hughes mixing model. We suggest the use of a model that combines the best explanatory parameters from modified Collins (it uses correction factors) and Hughes (it uses iterations of all data not mean values) with optimization based on genetic algorithms would best predict the relative contribution of sediment sources to fluvial systems.

Figure 1 .

 1 Figure 1. The process required for sediment fingerprinting in fluvial systems, including sample collection, tracer selection and analyses, mixing model selection to determine sediment source contribution.

Figure 2 .

 2 Figure 2. Frequency distributions for the contribution of channel bank/Sub-surface and surface sources of sediment from the 47 watersheds reviewed in Table2.

Figure 3 .

 3 Figure 3. Percent relative contribution of three sediment sources (channel banks, construction sites, pastures) based on seven mixing models and seven flood event in the NFBR watershed. Q is flow discharge in m 3 /s and T is turbidity in NTU (nephelometric turbidity unit).

Figure 4 .

 4 Figure 4. Percentage of relative contribution of four geologic sources to sediment (Black marl, Marl-limestone, Quaternary deposit, Conglomerate) for seven mixing models and three sediment samples along the Bléone River, and two sediment samples along the Bes River.
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Table 1 .

 1 Comparing different type of fluvial sampling methods

		Determine	Representative	Enough	Long sampling	Instantaneous
		Hysteresis	sample of	quantity of	time	effect of flood
		effect	whole	sample		events
			watershed			
	Point samples	×	×	× *	×	
	Time-Integrated	 **				×
	samples					
	Automated water samples	 **			×	×
	Bed load and					
	Flood plain	×			×	×

  [START_REF] Matissoff | Soil Erosion and Sediment Sources in an Ohio Watershed using Beryllium-7, Cesium-137, and Lead-210[END_REF][START_REF] Nagle | Wheat field erosion rates and channel bottom sediment sources in an intensively cropped northeastern Oregon drainage basin[END_REF]).Lead-210 ( 210 Pb) is a product of atmospheric decay of 222 Rn gas (fallout 210 Pb) and in situ decay of

	and the 1960s (Loughran et al. 1995) and nuclear accidents (e.g., Chernobyl with significant
	fallout in Europe; Fukushima with significant fallout in Japan). Global fallout of 137 Cs peaked in
	the early 1960s and reached zero in the mid-1980s. The highest concentrations of 137 Cs are found
	in undisturbed areas such as forests or where soils were translocated from undisturbed areas and
	number of inorganic tracers including rare earth elements (Ce, Eu, La, Lu, Sm, Tb, Yb), trace not diluted (
	elements (As, Ba, Co, Cr, Cs, Hf, Sc, Ta, Th, Zn Ag, Ba, Cd, Cu, Mn, Ni, Pb, Sb, Se, Tl, V),
	major elements (Fe, K, Na, Al, Ca, Mg, Ti, CaO, Na 2 O, K 2 O, Al2O3, Fe2O3, P2O5, MgO, SiO 2 ,
	TiO 2 , Mn 2 O 4 ), total inorganic carbon, nitrogen, phosphorus, and a number of organic tracers
	including total organic carbon, nitrogen, phosphorus and Loss on Ignition have been applied in
	sediment fingerprinting studies . Major elements, particularly the relationship between Fe 2 O 3 and
	Al 2 O 3 , provide useful tracers for discriminating soils with different rock forming minerals (Dyer
	et al. 1996). The Chemical Index of Alteration (CIA) as proposed by (McLennan 1993) is a
	useful tracer to identify chemical variations resulting from weathering.
	Fallout radionuclide activities are commonly high in surface materials and low or non-existent in
	subsurface materials (Walling 2005; Caitcheon et al. 2012; Olley et al. 2012), making them
	useful in distinguish surface and subsurface materials. Furthermore, they frequently distinguish
	cultivated from uncultivated soils as radionuclides are generally mixed throughout the ploughed
	layer. In addition, radionuclide tracers are well-suited for use in heterogeneous watersheds since
	their concentrations are effectively independent of soil type and underlying geology (Walling
	2005; Caitcheon et al. 2012; Olley et al. 2012). The most commonly used fallout radionuclides
	are 137 Cs, 210 Pb and 7 Be.

226 

Ra, and has a half-life of 22.26 years

[START_REF] Wallbrink | Determining soil loss using the inventory ratio of excess Lead-210 to Cesium-137[END_REF]

. Fallout 210 Pb in a soil or sediment sample is the excess of 210 Pb activity over the 226 Ra supported component. This is known as 'unsupported' or 'excess' 210 Pb ( 210 Pb ex ). Like 137 Cs, 210 Pb ex generally accumulates in the top 10 cm of soil, but can differ with depth depending on local environmental factors. In addition to fallout radionuclides, Radium-226 ( 226 Ra) is produced by in situ decay of the uranium series. 226 Ra concentrations are more directly related to rock type

Table 2 .

 2 The range of tracing techniques, their applicability and success in discriminating among sources from twenty published sediment fingerprinting studies. Fe dit , Mn pyr , Mn dit , Al pyr , Al dit , Fe tot , Mn tot , Al tot , Fe oxa , Mn oxa , Al oxa , P tot , K tot , Ca tot , Na tot , Mg tot , Cu tot , Pb tot , Cr tot , Co tot , Zn tot , Ni tot , Fe tot , Mn tot , Al tot , Fe dit ,Fe oxa , Mn dit , Al dit , Al oxa , Common themes that emerge from the review presented in Table 2 are: -Sub-soils, either from rill and gully systems or artificial drainage ditches make a Channel banks are a consistent source of suspended sediment (e.g., Northeast Branch Anacostia River watershed in Devereux et al. 2010; Southern Piedmont stream watershed in Mukundan et al. 2010; Hive Watershed in Nosrati et al. 2011). Channel and gully erosion dominates in Australia catchments

	Study	Physical tracers	Organic Inorganic	Radionu clide	Magnetic tracers	Best tracers	Description of location and sediment sources	Most contributed area (percent of contribution)
	(Walling et al.		C, N		137 Cs,	χ ARM,		Jackmoor Brook Basin (UK) six	Cultivated areas (57.5%), Pasture
	1993)				210 Pb	SIRM,		sources: two groups of pastures, three	surfaces (23.6%), Channel banks
						IRM		groups of cultivated areas, channel	(18.9%).
								banks
								River Dart Basin four sources:	Pasture surfaces (48.2%), Cultivated
								pasture, two groups of cultivated	areas (30.8%), Channel bank (21%),
								fields, channel banks
	(Walling et al.		C, N		137 Cs,	χ, ARM,		River Culm Basin (UK) seven source	Triassic cultivated (29.5 %), Permian
	1995)				226 Ra 210 Pb ex ,	IRM SIRM,		Cretacepus/Eocene cultivated, types: Cretacepus/Eocene pasture,	cultivated (19.7), Channel banks (12%)
								Triassic pasture, Triassic cultivated,
								Permian pasture, Permian cultivated,
								and channel banks
	(Slattery et al. 1995)					χ lf , χ hf SIRM, IRM		North Oxfordshire watershed (UK) three sources: Cultivated areas, soil/channel bank areas channel banks, combined surficial	Cultivated areas (38%), Channel banks (34%), combined surficial soil/channel bank areas (28%)
	Collins 1997		C, N, P tot	Fe pyr , Fe dit , Al pyr , Al dit ,	137 Cs		Ca, Co, Na, Fe dit ,	The Exe Basin (UK) four sources:	The Exe basin: Pasture areas (71.7%),
				Mn pyr , Fe tot , Al tot , Mn tot ,			Mn oxa , Ni	woodland, pasture areas, cultivated	Cultivated areas (20.4%), Channel
				Fe oxa , Mn oxa , Al oxa, Cu, Zn,				areas, channel banks	banks (5.3%), Woodland (2.6%).
				Pb, Cr, Co, Ni, Na, Mg, Ca,				
				K,				
							Fe oxa , Ca, C	The Severn Basin (UK) four sources:	The Severn basin: Pasture areas
								woodland, pasture areas, cultivated	(65.3%), Cultivated areas (25.4%),
								areas, channel banks	Channel banks (7.5%), Woodland
									(1.8%).
	Collins 1997	Absolute particle size	C, N, P tot	Fe pyr , Cu, Zn, Pb, Cr, Co, Ni, Na,	137 Cs, 210 pb		Ni, Co, K, P tot , N	The Dart Basin (UK) four sources: woodland, pasture areas, cultivated areas, channel banks	Pasture areas (78%), Cultivated areas (14%), woodland (4.5%), channel banks (3.5%)
				Mg, Ca, K				
							N, Cu, 137 Cs	The Plynlimon Basin (Uk) three	Pasture areas (66%), Forest areas
								sources: forest areas, pasture areas,	(25%), Channel banks (9%)
								channel banks

C, N

Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Zn, Ca, K Mg, Na, Aldit, Fedit, Mndit, -

  137 Cs),Radium-226 ( 226 Ra) and excess Lead-210 ( 210 Pb ex ) are used as sediment tracers in 16, 6 and 13 studies, respectively. These radionuclide tracers were found to be the best tracers to discriminate sediment sources in 12 studies for 137 Cs, 2 studies for 226 Ra and 5 studies for 210 Pb ex . Fallout radionuclide tracers were able to discriminate sediment sources among different land uses and geologic units. For instance, 20 137 Cs was selected to discriminate sub-soil versus surface soil sources in(Walling et al. 1999;[START_REF] Nicholls | The source and behaviour of fine sediment deposits in the River Torridge Devon and their implications for salmon spawning[END_REF][START_REF] Mukundan | Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream[END_REF][START_REF] Caitcheon | The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers[END_REF] -In catchments with a high sub-soil contribution (e.g.Nosrati et a l. , 2011;[START_REF] Devereux | Suspended-sediment sources in an urban watershed[END_REF] organic tracers were not selected as best tracers, with the exceptionof Wilkinson Hancock et al., 2012. 

Table 4 .

 4 Mean and standard deviation of the optimum fingerprint properties and their trace discriminatory weighting from DFA in NFBR watershed.One of the aims of this review is to compare the variability in outputs from applying a common dataset to seven widely used mixing models. Figure3provides clear evidence that the application of different mixing models to the same dataset will produce dramatically different results. However, the contribution of sources in sediment transport, using local optimization methods (simple bars) are more similar to each other than using global optimization methods that has reduced variability within, but not among individual models. For example, on March 16 with 2.1 m 3 /s water discharge and turbidity of 38NTU, local optimization methods identified the contribution of channel banks ranged between 55% with the Slattery model and 88% with the Hughes model. Differences in the contribution of channel banks among models using GA are much more variable between the modified Collins model showing that 96% of sediment originated from this source, and only 1% of material provided by this source according to Landwehr and modified Landwehr mixing models. In total, channel banks are the main sediment supply in all sampling events and GA-based mixing models, except for Landwehr and modified Landwehr mixing models in which pasture areas were shown as dominant. Using local optimization methods, channel banks remained the dominant source of sediment in all mixing models. Furthermore, the results of the Motha model based on the root mean square of relative errors, and Slattery model based on the sum of squares of errors are identical in both global and local optimization methods. Although the modified Landwehr model divides the number of samples in a source area by the variance, the percentage source sediment contribution is identical in both Landwehr and modified Landwehr models. This phenomenon is also observed for Collins and modified Collins models when local optimization methods alone are considered.

	Fingerprint	Mean	Standard	Wilks'	% source	Tracer
	property		Deviation	Lambda	type samples	Discriminatory
	selected				classified	weighting
					correctly	
	δ 15 N	4.67 (‰)	4.7	0.444	65.7	1.5
	Cr	54.21 (mg kg -1 )	51.5	0.336	57.6	1.3
	137 Cs	9.75 (Bq kg -1 )	17.3	0.291	49.5	1.1
	U	4.1 (mg kg -1 )	2.8	0.289	43.3	1.0

Table 5 .

 5 Mean and standard deviation of the best fingerprint properties and their tracer discriminatory weighting from DFA in Bleon watershed.Forty fingerprint properties including radionuclide elements ( 137 Cs, 210 Pb ex , 40 K, 226 Ra, 228 Ra,228 Th, 234 Th), rare earth elements (Ce, Eu, La, Lu, Sm, Tb, Yb), major elements (Fe, K, Na, Al, Ca, Mg, Ti) and trace elements(As, Ba, Co, Cr, Cs, Hf, Sc, Ta, Th, Zn, Ag, Co, Cr, Cs, Hf, Sc, 

	Fingerprint	Mean	Standard	Wilks'	% source	Tracer
	property		Deviation	Lambda	type samples	Discriminatory
	selected				classified	weighting
					correctly	
	Ra-226	23.5	7.9	0.0405	38.9	1.2
	Al	4.7	1.6	0.0076	77.8	2.3
	Ni	40.2	12	0.0024	33.3	1
	V	75.3	24	0.0001	66.7	2
	Cu	15.5	5.2	0.000515	44.4	1.3
	Ag	0.2	0.08	0.000253	38.9	1.2

Table 6 .

 6 GOF values of seven mixing model and two optimisationsImproved accuracy in both catchments was obtained when applying the original Collins model

	Mixing models	Optimization	GOF (%)					
		method	Bléone catchment		NFBR catchment	
			Min	Mean	Max	Min	Mean	Max
	Collins	GA	53	75.5	90	13.3	15.4	16.8
		Local	62.2	76.8	89.2	30.3	54	79
	Modified Collins GA	43.4	60.5	70	22.3	61	73.7
		Local	60.8	72.5	87.8	18	55.7	75.3
	Hughes	GA	61.6	76.7	88.5	1	21.7	78
		Local	63	77	88.6	35.7	60.3	75.4
	Landwehr	GA	48	63.7	74.7	<0	<0	<0
		Local	59.7	75.6	88	25.5	48	67.3
	Modified	GA	56	70.4	85	<0	<0	<0
	Landwehr	Local	59.7	75.5	87.3	22.6	50.6	73.2
	Motha	GA	64.4	76.4	88	68.4	31	73.8
		Local	64.4	76.3	88.8	48.7	23.3	77
	Slattery	GA	64.7	76.1	89	69.3	30.6	75
		Local	62.8	76.3	88.8	67.5	28.2	77

Cs, which has a half-life of 30.2 yr, is a product of nuclear weapons testing during the 1950s

IRM 850 = Isothermal remanent magnetization at 850 mT, χ lf =Low frequency magnetic susceptibility, χ fd = Frequency dependent magnetic susceptibility, tot= total, dit= dithionite, oxa= oxalate, pyr=pyrophosphate source contributions (GOF=72.5%). In the Hughes model that uses the actual values rather than statistic parameters, local optimization produced a higher goodness-of-fit of 77% and 60.3% in Bleon and NFBR catchments respectively.. Comparing the application of all mixing models in each catchment, the Hughes mixing model appears a more robust method in Bléone catchment using local optimization method (GOF=77%), and the modified Collins in NFBR catchment using GA optimization (GOF= 61%).

Conclusion

Suspended sediments in fluvial systems can lead to a number of detrimental environmental and operational impacts. Sediment fingerprinting techniques have been applied to fluvial systems to identify sources of sediment; however the selection of model and optimization method can have profound effect on the output of sediment fingerprinting analyses. This is the first review that has compared the most prevalent mixing models (including the application of genetic algorithms) to an actual dataset to quantify variability in the output depending on the application of mixing model.

All sediment fingerprinting studies must decide on the choice of field sampling methods, and selection of tracers as well as mixing models. Allowing for time and budget constraints, the study objective should drive the field sampling method. For example, fluvial sampling is the preferred method to determine the origin of sediment deposited in a dam, whereas point sampling is the most appropriate method to monitor sediment contribution in a flood event.

Budget will also drive the selection of tracers used as sediment fingerprint properties. Physical tracers are less expensive and can be measured easily, but they are not conservative and may lead to ambiguity in interpretation of results. Geochemical tracers are favored due to large number of